
Advances in Engineering Software 40 (2009) 176–183
Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft
Development of Web services-based Multidisciplinary Design
Optimization framework

Ho-Jun Lee, Jae-Woo Lee, Jeong-Oog Lee *

Department of Aerospace Information Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-Gu, Seoul 143-701, South Korea

a r t i c l e i n f o a b s t r a c t
Article history:
Received 24 August 2007
Received in revised form 14 February 2008
Accepted 14 March 2008
Available online 22 May 2008

Keywords:
Multidisciplinary Design Optimization
Web services
Globus Toolkit
Workflow management system
Agent
0965-9978/$ - see front matter � 2008 Elsevier Ltd. A
doi:10.1016/j.advengsoft.2008.03.015

* Corresponding author. Tel.: +82 2 450 3435; fax:
E-mail address: ljo7@konkuk.ac.kr (J.-O. Lee).
The defining characteristic of a Multidisciplinary Design Optimization (MDO) strategy or method, com-
pared to the more traditional, sequential approach to conducting design work, is that the contributions
of all mutually influential disciplines are concurrently taken into account. Therefore, a framework that
allows the implementation of MDO methods must be an environment for design synthesis. It is also
desired that the user of an MDO framework be capable of efficiently integrating and managing the
resources distributed over heterogeneous platforms. This paper proposes a Web services-based MDO
framework that enables the synthesis of available disciplinary and cross-disciplinary resources for
MDO via the Globus Toolkit. Examples of organic and autonomous execution of MDO methods are pre-
sented to highlight the effectiveness of modern automation techniques, such as workflow management
system and agent technology. The salient features of a planned collaborative design environment, which
will be built through Web-based user interfaces, are discussed last.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Engineering design is inherently a multi-step process. Taking
the aerospace domain as an example, all design-related activities
fall under one of the major phases that are followed in the order
of conceptual design, preliminary design, detailed design, manu-
facturing, production, and operations and support. A well-known
deficiency of such a traditional approach to product development
is that a large portion of the system’s life-cycle cost and quality be-
come fixed by the end of the early design phases, during which the
contribution from each discipline is notably uneven [1]. The reali-
zation that front-loading the design cycle with increased cross-dis-
ciplinary trade studies could enable the elicitation of more
decision-critical information, and thus favorably impact the perfor-
mance, cost, quality, and various – illities (e.g., reliability) of the
product, is one of the key motivations for the push towards Multi-
disciplinary Design Optimization (MDO) [2].

The defining characteristic of an MDO strategy or method, com-
pared to the more traditional and sequential approach to conduct-
ing design work, is that the contributions of all mutually influential
disciplines are concurrently taken into account. Implementing an
MDO method naturally facilitates the involvement of disciplinary
experts that would have otherwise been difficult to initiate during
the earliest stages of product development. As if to demonstrate
ll rights reserved.

+82 2 444 6670.
this point, MDO has been embraced early by the aerospace and
automotive sectors. Both air and ground vehicles represent sys-
tems that are so complex, in both the scope and number of inter-
dependencies between all involved disciplines, that product
competitiveness cannot be achieved without multidisciplinary col-
laboration. Because the end-goal of an MDO method is to identify
an optimum design solution which either satisfies or exceeds cus-
tomer expectations, the applicability of MDO appears to have ex-
tended to fast-paced industries such as the electronics industry.

MDO methods come in many different guises, ranging from the
traditional calculus-based numerical optimization techniques [3]
to more recent developments such as evolutionary algorithms
[4], multi-attribute optimization [5], and reliability-based optimi-
zation [6]. If properly formulated and correctly implemented,
MDO strategies can allow the shortening of design cycle times,
reduction of engineering and development costs, and improvement
of product quality, all of which are causative factors for increasing
the profit, productivity, or competitiveness of an organization. The
missing key to multidisciplinary success is therefore the existence
of a software environment for design synthesis; that is, an MDO
framework.

At a minimum, a functional MDO framework must allow the
integration of disciplinary analysis codes as well as tools for facil-
itating cross-disciplinary tradeoffs. The larger the organization, the
more likely it is that the required disciplinary and inter-disciplin-
ary resources exist in a heterogeneous computing environment.
Even for small to moderate sized institutions, it is unlikely that

mailto:ljo7@konkuk.ac.kr
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft


H.-J. Lee et al. / Advances in Engineering Software 40 (2009) 176–183 177
all of their homegrown and commercial simulation codes are cen-
trally located on a bank of homogenous workstations. As a matter
of fact, the computing environment of the future is projected to be
further dependent and based on the Web, due to the growing pop-
ularity of the ‘‘ubiquitous network” concept [7].

It is thus apparent that a need exists for a modern MDO frame-
work that not only enables the synthesis of multidisciplinary anal-
ysis and optimization activities, but also the creation of a Virtual
Organization (VO), a collection of entities that share the computing
resources for a common purpose [8]. Motivated to address this
technological gap, the authors present a novel Web services-based
MDO framework that was developed using the Globus Toolkit Ver.
4 (GT4). GT4 is a middleware for building computing grids and pro-
vides a number of built-in services that conform to the Open Grid
Forum (OGF) protocols [9].

