
Authoring of Units of Learning via
Dialogue Systems

Dietmar Janetzko
School of Informatics, National College of Ireland,

Mayor Street, Dublin,
Ireland

Email: djanetzko@ncirl.ie

Abstract— Detailed and expressive e-learning specifications
like IMS LD [1] are necessary to create efficient e-learning
applications. E-learning specifications that meet these de-
mands tend to be long and detailed such that authoring
e-learning content becomes a tedious and error-prone en-
deavour. This paper describes DBAT-LD (Dialogue-Based
Authoring of Learning Designs) which is a document gener-
ating dialogue system (DGDS) that interacts with authors of
units of learning and secures the content of the dialogue in an
XML-based target format. In the case of IMS LD, DBAT-LD
elicits an IMS LD compliant description of learning activities
along with pedagogical support activities [2] and delivers a
Unit of Learning package. DBAT-LD offers a lot of support
(explanations, control questions, adaptation to the user) to
ease authoring while strictly following the specification of
IMS LD.

Index Terms— E-Learning, IMS LD, AIML, Dialogue Man-
agement, Conformance Testing

I. INTRODUCTION

Which e-learning specification can be used to represent
learning scenarios (lessons, courses, modules)? What are
the criteria that should be met so that this description
is sufficiently generic to be used by different kinds of
e-learning applications? These are the questions that led
to e-learning specifications like, e.g., IMS LD [1]–[3].
IMS LD can be used as a notation for different kind
of pedagogical models, and it meets a number of more
technical objectives (e.g., interoperability). Conceiving of
e-learning specifications from this perspective is certainly
important, if not indispensable when designing educa-
tional software. Willy nilly, however, this vantage point
is closely related to the question how learning design
knowledge to be used in online courses is captured in
the first place. IMS LD remains silent about this question.
Usually, text-based editors or graphical authoring tools are
used for this purpose. While IMS LD editors certainly
simplify the authoring procedure, they are still quite
complex and provide only limited support with regard
to reconstructing pedagogical knowledge. Dialogue-based
authoring provides this kind of support by transforming
the design activity into a storytelling process. Authoring
e-learning content can be simplified by leading the user
through the IMS LD specification and adapting to his
understanding when necessary. The goal of this paper is
to introduce a system and rationale for dialogue-based
authoring of units of learning, i.e., IMS LD compliant

specifications of learning scenarios (courses, modules, or
lessons). Dialogue-based authoring of IMS provides a
supplement or alternative to editor-based authoring. The
top-level elements inside the learning-design element of
the IMS LD specification (components, method and their
component elements) are used as the running thread that
guides an authoring interview with a human pedagogical
expert on a learning scenario. In so doing, the dialogue-
system prompts information needed to spell out a learning
design, saves this information and delivers an IMS LD
compliant output, i.e., a unit of learning in an IMS LD
content package.

The paper is organized as follows: First, the editor-
based and the dialogue-based way of authoring content
for educational software are compared and contrasted.
Secondly, discussing related work will show that previous
approaches to authoring could not reach the level of
generality of DBAT-LD. Thirdly, there is an outline of
IMS LD and the multiple ways it supports DBAT-LD.
Fourthly, language technology used for authoring, i.e.,
AIML (Artificial Intelligence Modeling Language) and
the overall architecture if DBAT-LD is described. Finally,
I will delineate skills DBAT-LD brings to bear when
conducting authoring dialogues and present an example
dialogue conducted with DBAT-LD.

II. EDITOR-BASED AND DIALOGUE-BASED
AUTHORING

When setting set up a learning design that is based on
IMS LD course authors may choose between some sort of
ASCII-editor, XML-editor or an IMS LD editor. The latter
is a more specific authoring tool that is geared towards
creating IMS LD compliant output. Examples of IMS
LD editors are the Reload Learning Design Editor [4],
LearningMapR [5], CopperAuthor [6], IMS LD graphic
editor, [7] elive LD-suite [8], ASK LDT [9], or Mot+ [10].
Furthermore, there are several LD-related tools available
like CopperCore or the Reload learning design player.
These tools analyze learning design packages and test
if they conform to the IMS LD specification.1 While
graphical editors provide a number of features to support
the design of pedagogical scenarios, i.e., units of learning,

1A list of learning design tools currently available or under develop-
ment can be found under [11].

JOURNAL OF COMPUTERS, VOL. 2, NO. 2, APRIL 2007 45

© 2007 ACADEMY PUBLISHER



they offer only limited support that helps to unravel
pedagogical expertise such that it can be mapped to the
complex specification of IMS LD.