In order to retain the generality of the framework, it must be
capable of integrating any mix of analysis and optimization codes
as per the design problem at hand. The obvious challenge here is
that, with the exception of a few popular commercial software
packages (e.g., CATIA, VisualBasic, Matlab, etc.), most computer
programs are originally written to be standalone versions native
to specific computing platforms. Wrapper and parser technologies
are adopted accordingly to enable seamless communication be-
tween the integrated resources, regardless of their geographical
location and/or native operating system requirements. Specifically,
a form of eXtensible Markup Language (XML) is invoked to ensure
that the data shared among two or more integrated tools are in a
mutually readable format. In addition, agent technology is utilized
for the dual purpose of workflow and data management. This paper
presents examples of agent, wrapper and parser models developed
for our MDO framework. The end-result is that an organic and
autonomous execution of a desired MDO strategy of any scale be-
comes a possibility, with an added advantage of being able to con-
trol it from a homogenous, single-user environment.

Lastly, an ideal MDO framework would double as a collabora-
tive design environment where the participation and interaction
of disciplinary specialists can guide the overall multidisciplinary
analysis, synthesis, and optimization activities. A powerful Web-
based user interface system was thereby made to be a feature of
our framework in order to allow the solicitation of expert disciplin-
ary knowledge at anytime and from anywhere.
2. MDO framework

2.1. Background

In his seminal 1993 paper, Sobieski defines MDO as ‘‘a method-
ology for design of complex engineering systems that are governed
by mutually interacting physical phenomena and made up of dis-
tinct interacting sub-systems” [10]. The terms Multidisciplinary
Analysis and Optimization (MAO), Multidisciplinary Design Meth-
odology (MDM), and Multidisciplinary Design Technology (MDT)
have also been reportedly used to describe this then emerging field
of engineering. In the aerospace community, however, the estab-
lishment of the AIAA Technical Committee on Multidisciplinary
Design Optimization (TC-MDO) in 1991 [1] has led to the acknowl-
edgement and subsequent wide-spread usage of the acronym.

The principal ‘‘conceptual components” of MDO, according to
Sobieski, are Design-Oriented Analysis, Approximation Concepts,
System Mathematical Modeling, Decomposition, Design Space
Search, Optimization Procedures, and Human Interface. Over the
years, active research into MDO methods has produced a large
body of strategies that accentuate one or more of the above aspects
of MDO. For example, early efforts focused on the Design-Oriented
Analysis aspect of MDO, culminating in the formulation of the Sys-
tem Sensitivity Analysis (SSA) technique [3]. Approximation Con-
cepts refer to a class of methods that leverage upon statistical
data modeling techniques, also known as surrogate modeling or
parameter design methods in the literature [11]. Surrogate models
are usually closed-form algebraic equations, which enable greatly
expedited evaluations of the underlying physical phenomena or
analysis codes. The application of methods based on Design of
Experiments theory, such as Taguchi orthogonal arrays, Response
Surface Method (RSM) and Variable Complexity Method, to aircraft
and spacecraft design work are numerous and well documented.
Recent investigations into advanced pattern-matching (interpola-
tion) techniques such as Kriging [12] and Neural Networks have
stimulated an increasing interest in adapting them for large-scale
aerospace systems design problems [13]. The Design Space Search
aspect of MDO has been largely addressed by the adoption of tra-
ditional, gradient-based search algorithms as well as more recent
exploratory algorithms, such as Genetic Algorithm (GA), Simulated
Annealing (SA), and Ant Colony Optimization (ACO). Both Multidis-
ciplinary Feasible (MDF) and Individual Discipline Feasible (IDF)
methods can be categorized as strategies aimed at addressing
Decomposition. Lastly, Collaborative Optimization (CO) [14] and
Bi-Level Integrated System Synthesis (BLISS) [15] are examples of
MDO methods that deal with both multi-level Decomposition
and Optimization Procedure. Lastly, the reported applications of
expert system (e.g., artificial intelligence) tools to aircraft design
problems are precedents of emphasizing the Human Interface as-
pect of MDO [16].

Because the underlying philosophy of MDO is the synergistic
integration of all contributing disciplines in finding a system-level
optimum, MDO methods are especially applicable to the design of
systems with highly interdependent sub-systems. In the aerospace
domain, vehicle platforms (aircraft, rotorcraft, spacecraft, space
launch vehicles, etc.) are good representations of systems whose
performance is sensitive to cross-disciplinary trades. Taking a typ-
ical aircraft design problem as an example, an MDO approach
would work well in reconciling the challenges posed by inter-dis-
ciplinary couplings; i.e., the interactions between aerodynamics,
propulsion, structures, controls, and mission analysis. The applica-
tion of a well-structured MDO method would thus enable the iden-
tification of a balanced multidisciplinary design in terms of the
most significant system-level metrics; e.g., take-off gross weight,
mission capabilities, operating cost, etc.

The payoffs of implementing MDO in the design of an engineer-
ing system can be numerous. As previously mentioned, a well
planned and properly executed MDO method can reduce a prod-
uct’s design and development cycle times and costs while improv-
ing the – illities. Ref. [17] is a documentation of some of the earliest
success stories of MDO in the context of aircraft design. Since then
numerous reports of MDO-related work can be found in the gen-
eral technical literature.

2.2. Necessity of an MDO framework

MDO, while noble in principle, is nonetheless a non-trivial task
to carry out in practice. This is largely due to the nature of a mul-
tidisciplinary, complex engineering system. It is usually the case
that a single monolithic model representing the entirety of the sys-
tem architecture is unavailable. What a systems engineer or an
MDO specialist often encounters is a fragmented assembly of
sub-models, each embodying a particular discipline, physical hard-
ware component, or design phase. These sub-models are also inter-
dependent on one another, meaning that the outputs of a
disciplinary analysis become the inputs to one or more other anal-
yses, and consequently leading to design iterations. For an enter-
prise-level implementation of MDO, the issue is further
complicated by the fact that the sub-models are: owned and oper-



178 H.-J. Lee et al. / Advances in Engineering Software 40 (2009) 176–183
ated by different professionals; associated with specific computing
platforms; reside in geographically dispersed locations; or all of
the above. Therefore, a manual and non-automated execution of
an MDO strategy is likely to be prone to numerous human errors,
not to mention the extra time and cost it would impose on the en-
tire design process, thereby negating the advantages of practicing
MDO in the first place.

On the contrary, a software framework that allows the creation
of an integrated design environment, which can also be automated
as per its intended usage, would be the key to realizing the many
benefits of implementing MDO methods. Such a framework, which
is henceforth referred to as the MDO framework, would reduce
both time and effort spent on ensuring the compatibility of data
formats between the connected sub-models (e.g., an array is
passed on to a correctly sized array, string variable is not errone-
ously associated with the data-type double, units are consistent,
etc.). A highly capable MDO framework could also serve as the
backbone of an interactive design environment that can constantly
evolve as the collaboration amongst the involved disciplinary ex-
perts increase with design progression.

The resources that are available to an MDO framework can lar-
gely be classified into two categories: disciplinary and cross-disci-
plinary resources. The former encompasses simulation-oriented
elements such as disciplinary analysis codes, Computer-Aided De-
sign (CAD) tools, etc. while the latter includes programs that can be
accessed for inter-disciplinary trade studies or shared among all
involved disciplinarians: e.g., optimization algorithms, Database
Management System (DBMS), etc.

Code execution within an MDO framework can occur in one of
the following three ways. The simplest of the three is the individ-
ual execution of a standalone code which is viewed as a black box;
i.e., in terms of its input and output characteristics. An example of
this would be the running of a statistical atmospheric model that,
when supplied with altitude, outputs values for air pressure, tem-
perature, density, speed of sound, etc. Second, multiple disciplinary
codes can be organically linked to one another to represent a mul-
tidisciplinary analysis routine. The cross-disciplinary relationships
between the codes determine whether they are to be executed
serially, parallelly, or iteratively. Computationally, the interdepen-
dencies between the codes are defined in terms of their execution
sequence, start and stop criteria, and input/output variables (data).
Lastly, an optimization algorithm can be coupled with either single
disciplinary analysis or multidisciplinary analysis routines. Due to
the nature of numerical optimization, this third case is almost al-
ways an iterative scheme.

Generally, it is not guaranteed that the above-mentioned re-
sources exist in a homogenous design environment. More often
than not, the necessary codes are found distributed through multi-
ple machines and across a heterogeneous computing environment,
which can turn code integration into a time-consuming and menial
drudgery. An MDO framework should thus provide a systems inte-
grator with a host of automation techniques that allows the simpli-
fication of design synthesis, convenient access to disciplinary and
cross-disciplinary resources, and straightforward implementation
of various MDO methods. In order to develop such a functional
MDO framework, a broad range of computing technologies is re-
quired. What follows is a brief discussion on the most critical of
such requirements.

2.3. Requirements for building a functional MDO framework

Typically, an MDO framework can be generalized to consist of
the following elements: an intuitive and easy-to-use Graphical
User Interface (GUI); CAD tools for configuration design; DBMS
for data storage and management; and both disciplinary (e.g., anal-
ysis codes) and cross-disciplinary (e.g., optimizers) resources
which are also the core elements of a given framework’s infrastruc-
ture. This section first reviews the development aspects of the
requirements for building a useful MDO framework, followed by
a discussion on the same requirements from a functional
perspective.

Above all, the GUI is one of the fundamental requirements in
developing a MDO framework. Possible uses of the GUI include,
but are not limited to: integration of CAD and CAE tools; assem-
blage and management of data flow paths between integrated
analysis codes; optimizer control; enhancement of MDO problem
definition. Additional requirements to be considered during the
framework’s development are: compatibility with a heterogeneous
computing environment; centralized DBMS; a debugger for identi-
fying erroneous analysis and invalid process flow paths; capability
to monitor the progression history of design parameter values;
real-time deletion, addition, and modification of process elements;
the ability to handle large-scale problems with up to hundreds of
design variables; and inexpensive reanalysis (e.g., the ability to re-
sume analysis from a previous design point that had failed). An ob-
ject-oriented structure and compliance with open development
standards are essential to ensure the future extensibility of the
framework software. Lastly, conformity to the Workflow Manage-
ment System (detailed in Section 4) and parallel execution of
wrapped analysis codes are examples of non-essential yet supple-
mentary requirements.

The significance of the same requirements can be explained
from a functional perspective. In order for a developed framework
to be functional – that is, useful and practical enough for systems
engineering – it is required that the framework possess the follow-
ing –illities in the context of MDO: applicability, usability, flexibil-
ity, and extensibility. Applicability is a required trait so that the
framework can scale well to large-dimensional problems with
hundreds of design variables; be amenable to the application of
various optimization algorithms; allow the monitoring of design
progression; be compatible with heterogeneous, distributed com-
puting environments; provide a centralized DBMS. Usability is clo-
sely related with GUI, which should be made intuitive, and visual
programming interface for MDO problem formulation. Functional
features that allow the real-time deletion, addition, and modifica-
tion of process elements; debugging of the design process in a dis-
tributed computing environment; execution in batch modes; and
cheap reanalysis from the last known point of analysis failure also
contribute to the framework’s usability. Finally, both flexibility and
extensibility can be built into the framework if the requirements
for object-oriented programming, integration of legacy and pro-
prietary codes, support for new analysis codes as the need arises,
and automation of any phase of the MDO process are satisfied.