Figure 1. Dialogue-Based Authoring

Using dialogue systems like DBAT-LD constitutes a
complementary or alternative road to authoring IMS LD.
To a considerable degree, authoring online courses means
eliciting and redescribing pedagogical knowledge in terms
of an abstract notation with a technical flavor like IMS
LD. Natural dialogues support this change of representa-
tion in a multiple of ways by

• explaining basic concept of the notation,
• providing examples that highlight the usage of basic

concepts of the notation,
• prompting additional information required,
• redescribing utterances in a ‘does-this mean-XY?’

style,
• answering questions,
• scaffolding the overall process of redescription by

rectifying misconceptions.

A natural language dialogue system, e.g., a chat bot
system, allows only an approximation of human-human
dialogues. Still, todays dialogue systems offer a range of
features that make them an interesting tool for carrying
out knowledge engineering and authoring tasks. More-
over, document generating dialogue systems (DGDS) like
DBAT-LD secure the content of the dialogue by generat-
ing a document that can be used by other applications
(e.g., e-learning systems).

The dialogue-based road outlined in this paper is
targeted to authors of units of learning who have no
or only a limited understanding of IMS LD. Support-
ing them via dialogue-based authoring may mean many
things: Rectifying misconceptions, answering questions,
providing examples, or reconstructing design knowledge
that is possibly implicit. Once a unit of learning has been
generated via dialogue-based authoring and the resulting
specifications have passed a number of validation proce-
dures and conformance testing it may be used by an IMS
LD compliant player for e-learning (cf. Figure 1). Clearly,
the dialogue-based road to authoring educational software
has much in common with an editor-based road: Both
approaches create an awareness of issues to be addressed
in authoring (e.g., concerning the information required)
and both assist the user editing one or several files that
specify the unit of learning in IMS LD. Dialogue-based

authoring may integrate graphics similar to those used
in editor-based authoring. Vice versa, in editor-based au-
thoring dialogues may be integrated. However, dialogue-
based authoring has a greater potential to adapt to the
user (e-learning author). For instance, DBAT-LD keeps a
record of the dialogue history and adapts its performance
accordingly. In addition, dialogue-based authoring is more
suited to unravel pedagogical knowledge, e.g., by starting
in a very general way and narrowing down the authoring
dialogue to more specific levels of description.

III. RELATED WORK

Collecting information and representing it in a struc-
tured way is one of the main reasons why dialogue sys-
tems are used [12]. In areas like text generation dialogue
systems have been used to create the knowledge base that
is used to generate texts [13]. It is therefore surprising
that dialogue systems have been used rarely to author
e-learning systems. The authors in [14] describe a set
of tools dedicated to author natural language dialogue
interface for intelligent tutoring systems (ITS). Is it shown
that the authoring tools facilitate rapid development of
natural language dialogue interfaces. In itself, however,
the authoring tools do not seem to be dialogue-based.
Moreover, the work lacks generality since the approach
is applied only to Intelligent Tutoring Systems that have
been developed by the authors themselves. In contrast,
the work delineated in this paper follows a more general
approach since the output generated by DBAT-LD can be
used by any IMS LD compliant player.

IV. IMS LEARNING DESIGN

IMS Learning Design (IMS LD) is an open e-learning
specification released by the IMS Global Learning Con-
sortium in 2003 [1]. IMS LD includes a binding specifica-
tion that defines precisely how learning designs are repre-
sented in XML. IMS LD derived from two developments
in the area of e-learning specifications: Firstly, IMS LD is
based upon the Educational Modeling Language (EML),
which was developed by Rob Koper [16] from the Open
University of the Netherlands (OUNL). The motivation
behind EML was to show that many, if not all pedagogical
approaches can be described in a meta-language, the core
of which accounts for various activities for one or several
learner roles and staff roles in a certain order. IMS LD
incorporates and extends the general approach of EML.
It provides an elaborated notation to specify learning and
teaching activities which is pedagogically neutral and im-
plementation independent. Secondly, IMS LD integrates
other IMS specifications like content packaging [17], meta
data [18], and simple sequencing [19].

A. Levels of Implementation

IMS LD distinguishes three levels of specification, i.e.,
level A–C, each of which is mapped to separate XML
schemas.

46 JOURNAL OF COMPUTERS, VOL. 2, NO. 2, APRIL 2007

© 2007 ACADEMY PUBLISHER



l e a r n i n g−d e s i g n
t i t l e
l e a r n i n g−o b j e c t i v e s
p r e r e q u i s i t e s
components

r o l e s
l e a r n e r ∗
s t a f f ∗

p r o p e r t i e s ∗
a c t i v i t i e s

l e a r n i n g−a c t i v i t y ∗
env i ronment−r e f ∗
a c t i v i t y −d e s c r i p t i o n

s u p p o r t−a c t i v i t y ∗
a c t i v i t y −d e s c r i p t i o n

a c t i v i t y −s t r u c t u r e ∗
l e a r n i n g−a c t i v i t y −r e f
s u p p o r t−a c t i v i t y −r e f

e n v i r o n m e n t s
e n v i r o n m e n t ∗

l e a r n i n g o b j e c t s ∗
s e r v i c e s ∗
env i ronment−r e f ∗

method
p l a y ∗

a c t ∗
r o l e−p a r t s ∗
r o l e−r e f

a c t i v i t y −r e f
a c t i v i t y −s t r u c t u r e −r e f

c o n d i t i o n s ∗
m e t a d a t a

Figure 2. Main Elements of IMS LD (Level A)