2.4. Review of commercial MDO-enabling and academic MDO
frameworks

At the time of this writing, a handful of software packages that
are capable of serving as MDO frameworks exist in industry and
academia. The two leading commercial software suites that repre-
sent the state-of-the-art in Process Integration and Design Optimi-
zation (PIDO) are ModelCenter, developed by Phoenix Integration
Inc., and Engineous Software’s iSIGHT family of products. Other
notable players are MSC Software and PACE, a Germany-based
company whose product lines encompass MDO-enabling Pacelab
Engineering Workbench. In the United States (U.S.), past academic
research efforts into MDO frameworks resulted in Intelligent Mul-
tidisciplinary Aircraft Generation Environment (IMAGE), which
originated from Georgia Institute of Technology’s Aerospace Sys-
tems Design Laboratory (ASDL), and NASA Langley Research Cen-
ter’s Framework for Inter-disciplinary Design and Optimization
(FIDO).



H.-J. Lee et al. / Advances in Engineering Software 40 (2009) 176–183 179
ModelCenter is currently being touted as the preferred PIDO
software for 7 of the top 10 aerospace companies and 9 of the
top 10 U.S. defense contractors. If viewed as an MDO-enabling
framework, the software consists of a front-end GUI and a back-
end process integrator termed Analysis Server. From the GUI, a
ModelCenter user can access his or her Analysis Server that exists
locally or connect to multiple Analysis Servers over the Local Area
Network (LAN) or Internet. The GUI portion of ModelCenter is cur-
rently exclusive to the Windows Operating System (OS), and sup-
ports a broad range of ready-made ‘‘Plug-ins,” which allows
intuitive wrapping of some of the most popular commercial CAD,
CAE, and engineering programs such as ANSYS, CATIA, Excel, Math-
cad, Matlab, STK, etc., to registered customers. Analysis Server sup-
ports both Windows and UNIX platforms (HP, SGI, Sun, LINUX,
TRUE 64, etc.) and provides the function to wrap legacy codes or
otherwise standalone disciplinary tools. The basic optimization
package provides an optimizer that is accessible from the GUI. This
optimizer is essentially a wrapped version of Vanderplaats R&D’s
Design Optimization Tools (DOT) and comes with 5 – 2 uncon-
strained, 3 constrained – optimization algorithms. The latest ver-
sion of ModelCenter is compatible with CenterLink technology,
which enables the creation of a Web-enabled grid computing envi-
ronment from an intra-organizational network of heterogeneous
machines.

Having its heritage in research conducted at General Electic
(GE) Corporate R&D Center, the iSIGHT line of software products
from Engineous Software Inc. has evolved into providing enter-
prise-level PIDO solutions to over 250 engineering companies.
The ‘‘heritage” versions of iSIGHT, the latest of which is version
10, used to consist of farSIGHT, foreSIGHT, overSIGHT, and hind-
SIGHT. As an MDO-enabling framework, iSIGHT offers the means
of customizing the simulation environment according to the sys-
tem design problem at hand and applied MDO strategy with a un-
ique scripting language called MDOL (which stands for MDO
Language). The integration of most commonly used CAD, CAE, engi-
neering analysis, optimization, and legacy tools is supported on
both Windows and UNIX based platforms. Since 2005, Engineous
has released a separate line of software titled iSIGHT-FD, which
comes with a more intuitive GUI and leverages upon the com-
pany’s FIPER technology. FIPER is a separate software package mar-
keted by Engineous [18], and represents over 4 years of research
conducted in partnership with GE, BFGoodrich, Parker Hannifin,
Ohio Aerospace Institute, Ohio University, and Stanford University
to realize a global-scale PIDO framework [19]. As a result, the GUI
of iSIGHT-FD has a similar look, feel, and function to those of FIPER,
having inherited its Java-based Object-Oriented structure.

Neither ModelCenter nor iSIGHT are advertised as MDO frame-
works per se, but rather as PIDO frameworks. This is why it would
be more accurate to describe them as MDO-enabling frameworks.

The genesis of IMAGE are documented in reference [20]. IMAGE
is a GUI-driven and an internet-enabled design framework devel-
oped by Mark Hale, a past PhD student of ASDL. Originally con-
ceived as an ‘‘open computing infrastructure that facilitates
Integrated Product and Process Development from a Decision-
Based perspective [20]”. IMAGE is specific to the UNIX operation
environment, having been developed using the Toolkit for Tool
Command Language (Tk/tcl). The architecture of IMAGE consists
of four major components, namely Developing Robust Engineering
Analysis Models and Specifications (DREAMS), Available Assets,
Agent Integration, and Computational Backplane. Among these
four, Agent Integration is the key component that allows the crea-
tion of a customized MDO environment from Available Assets, if
the intended usage of IMAGE is defined as the implementation of
an MDO method in DREAMS. Lastly, Computational Backplane is
the component that enables the analysis or design tasks to be per-
formed in a distributed, heterogeneous computing environment.
As yet another GUI-driven framework, FIDO is composed of
architectural elements that are similar to those of IMAGE. The
management and execution of the design process is controlled by
the Master component, while the Communication Library func-
tions as both the Agent Integration and Computational Backplane
of IMAGE. All available computational resources, such as analysis
codes, in a distributed environment can be integrated into a cohe-
sive whole by using the Communication Library, after being initial-
ized by the Executive component. The Data Manager is responsible
for enabling access to the central database, if one exists, and the
user is able to observe the progression of analysis data or results
in real time via the Spy component.
3. Globus Toolkit Ver. 4