Learning Design Level A is the core of IMS LD
and the majority of Units of Learning presented so
far in work on IMS LD rely on level A. The level A
specification of IMS LD provides a basic notation that
can be used to express a large diversity of pedagogical
approaches. The elements expressed on level A are
shown in Fig 2. An asterisk * means that an element
may occur more than once. The hierarchical structure of
elements of the level A specification of IMS LD is taken
as a guideline to carry out a dialogue-based authoring.
Thus, DBAT-LD will ask for the title of the learning
design, inquire about the requirements, find out which
persons are involved in the learning activities, etc [1].

Learning Design Level B extends level A by adding
properties, global elements, monitor services, and
conditions.

Learning Design Level C adds notifications to level B.
Notification are triggered by learning activity outcomes,
which can make a new activity available for a role to
perform.

There are several reasons that motivate a distinction of
the IMS LD specification into different levels. Firstly, to
avoid an overly complex specification that would include
a number of mandatory elements and numerous optional
elements. Secondly, compared to the more basis features
of level A the features of level B and C enable a more
elaborate behavior of the e-learning system, which may or

may not be required. A distinction into levels facilitates
a selection of these features when needed. Likewise,
vendors or organizations that consider using IMS LD
may decide to opt for particular levels. Thirdly, e-learning
program development can be staged and geared towards
particular objectives (e.g., adaptation).

The majority of work related to IMS LD (e.g., tool
development) focuses on level A. More recently, however,
more attention is given to level B since specification on
this level holds the key for collaborative learning, adaptive
learning and personalization, conditional text, new forms
of assessment, or runtime tracking [20]. In contrast to
most other e-learning specifications or standards IMS LD
supports multi-learner activities and environments. It is
generally agreed that IMS LD offers enough flexibility
to describe and specify learning and teaching [21]. In the
past, however, the uptake of IMS-ID has been hindered by
the lack of user-friendly tools. With the advent of a num-
ber of tools (editors, players) this situation is beginning to
change. More recent developments indicate an integration
of IMS LD with well-known open source e-learning
tools: LAMS (Learning Activity Management System)
will integrate import/export feature using IMS LD Level
A. Likewise, the open source course management system
Moodle will be able to export in IMS LD or play an IMS
LD packages. Vice versa, IMS LD tools will be able to
import Moodle courses [22].

B. Units of Learning (UoL)

A number of resources (texts, HTML documents, fig-
ures to be presented to the learners, presentation slides
etc.) may be required to specify learning and teaching
activities. In addition, more technical information needs to
be added (e.g., about namespaces). The IMS content pack-
aging is used to bundle and cross-reference the variety of
resource files [17]. Moreover, the information about the
packaging rationale itself is specified in a manifest file. so
that a player program like a learning management system
can easily find the information needed. This bundle of
information is usually provided in a compressed format
(e.g., a zip file).

C. IMS LD and Dialogue Design

An XML-based e-learning specification like IMS LD
offers excellent possibilities for designing a dialogue-
based authoring tool. Since the elements of the specifica-
tion define the information to be elicited DBAT-LD uses
them as a guideline for the authoring process. This does
not necessarily mean that a “fixed-pipeline” approach (a
standard sequence of questions) is used throughout each
dialogue. An element (e.g., activities) can be taken
to mark a focal point in the dialogue. Starting from there,
related themes like the single teaching activities, the en-
vironments of the activities, the support administered can
be addressed in the dialogue all of which are component
elements of the activities element. Thus, taking IMS
LD as a guideline for dialogue managements contributes

JOURNAL OF COMPUTERS, VOL. 2, NO. 2, APRIL 2007 47

© 2007 ACADEMY PUBLISHER



to thematic coherence of the dialogue. Moreover, the
specification provides a data structure that can be used for
dialogue management. In DBAT-LD, this data structure is
the basis for the dialogue management rationale chosen,
i.e., a blackboard control architecture.

V. THE OVERALL ARCHITECTURE OF DBAT-LD

DBAT-LD has been implemented in PHP. In particular,
the PHP extension DOM (Document Object Model) has
been extensively used. The DOM extension of PHP is an
API which complies excellently with the language- and
platform–neutral interface DOM standard of the World
Wide Web Consortium (W3C) [23]. The DOM extension
of PHP provides a number of functions that has been used
in DBAT-LD to create, parse, and modify XML document
instances.