3.1. Web services

Web services are modularized software components that sup-
port interoperable machine to machine interaction over a network.
It can also be viewed as the product of the on-going paradigm shift
in distributed computing technology, which is characterized by the
melding of the XML and Internet protocols. For example, Web ser-
vices utilize the Hyper Text Transfer Protocol (HTTP), easily lending
themselves to be compatible with existing Internet protocols such
as proxy and firewall [21].

The specifications of Web services are neither unique nor sta-
tic, and there currently exist multiple definitions of what consti-
tutes Web services in the literature. In this paper, Web services
are henceforth understood to encompass, at a minimum, Web Ser-
vice Description Language (WSDL), Universal Description, Discov-
ery, and Integration (UDDI), and Simple Object Access Protocol
(SOAP) for realizing messages, service interfaces, service publish-
ing and service discovery. Since both WSDL and SOAP are based
on the XML, which has quickly become the standardized format
for data representation on the Internet, they are independent of
computing platforms, operating systems, and programming
languages.

As previously mentioned, GT4 is a middleware for implement-
ing grid computing. In a broader context, however, it can become
a useful tool for building improved Web services; e.g., circumven-
tion of stateful service, enhanced security, etc. The Toolkit’s many
built-in features that provide the means to conveniently build Web
services as components have led the authors to develop our Web
services-based MDO framework using GT4.

3.2. GT4 architecture

The Toolkit is essentially a set of libraries and programs that can
help address some of the most common obstacles in building a grid
computing system. For instance, it comes with a VO Management
Service as well as other helpful services, such as Security Service,
Execution Management Service, Information Service, and Data
Management Service [22].

GT4 allows the integration of available, albeit distributed, re-
sources via Web Services, and also provides the following com-
ponents related to Security Service: Delegation, Community
Authorization, Authentication Authorization, and Credential
Management. Grid Resource Allocation and Management
(GRAM) Service is the sole enabler of Execution Management.
The constituents of Information Service are Index, Trigger, and
WebMDS. For Data Management, the Toolkit is supplemented
by GridFTP, Reliable File Transfer (RFT), Replica Location Service
(RLS), and Data Access and Integration (OGSA-DAI) tools.
Additionally, GT4 provides the runtimes for Java, C, and Python
[23].



Fig. 1. GT4 Web Services Architecture.

180 H.-J. Lee et al. / Advances in Engineering Software 40 (2009) 176–183
Fig. 1 shows the GT4 Architecture. The shaded boxes in the fig-
ure represent the GT4-supplied codes, whereas the white boxes
represent the user-built codes.

3.3. Building a web service with GT4

In order to build a Web services-based MDO framework using
GT4, the first order of business is to develop all the disciplinary
and cross-disciplinary resources that are to be accessible by the
MDO framework as GT4 Web services. Web services are built on
Web Services containers. Generally, a Web services container is a
combination of a HTTP server, an Application server, and a SOAP
Engine. A GT4 container consists of the standard Web services con-
tainer described above, as well as the Toolkit libraries and han-
dlers. While GT4 supports the development of services and client
programs written in Java, C, or Python, all resources for our specific
framework were developed as Java-based Web services.

Ensuring security across the computing environment, without
costing the performance or scalability of the integrated resources,
is a legitimate concern in a Web services-based MDO framework.
It is preferable that no cumbersome security measures are imposed
upon any of the design resources for optimum performance; one of
the appeals of the framework such as ours is that the participating
disciplinary experts are free to access the resources from anywhere
and at any time. But then again, not all resources must be accessi-
ble to everyone. There may be situations in which certain tools and
data cannot be shared due to proprietary reasons. Therefore, the
formation of a VO that is well-balanced in terms of security and
performance is an important issue that cannot be overlooked.

Fortunately, the GT4 supports the building of a VO through the
Information and Security Services. The former provides Discovery
and Monitoring services using Index and Trigger, supports VO cre-
ation through VO Index that collects information from every re-
source, and supplies WebMDS as a user interface [24]. The latter
is accomplished by the Grid Security Infrastructure (GSI), which
provides Transport-level and Message-level Security. This means
that only those VO members that are cleared by through the GSI
will have access to the MDO resources.

4. Web services-based MDO framework

4.1. MDO framework architecture

Our Web services-based MDO framework consists of Client,
Management, Analysis, Optimization, CAD, and DB Services. The
DBMS manages and controls the flow of both input and output
data. Each service sends or receives messages through Web Ser-
vices Interoperability (WS-I) compliant SOAP messaging. In the
case where large amounts of data must be transmitted, GT4 ser-
vices such as GridFTP and Reliable File Transfer (RFT) can be em-
ployed. Fig. 2 shows the architecture of our Web Services-based
MDO framework.

The Management Service allows clients to efficiently utilize the
available design resources. A VO Index has the index information of
all services and is thus used to search and select the necessary Web
services. A simple Certificate Authority (CA) routine issues certifi-
cates to the VO members so that each service can authenticate
the users through those certificates [25].

The Client Service is the backbone of realizing a collaborative
MDO environment. It can also monitor the status of the integrated
resources through WebMDS. The practical operation of the frame-
work from a user’s perspective is described in detail in Section 4.4.

4.2. MDO agent

An MDO Agent conducts the individual execution of each design
resource, and can be further classified into an Analysis Agent, an
Optimization Agent, a CAD Agent, and a DB Agent. Each design re-
source is executed by its respective Agent.

Each design resource may be required to be handled differ-
ently under different computing platforms. As a result, wrap-
per and parser techniques, which transform SOAP messages
into the formats understandable for each resource, become
needed.

Each Agent first extracts the required data from a SOAP message
via an appropriate parser, and then prepares the input files that are
compatible with the data format of each resource using a wrapper.
After the executions are finished, the Agent transforms the col-
lected output files into SOAP messages. The trinity of the Agent,
parser, and wrapper thus enable the automatic and organic execu-
tion of any MDO method.

The GT4 provides built-in services such as GridFTP and RFT ser-
vice for Data Management [26] and Grid Resource Allocation and
Management (GRAM) service for Execution Management [27].
These services support the rapid and reliable handling of large
quantities of data, which is necessary in high performance comput-
ing. The instantiation of the Agent model within the GT4 frame-
work thus provides an intelligent environment that is capable of
efficiently using idle resources in solving even the largest of engi-
neering design problems.



Fig. 2. Web Services-based MDO framework.

H.-J. Lee et al. / Advances in Engineering Software 40 (2009) 176–183 181
4.3. Workflow management system

A workflow is defined as the computerized facilitation or auto-
mation, in whole or part, of a process. The process to be automated
is usually composed of multiple procedures where documents,
information or tasks are passed between participants according
to a defined set of rules to achieve, or contribute to, an overall busi-
ness goal. By extension, a Workflow Management System defines,
manages, and executes workflows by the means of software,
whose order of execution is driven by a computer representation
of the workflow logic [28].

One can observe that MDO methods, in general, are inherently
process-driven strategies composed of complex and interwoven
execution steps. If the principles of the workflow management sys-
tem can be adapted for implementation in an MDO environment, it
is conceivable that automatic and organic execution of even the
most complex of MDO methods could be implemented.

For the current research, a workflow management system that
conforms to the five interfaces of the Workflow Reference Model
given by the Workflow Management Coalition (WfMC) has been
developed. Namely, the five interfaces are the Process Definition
Interchange Interface, Workflow Client Application Interface, In-
voked Application Interface, Workflow Interoperability Interface,
and System Administration and Monitoring Interface. Fig. 3 shows
the architecture of our Workflow Management System.

As it can be seen, the Workflow Management System consists of
a Process Designer, a Workflow Engine, and a Workflow Client. The
Fig. 3. Workflow Man
Process Designer consists of a Process Definition Tool, which is a vi-
sual-aid tool for defining a customized MDO strategy or process,
and a BPEL4WS Translator, which converts the MDO method cre-
ated using the Process Definition Tool into a Business Process Exe-
cution Language for Web Services (BPEL4WS) format. BPEL4WS is a
Web Services standard technology and an XML-based Workflow
Language for describing business process interactions, and hence
the most suitable format for data storage in a Web Services-based
MDO framework.

The Workflow Engine allows the execution of each design re-
source according to the pre-defined MDO process, and manages
and controls all workflow paths. It is composed of a BPEL4WS Ana-
lyzer, a Process Handler, a Resource Classifier, a Worklist Handler,
and a Process Monitor. The BPEL4WS Analyzer checks whether the
Engine can execute the intended MDO strategy. The Process Han-
dler executes the design resources as needed by the MDO process,
and manages all steps from the beginning to the end. As its name
implies, the Resource Classifier classifies the resources through the
WSDL of each resource. The Worklist Handler is responsible for the
communication between the Workflow Engine and the Workflow
Client. The Process Monitor enables the Workflow Client to moni-
tor the progress of the implemented MDO method. It sends the
state information of each integrated resource as well as the state
values of each design variable to the Workflow Client.

The Workflow Client is really a user interface. It sends the work
lists processed by the Workflow engine to the human user, and
subsequently informs the Workflow Engine whether or not the
agement System.



182 H.-J. Lee et al. / Advances in Engineering Software 40 (2009) 176–183
user has issued any commands. The Client also enables the user to
confirm the progress state of both the MDO process and the design
variable values.

4.4. GUI

By providing access to the Client Service through simple Web-
browsers, the framework’s GUI makes it possible for each partici-
pant of a multidisciplinary team to share a common MDO experi-
ence, regardless of his or her geographical locations. Any member
of the team is able to review the analysis results after going
through the following six-step, user interface process: Authentica-
tion, Project Generation, Task Generation, Definition of Design
Variables and Constraints, Analysis and Optimization, and Confir-
mation of Results.

The Authentication step refers to obtaining a user account from
the system administrator, and logging on to the framework to
either create a new MDO environment or access an on-going work.

During the Project Generation step, a user is involved in input-
ting or creating the following information for administrative pur-
poses: Project ID; Project name and date of creation; security
access level; user ID and name; and Project description. A Project
defines the scope of the attempted problem within the bounds of
the overarching engineering design task at hand.

Similar to the previous step, Task Generation is where the user
must enter or create the following information related to a specific
Task: Task ID; Task name and date of creation; security access le-
vel; and Task description. Here, a Task refers to an MDO workflow,
as discussed in Section 4.3.