Figure 3. Overall Architecture of DBAT-LD

A. The Knowledge Bases

DBAT-LD makes uses of a modularized knowledge
base that is used to for dialogue processing and man-
agement.

1) IMS LD: An instance of the IMS LD specification
is built up and updated on the fly.

2) Background Knowledge: The IMS LD specification
is augmented by WordNet [24] to detect and resolve
synonymous concepts that are used in the dialogue.

3) Dialogue History & User Model: The dialogue
history is kept to allow memory-based processing within a
dialogue. Adaption to the user makes use of the dialogue
history.

4) Examples of Units of Learning: Examples are rep-
resented that are shown to the user upon request.

B. The Dialogue Engine

The dialogue engine used by DBAT-LD is based on
AIML (Artificial Intelligence Markup Language). AIML
is a XML-based pattern language developed by Dr.
Richard Wallace and the Alicebot free software com-
munity [13-15]. One of the chief motivations that lead
to the development of AIML was to design a simple
language for machine-based mixed-initiative dialogues.

AIML is applied in various applications (e.g., computer
games). Among others, it has been used to design tutorial
dialogues [25], [26].

Processing AIML is an example of shallow natural
language processing (no grammatical parsing). For this
reason, AIML-based natural language processing systems
are usually called chat bot systems. The principal ele-
ments of the dialogue engine used are

• AIML Interpreter
• AIML Code
• Dialogue Management Module
• Agents

Next is a description of the components of the dialogue
engine of DBAT-LD.

1) AIML Interpreter: An AIML interpreter is required
to render the AIML code. A number of open source AIML
interpreters are available each of which provides particular
features (e.g., interfaces to particular knowledge bases).
The AIML interpreter used by DBAT-LD is ProgramE
since it is written in PHP and thus ties in well with the
remainder of the system.

2) AIML Code: The AIML code is a set of adjacency
pairs [27] like initiation/response or question/answer. In
addition, AIML code for preprocessing the input has
been used. Preprocessing was required to increase the
systems robustness with regard to different wordings of
comparable user utterances.

3) Dialogue Management Module: Dialogue
management is a key issue in all dialogue systems.
In DBAT-LD the dialogue management module controls
dialogue planning and thus the overall flow of the
dialogue. The dialogue module makes use of a
blackboard architecture [28] that acts as a common data
structure for specifying conditions and goals that relate
to the agents. For instance the blackboard may list the
goals

goal = (title, learning-objectives,
prerequisites, components, method)

Enabling conditions are used to control the activity of
the dialogue engine. For the dialogue engine to become
active (by contributing to the dialogue) a set of precon-
ditions have to be met. Once the goal is accomplished,
it will disappear from the blackboard. In addition, goal
accomplishment may affect the fulfillment of enabling
conditions. In this way a pro-active behavior of the
dialogue system can be guaranteed without relying on a
predetermined sequence of goal accomplishment. DBAT-
LD is a mixed-initiative dialogue system and thus major
tasks to be achieved in dialogue management in DBAT-
LD can be described as follows

• Managing incoming utterances of the user by passing
the request to the component of the dialogue system
that is suited best to give an answer.

48 JOURNAL OF COMPUTERS, VOL. 2, NO. 2, APRIL 2007

© 2007 ACADEMY PUBLISHER



• Taking the initiative if needed. DBAT-LD takes the
initiative if an issue is settled, if an issue necessitates
follow-up questions of if the user does not take the
initiative (remains silent).

• Management of themes by staying with them until
all open questions are answered or by coming back
to a theme.

• adapting to the user by assessing his level of exper-
tise and performing accordingly.

4) Agents: The dialogue management in DBAT-LD is
achieved via agents or dialogue specialists. To the user
(e.g., the educational expert), the dialogue system may
appear to be a homogeneous entity. However, the dialogue
management and thus the authoring of IMS LD compliant
documents is based on the joint activity of a community
of agents, i.e., conversational specialists that focus on a
particular topic of the authoring process. The agents are
part of the dialogue management module which in turn
makes use of a blackboard control structure. A blackboard
is a common data structure all agents may access for read-
ing and writing [28]. The agents of the dialogue system
reflect the organization of Learning Design. For each of
the component elements of the root element of a unit
of learning, i.e., the learning-design element, there
are agents that guide the conversation on title, learning-
objectives, prerequisites, components, method and meta-
data. We may as well say that each agent addresses a
particular goal in the authoring process. For instance,
the learning-objectives agent will ask questions about the
objectives of the unit of learning talked about, etc. Each
agent reconstructs chunks of learning design knowledge
that fall into its scope and saves them. In this way, the
community of all agents contributes to producing an IMS
LD compliant output file.