This third step is also where a completely new Task can be de-
fined or an existing Task can be retrieved from the database. A Task
can be effortlessly defined via the Process Definition Tool and the
Process Designer. The former allows the user to query the neces-
sary design resources, while the latter enables the drag-and-drop
creation of an MDO workflow from the identified resources. The
workflow is subsequently saved to the database in the BPEL4WS
format for future retrieval, modifications, or executions.

Once at least a single Task has been loaded on to the framework,
then an optimization problem can be formulated in the fourth
step: Definition of Design Variables and Constraints. Appropriately
labeled Web-pages aid the user in the menial task of inputting the
correct number of design variables and constraint functions.

The fifth step of the user interface process is Analysis and Opti-
mization. During this step, the workflow engine executes the cho-
sen Task as per the user inputs in steps three and four. The progress
can be monitored in real time. Therefore, the user can terminate
the process, adjust the parameter or Task settings, and restart this
step as he or she sees fit.

Confirmation of Results is the final step in which the analysis
and/or optimization results can be reviewed. The results can be
numerical data pertaining to multidisciplinary analysis and/or
optimization studies, or graphical data obtained from CAD Service,
representing an optimum configuration to be opened by an appro-
priate CAD tool. All data files (results and inputs) can be saved to
the database for future reference. Past data files can be just as eas-
ily retrieved.

4.5. The benefits of the framework

All modern commercial frameworks given in Section 2.4 facili-
tate the creation of an intra-organizational MDO environment. In
terms of extensibility, however, the same existing frameworks do
not easily lend themselves to forming a Virtual Organization,
which represents an inter-organizational MDO environment, due
to the fact that the frameworks were not coded using standardized
computing technologies. Establishing a truly global-scale collabo-
rative MDO environment, which is not restricted by the nature of
the computing environment (homogeneous, heterogeneous, dis-
tributed, grid, etc.) or the geographical locations of the participat-
ing design/engineering/consulting organizations, thus appears to
be challenging. Web services technology offers the means to
assemble both disciplinary and cross-disciplinary resources
according to the MDO needs of the VO. Web services technology
is a standardized computing technology for pooling a wide variety
of available resources. It is also highly extensible, making the tech-
nology a crucial architectural element of a software framework
that aspires to be an enterprise-level MDO solution.

Agent technologies are adopted accordingly to enable seamless
communication between the integrated resources, regardless of
their geographical location and/or native operating system
requirements. Each agent automatically converts the data format
to one unified form that is determined to be suitable for a selected
analysis code based on its knowledge, which enhances system’s
coherence.

One can observe that MDO methods, in general, are inherently
process-driven strategies composed of complex and interwoven
execution steps. The workflow management system invokes and
executes web services in a predefined process and then one can
avoid errors that might occur if these steps are manually pro-
cessed. This fact indicates that the workflow management system
can highly enhance system’s reliability. The Process Designer is a
visual-aid tool for defining a customized MDO strategy or process.
The Workflow Engine allows the execution of each design resource
according to the pre-defined MDO process, and manages and con-
trols all workflow paths.

The Web services-based MDO framework that is proposed in
this paper was intended to be highly extensible and flexible from
its inception. It satisfies all of the requirements introduced in Sec-
tion 2.3, and a powerful Web-based user interface was incorpo-
rated as part of the framework’s standard features. Combined
with the built-in grid computing capability, this allows the solici-
tation of expert disciplinary knowledge at anytime and from
anywhere.
5. Conclusions

A novel Web services-based MDO framework, which enables
the integration of various design-related resources through GT4,
was developed. The framework offers an impressive capability to
implement a desired MDO method in an organic and autonomous
manner, largely due to our adoption of the Workflow Management
System and MDO agent. If applied to a large-scale engineering
problem, the built-in support for grid computing can potentially
shorten the design phases in which cross-disciplinary analyses,
trades, or optimization must take place. The framework was also
made to be highly extensible by means of standardized Web ser-
vices. Moreover, the framework can double as a collaborative
MDO environment where all disciplinary experts can interact
amongst themselves in providing guidance to future design activ-
ities. From the viewpoint of an MDO specialist or a systems engi-
neer, such inputs can be seamlessly solicited via the Internet and
Web pages, without being constrained by the inter- or intra- orga-
nizational structure. The knowledge gained from previous design
activities would in turn lay the foundation for developing new do-
main-specific or generic MDO methods.

The flexibility of our MDO framework allows the implementa-
tion of any type of MDO strategy (via the Process Designer) at
any phase of the product development cycle. Furthermore, our
adoption of the Workflow Management System has enabled the
framework to be applicable to a broad range of engineering sys-
tems design work. Being Web services-based, the framework is



H.-J. Lee et al. / Advances in Engineering Software 40 (2009) 176–183 183
especially capable of facilitating the creation of a VO. This allevi-
ates the burden on the organization (or the department within
an organization) spearheading the integration efforts to collect
all required resources in one place. Regardless of whether or not
the needed resources are distributed over an intra- or inter- orga-
nizational network, a user with the proper clearance can establish
a secure connection to any disciplinary or cross-disciplinary re-
source, as long as it is accessible by the framework.

Future work with the developed framework will encompass its
application to a variety of challenging aerospace design problems.

Acknowledgement

This paper was supported by Konkuk University in 2005.

References

[1] Current state of the art in multidisciplinary design optimization. An AIAA
White Paper. Washington DC; September 1991.

[2] Sobieszczansk-Sobieski J. Sensitivity analysis and multidisciplinary
optimization for aircraft design: recent advances and results. J Aircraft
1990;27(12):993–1001.

[3] Olds JR. The suitability of selected multidisciplinary design techniques to
conceptual aerospace vehicle design. AIAA 1992-4791; September 1992.

[4] Frank PD, et al. A comparison of optimization and search methods for
multidisciplinary design. AIAA 1992-4827; September 1992.

[5] Yoon KP, Hwang C-L. Multiple attribute decision making: an introduction,
quantitative applications in the social sciences. Thousand Oaks,
California: Sage Publications; 1995.

[6] Padmanabhan D. Reliability-based optimization for multidisciplinary system
design. PhD Thesis, Notre Dame University; July 2003.

[7] Yun G, Ahn T. Case study of U-City project trend from a city planning
perspective. SAMSUNG SDS Consulting Review. 2006;2:37–51.

[8] Wikipedia, Virtual Organization. <http://en.wikipedia.org/wiki/Virtual_
organization>; June 2007 [accessed 12.07.07].

[9] Wikipedia, Open Grid Forum. <http://en.wikipedia.org/wiki/Open_Grid_
Forum>; April 2006 [accessed 12.07.07].

[10] Sobieszczansk-Sobieski J. Multidisciplinary design optimization: an emerging
new engineering descipline. In: Presented at the world congress on optimal
design; 1993.
[11] Healy MJ, Kowalik JS, Ramsay JW. Airplane engine selection by optimization on
surface fit approximations. J Aircraft 1975;12(7):593–9.

[12] Matheron G. Krigeage d’un panneau rectangulaire par sa périphérie. Note
géostatistique, no. 28, CG, Ecole des Mines de Paris; 1960.

[13] Hajela P, Berke L. Neural networks in structural analysis and design: an
overview. Int J Comput Syst Eng 1992;3(1–4):525–39.

[14] Braun R. Collaborative optimization: an architecture for large-scale distributed
design. PhD Thesis, Stanford University; May 1996.

[15] Sobieszczansk-Sobieski J, et al. Bi-level integrated system synthesis (BLISS) for
concurrent and distributed processing. AIAA 2002-5409; September
2002.

[16] Kroo I, Takai M. A quasi-procedural, knowledge-based system for aircraft
design. AIAA 1988-4428; September 1988.

[17] Sobieszczansk-Sobieski J. Multidisciplinary design optimization MDO
methods: their synergy with computer technology in the design process.
Aeronautical J 1999.

[18] Wujek B, Koch P, Chiang W-S. A workflow paradigm for flexible design process
configuration in FIPER. AIAA 2000-4868; September 2000.

[19] Roehl PJ, et al. A federated intelligent product environment. AIAA 2000-4902;
September 2000.

[20] Hale MA. An open computing infrastructure that facilitates integrated product
and process development from a decision-based perspective. PhD Thesis.
Georgia Institute of Technology; July 1996.

[21] Header Kreger, IBM Software Group. Web Services Conceptual Architecture
(WSCA 1.0). <http://www.ibm.com/software/solutions/webservices/pdf/
WSCA.pdfMay2001>.

[22] Foster I. Globus Toolkit Version 4: software for service-oriented systems. J
Comput Sci Technol 2006;21(4):513–20.

[23] Sotomayor B, Childers L. Globus Toolkit 4: programming java services. Morgan
Kaufmann; 2005.

[24] Schopf JM, Raicu I, Pearlman L, et al. Monitoring and discovery in a Web
services framework: functionality and performance of Globus Toolkit MDS4.
Technical Report, Mathematics and Computer Science Division, Argonne
National Laboratory; 2006.

[25] Welch V. Globus Toolkit Version 4 grid security infrastructure: a standards
perspective. <http://www.globus.org/toolkit/docs/4.0/security/GT4-GSI-
Overview.pdf>; 2004.

[26] Allcock W, Chervenak A, Foster I, et al. Data grid tools: enabling science on big
distributed data. In: SciDAC Conference, Institute of Physics Conference Series,
vol. 16; 2005. p. 571–5.

[27] Czajkowski K, Foster I, Kesselman C. Agreement-based resource management.
Proc IEEE 2005;93(3):631–43.

[28] David Hollingsworth. Workflow Management Coalition. The Workflow
Reference Model. WFMC; 2001.

http://en.wikipedia.org/wiki/Virtual_organization
http://en.wikipedia.org/wiki/Virtual_organization
http://en.wikipedia.org/wiki/Open_Grid_Forum
http://en.wikipedia.org/wiki/Open_Grid_Forum
http://www.ibm.com/software/solutions/webservices/pdf/WSCA.pdfMay2001
http://www.ibm.com/software/solutions/webservices/pdf/WSCA.pdfMay2001
http://www.globus.org/toolkit/docs/4.0/security/GT4-GSI-Overview.pdf
http://www.globus.org/toolkit/docs/4.0/security/GT4-GSI-Overview.pdf

	Development of Web services-based Multidisciplinary Design Optimization framework
	Introduction
	MDO framework
	Background
	Necessity of an MDO framework
	Requirements for building a functional MDO framework
	Review of commercial MDO-enabling and academic MDO frameworks

	Globus Toolkit Ver. 4
	Web services
	GT4 architecture
	Building a web service with GT4

	Web services-based MDO framework
	MDO framework architecture
	MDO agent
	Workflow management system
	GUI
	The benefits of the framework

	Conclusions
	Acknowledgement
	References