The motivation for using agents to implement dialogue
management is twofold: Firstly, agents reflect the mod-
ular structure of the dialogue knowledge-base. Secondly,
when integrated in a blackboard control structure agents
support flexible dialogue patterns. Thus, instead of using
a predetermined sequence of questions (‘fixed-pipeline
approach’) the dialogue flexibly follows topic changes if
suggested by the user. The dialogue will, however, come
back and address major dialogue goals and will finally
generate an IMS LD compliant document. The agents
have a number of features the most striking of which are
their greediness, stickiness and responsiveness.

Greediness of Agents. Designed to be greedy, dialogue
specialists do want to contribute to the dialogue. However,
before agents may perform, their enabling conditions need
to be fulfilled. The same is true with respect to utterances
of one agent. It does not seem reasonable, for instance, to
start authoring a learning unit by addressing the method
at the very start. Likewise, there is no point in discussing
support activities if other aspects of the method have
not been dealt with. Once the enabling conditions of a
dialogue specialist are fulfilled, it may play an active
or passive role in the dialogue. In so doing, changes
are introduced to the blackboard that will have enabling

or disabling effects on other agents. When the learning-
objectives agent has finished its job, it will express this by
leaving a message on the blackboard. This, in turn, may or
may not enable other agents to take control of the dialogue
(by focusing on the prerequisites of the unit of learning
under discussion). Depending on the enabling conditions,
the performance sequence of dialogue specialists, i.e., the
topics of a dialogue may be linear, partially ordered or
devoid of any pre-specified order.

Stickiness of Agents. Apart from being greedy dia-
logue specialists are also sticky. This means that once
a dialogue specialist is performing, it will tend to stay
with this topic. Stickiness of dialogue specialists has
been added to the features of the dialogue system to
prevent it from becoming mercurial, i.e. jumping across
various topics. Stickiness is compatible with each dia-
logue style (e.g., system-initiative, user-initiative, mixed-
initiative), but most relevant if the dialogue system steers
the dialogue (system-initiative). Stickiness of the dialogue
specialists is accomplished by features of the AIML-
syntax (in particular the TOPIC-tag) of AIML.

Responsiveness of Agents. Though being sticky, agents
are in fact responsive. Responsiveness of dialogue spe-
cialists means two things: First, the system will answer
questions, provide clarifications or even change the overall
dialogue agenda upon request of user. Second, the system
will consider the user model when deciding whether the
control should be passed over to a particular content-
related agent. For instance, if the user model tells that the
topic of learning-objectives has already been presented to
the user (i.e., the corresponding agent has already done its
job), there is little reason to pass over control to the same
agent again. At least this is not done without explicitly
asking the user whether or not to do so.

Figure 4. Content Package and the embedded Learning-Design
The left figure presents the structure of the IMS LD compliant
content package as it is created by DBAT-LD. The right figure
sets out how the IMS Learning Design (elicited via the authoring
dialogue) is integrated with the IMS Content Package. as a
component element of the organization element [1]

C. The Backend Engine.

The backend engine carries out a number of authoring
tasks that are shielded away from the e-learning author.

JOURNAL OF COMPUTERS, VOL. 2, NO. 2, APRIL 2007 49

© 2007 ACADEMY PUBLISHER



1) Generation of a manifest file: The manifest file
imsmanifest.xml is the central element of an IMS
LD unit of learning. Information that is elicited in the
authoring dialogue, i.e, the specification of the learning
design as well as resources files need to be integrated
with the manifest file. This means, information about a
learning design is actually included in the learning design
element. Information about resources (e.g., files used in a
course that is described via IMS LD) is usually included
in separate files that need to be referenced by resource
elements in the manifest file.

Moreover, the manifest file contains technical infor-
mation (e.g., about name spaces) that are not elicited in
the authoring dialogue. The backend engine addresses all
issues mentioned above. It gleans information collected in
the authoring dialogue and integrates it into the manifest
file. If needed, it retrieves information from the knowledge
base that includes technical information about IMS LD
and writes it to the manifest file.

2) Conformance Testing: If e-learning content and
software is intended to be reused then it needs to comply
with standards and specifications that have been devised
to support this objective. Quite often, however, it is not
clear whether standards and specifications are actually
met. For instance, standards and specifications are not set
in stone but exist in different versions. E-learning content
may be drawn from various sources some of which may
or may not comply with a particular e-learning standard
or specification. Thus, before a newly generated unit of
learning is packed conformance testing [29] is required,
which includes

• non validating parsing to ensure the basic syntactical
correctness of the manifest file,

• validating parsing, i.e. a test of the manifest file
against the IMS LD schema (for level A) of the IMS
LD specification,

• check of the availability and correct reference of the
resource files specified in the manifest file.

3) Generating a Learning Design Package: Once the
manifest file has been created, and the quality control
was passed successfully, the learning design package is
generated. To this purpose the backend engine packs
the manifest file and the resource files referenced in the
manifest file into a zipped file the structure of which is
shown in Figure 4).

VI. FEATURES OF DIALOGUE-BASED AUTHORING

Dialogue-based authoring targeted to setting up learn-
ing designs have a specific profile. Seen from a more
general point of view, the profile of dialogue-based au-
thoring can be described as being mixed initiative and
open: Firstly, the set-up of the dialogue system is geared
towards eliciting or reconstructing knowledge as specified
by IMS LD. As a consequence, for most part of the
dialogue the initiative (e.g., addressing and pursuing a
particular topic by asking questions) is mainly on the
system side. Clearly, however, the user may also take
the initiative and ask questions. User questions may, for

TABLE I.
DIALOGUE SKILLS OF DBAT-LD

Feature Performance
Explaining
Concepts

DBAT-LD explains concept autonomously or
when asked to do so. In this way, the system
supports the user who is unfamiliar with the lingo
of IMS LD.

Example
(User):

Please give me an example of a
support activity

Asking for a
Rephrase

If DBAT-LD is not able to process the utterance
it asks the user to rephrase it.

Example
(System):

I did not quite understand
what kind of learning-activity
is required. Could you please
rephrase your description of a
learning-activity? A one-word
description would be most
welcome.

Pumping
for more
information

Some elements of IMS LD may contain a se-
quence of component elements. DBAT-LD needs
to find out if more information is required.

Example
(System):

I understood that Study-Resources
and Clarify-Problem are learning-
activities. Are there any other
learning-activities?

Requesting
Confirmation

Once DBAT-LD has completed an Element it
asks for a confirmation.

Example
(System):

It looks like there are basically
two participants or rather
roles involved in this unit of
learning: a learner and a tutor.
Is that correct?

Paraphrasing
User
Utterances

Paraphrasing user utterances and asking for con-
firmation is an essential part of reconstructing
learning design knowledge.

Example
(System):

Is it correct that in this
act the support activity
is to provide a feedback
(provide-feedback)?

Subtopic
Management

The system uses a topic stack that supports
subtopic management. Thus, the system will
come back to a topic that has been addressed
shortly but not exhaustively.

Example
(System):

Let us come back to the
participants involved in this
unit of learning.

instance, be provoked by concepts DBAT-LD has em-
ployed in questions. Secondly, conversations in dialogue-
based authoring are conducted to elicit, reconstruct and
redescribe pedagogical knowledge. In DBAT-LD unrav-
eling pedagogical knowledge is done via a number of
discourse mechanisms like paraphrasing used utterances
and requesting a user feedback, providing examples and
asking for the reason or motivations of user decisions.
Thirdly, by its very nature authoring is an open modeling
activity and thus full transparency of the IMS LD com-
pliant description generated is indispensable. At various
points in time during an authoring dialogue the user may
inspect the IMS LD compliant description of the learning
unit (cf. Table II).

Dialogue skills of DBAT-LD can be specified on the
levels of words, sentence or the overall conversation or
discourse (cf. Table II). Performance of each of the skills

50 JOURNAL OF COMPUTERS, VOL. 2, NO. 2, APRIL 2007

© 2007 ACADEMY PUBLISHER



TABLE II.
DIALOGUE SKILLS OF DBAT-LD

Level Skill Pro-active When Asked
Providing Explanations • •

Word Asking for Explanations •
Relationship Management
Repeating last Utterance •

Sentence Pumping for More Information •
Paraphrasing User Utterances •

Sub-dialogue Management •
Discourse Summing Up • •

Presenting Examples • •
Disclosure of Content •

my be triggered autonomously or heteronomously (when
asked). For instance, an autonomous performance of the
skill Explaining Concepts means that the system will
come up with a explanation of a particular concept with-
out being asked to do so. A heteronomous performance of
the same skill simply means that the system will provide
an explanation when the user ask for it. In this way,
DBAT-LD supports the user who is unfamiliar with the
lingo of IMS LD. The other dialogue skills of DBAT-LD
can be classified accordingly.

VII. CONCLUSION

E-learning specifications compel and facilitate knowl-
edge elicitation for e-learning. DBAT-LD reacts to this
new challenges and possibilities by making dialogues a
central part of the authoring process. On the one hand,
DBAT-LD can be compared to editor-based approaches to
authoring Units of Learning. On the other hand, DBAT-
LD can be discussed with respect to dialogue-based
authoring. With regard to editor-based approaches to
authoring IMS LD compliant documents DBAT-LD helps
the user to come to terms with the complex specification
of IMS LD. This is achieved by applying a number
of dialogue feature to the authoring process (e.g., sub-
dialogue management, paraphrasing use utterances and
adapating to the level of expertise of the user. With regard
to authoring e-learning via dialogues DBAT-LD shows
that by virtue of using a well-defined specification like
IMS LD the generality of the output is increased. In
addition, new forms of authoring (authoring in teams and
re-authoring of previous units of learning are supported
on the basis of IMS LD.

Generality of the Output generated by DBAT-LD..
DBAT LD supports dialogue-based authoring of elearning
system content that – in principle – can be used in a
large number of e-learning systems. The generality of
DBAT LD has been made possible by the e-learning
specification used. The contribution of IMS LD can be
summarized as follows. Firstly, the XML basis of IMS
LD can be used to capture and represent the knowledge
elicited. Secondly, a specification like IMS LD supports a
focused authoring procedure. Thirdly, IMS LD provides a
common data structure which in turn can be used for more
advanced dialogue management rationales. Thirdly, the
IMS LD specification can be used as a yardstick to check
the completeness of the knowledge elicited. Fourthly, the

IMS LD specification can be used to support authoring of
multiple authors or a re-authoring of previous instances
Finally, IMS LD provides a framework for target format
to represent and save Units of Learning.

Generality of the Approach taken by DBAT-LD The
current version of DBAT-LD is implemented in AIML.
However, since the well-defined generic representation,
i.e., IMS LD, is kept separate it would be relatively easy
to replace the AIML-based dialogue engine by a different
set of tools (e.g., by TRINDIKIT, [15]) while retaining the
core representation. Likewise, dialogue-based authoring
similar to the way DBAT-LD proceeds can be carried out
on the basis of other specifications.

ACKNOWLEDGEMENT

I like to thank the anonymous reviewers for the con-
structive and well thought out questions and comments.

REFERENCES

[1] IMS Global Learning Consortium, “IMS Learning Design
Information Model. Version 1.0 Final Specification,” Re-
trieved January 15, 2007 from http://www.imsglobal.org/
learningdesign/ldv1p0/imsld infov1p0.html, 2003.

[2] R. Koper and B. Olivier, “Representing the learning design
of units of learning,” Educational Technology & Society,
vol. 7, no. 3, pp. 97–111, 2004.

[3] B. Olivier and C. Tattersall, “The Learning Design spec-
ification,” in Learning Design: A Handbook on Mod-
elling and Delivering Networked Education and Training,
R. Koper and C. Tattersall, Eds. Berlin: Springer, 2005,
pp. 21–40.

[4] C. Milligan, P. Beauvoir, and P. Sharples, “The reload
learning design tools,” Journal of Interactive Media in
Education, vol. August, 2005.

[5] D. Buzza, Richards, D. L. Bean, K. Harrigan, and T. Carey,
“LearningMapR: A Prototype tool for Creating IMS-LD
Compliant Units of Learning,” Journal of Interactive Me-
dia Research in Education, vol. August, 2003.

[6] W. van d.er Vegt and R. Koper, “CopperAuthor v1. 6,” Re-
trieved January 15, 2007 from http://dspace.ou.nl/handle/
1820/592, 2006.

[7] E. G. Pacurar, P. Trigano, and S. Alupoaie, “A QTI editor
integrated into the netUniversit web portal using IMS LD,”
Journal of Interactive Media in Education, vol. September,
2005.

[8] “elive LD-suite,” Retrieved January 15, 2007 from http://
www.elive-ld.com/content/e47/e649/index eng.html, 2006.

[9] D. Sampson, P. Karampiperis, and P. Zervas, “ASK-LDT:
A Web-Based Learning Scenarios Authoring Environment
Based on IMS Learning Design,” International Journal on
Advanced Technology for Learning, pp. 207–215, 2005.

[10] G. Paquette, d. I., and M. Léonard, “An instructional
engineering method and tool for design of units of learn-
ing,” in Learning Design: A Handbook on Modelling and
Delivering Networked Education and Training, R. Koper
and C. Tattersall, Eds. Berlin: Springer, 2005, pp. 161–
184.

[11] Unfold Project, “Learning design tools currently
available or under development,” http://www.unfold-
project.net:8085/UNFOLD/general resources folder/tools/
currenttools.

JOURNAL OF COMPUTERS, VOL. 2, NO. 2, APRIL 2007 51

© 2007 ACADEMY PUBLISHER



[12] M. Witbrock, D. Baxter, J. Curtis, D. Schneider,
R. Kahlert, P. Miraglia, P. Wagner, K. Panton,
G. Matthews, and A. Vizedom, “An Interactive Dialogue
System for Knowledge Acquisition in CYC,” International
Joint Conference on Artidicial Intelligence (IJCAI-03).
Proceedings of the Workshop on Mixed-Initiative
Intelligent Systems, 2003.

[13] A. Knott and N. Wright, “A dialogue-based knowledge
authoring system for text generation,” AAAI Spring Sym-
posium on Natural Language Generation in Spoken and
Written Dialogue, Stanford, CA, 2003.

[14] P. Jordan, C. Rose, and K. VanLehn, “Tools for
authoring tutorial dialogue knowledge,” Washington, DC,
pp. 222–233, 2001. [Online]. Available: citeseer.ist.psu.
edu/jordan01tools.html

[15] S. Larsson and D. Traum, “Information state and dia-
logue management in the TRINDI Dialogue Move Engine
Toolkit,” Natural Language Engineering Special Issue
on Best Practice in Spoken Language Dialogue Systems
Engineering, vol. 6, pp. 323–340, 2000.

[16] R. Koper, “Modeling units of study from a pedagogical
perspective: the pedagogical meta-model behind EML,”
Retrieved January 15, 2007 from http://dspace.ou.nl/
handle/1820/36, 2001.

[17] IMS Global Learning Consortium, “IMS Content Packag-
ing Specification, Version 1.1.3 ,” Retrieved January 15,
2007 from http://www.imsglobal.org/content/packaging/,
2003.

[18] ——, “IMS Learning Resource Meta-data Specification,
Version 1.3 – Final Specification,” Retrieved January 15,
2007 from http://www.imsglobal.org/metadata/index.html,
2002.

[19] ——, “IMS Simple Sequencing Specification, Ver-
sion 1.3 – Final Specification,” Retrieved January 15,
2007 from http://www.imsglobal.org/simplesequencing/
index.html, 2003.

[20] R. Koper and D. Burgos, “Developing advanced units
of learning using IMS Learning Design level B,” Inter-
national Journal on Advanced Technology for Learning,
vol. 2, no. 4, pp. 252–259, 2005.

[21] C. Knight, D. Gasevic, and G. Richards, “An ontology-
based framework for bridging learning design and
learning content,” Educational Technology & Society,
vol. 9, no. 1, pp. 23–37, 2006. [Online]. Available:
http://www.ifets.info/journals/9 1/4.pdf

[22] Burgos, D. and Tattersall, C. and Dougiamas, M., Vogten,
H. and Koper, E. J. R., “Mapping IMS Learning Design
and Moodle. A First Understanding,” in Proceedings of
Simposo Internacional de Informática Educativa (SIIE06),
León, Spain: IEEE Technical Committee on Learning
Technology, 2003.

[23] World Wide Web Consortium, “Document Object Model
(DOM),” Retrieved January 18th, 2007, from http://www.
w3.org/DOM/, 1998.

[24] C. Fellbaum, WordNet: an electronic lexical database.
Cambridge, MA: MIT Press, 1998.

[25] C. Lee, S. Han, and Y. Kim, “Educational application of di-
alogue system to support e-learning,” in World Conference
on Educational Multimedia, Hypermedia and Telecommu-
nications (EDMEDIA). Chesapeake, VA: AACE, 2002,
pp. 984–989.

[26] O. De Pietro and G. Frontera, “Tutorbot: An application
AIML based for web-learning,” in 7th IASTED Interna-
tional Conference on Computers and Advanced Technology
in Education (CATE 2004), 2004.

[27] S. C. Levinson, Pragmatics. Cambridge: Cambridge
University Press, 1983.

[28] A. Kerminen and K. Jokinen, “Distributed dialogue man-
agement in a blackboard architecture,” in Proceedings
of the EACL Workshop Dialogue Systems: interaction,

adaptation and styles of management, Budapest, Hungary,
2003, pp. 55–66.

[29] R. Nadolski, O. O’Neill, W. v. d. Vegt, and R. Koper,
“Conformance testing, the elixer within the chain for
learning scenarios and objects,” in ICALT ’06: Proceedings
of the Sixth IEEE International Conference on Advanced
Learning Technologies, L. T. Kinshuk, R. Koper, P. Kom-
mers, P. Kirschner, D. G. Sampson, and D. W., Eds.
Washington, DC, USA: IEEE Computer Society, 2006, pp.
363–365.

Dietmar Janetzko received his PhD degree in psychology from
Freiburg University, Germany in 1996. In 2006, he acquired a
PhD degree in learning sciences from the Technical University
Kaiserslautern, Germany. He is currently a lecturer at the school
of informatics of the National College of Ireland, Dublin,
Ireland. His current research interests include tutorial dialogue
systems, probabilistic models, assessment, constructivism, and
Item Response Theory.

52 JOURNAL OF COMPUTERS, VOL. 2, NO. 2, APRIL 2007

© 2007 ACADEMY PUBLISHER




