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Spoken dialogue systems allow users to interact with computer-based applications such
as databases and expert systems by using natural spoken language. The origins of
spoken dialogue systems can be traced back to Artificial Intelligence research in the
1950s concerned with developing conversational interfaces. However, it is only within
the last decade or so, with major advances in speech technology, that large-scale
working systems have been developed and, in some cases, introduced into commercial
environments. As a result many major telecommunications and software companies
have become aware of the potential for spoken dialogue technology to provide solutions
in newly developing areas such as computer-telephony integration. Voice portals, which
provide a speech-based interface between a telephone user and Web-based services, are
the most recent application of spoken dialogue technology. This article describes the
main components of the technology—speech recognition, language understanding,
dialogue management, communication with an external source such as a database,
language generation, speech synthesis—and shows how these component technologies
can be integrated into a spoken dialogue system. The article describes in detail the
methods that have been adopted in some well-known dialogue systems, explores
different system architectures, considers issues of specification, design, and evaluation,
reviews some currently available dialogue development toolkits, and outlines prospects
for future development.

Categories and Subject Descriptors: H.5.2 [Information Interfaces and
Presentation]: User Interfaces—Natural language, Voice I/O; I.2.7 [Artificial
Intelligence]: Natural Language Processing—Discourse, Speech recognition and
synthesis

General Terms: Human Factors

Additional Key Words and Phrases: Dialogue management, human computer
interaction, language generation, language understanding, speech recognition, speech
synthesis

1. INTRODUCING SPOKEN DIALOGUE
TECHNOLOGY

The “conversational computer” has been
the goal of researchers in speech technol-
ogy and artificial intelligence (AI) for more
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than 30 years. A number of large-scale
research programs have addressed this
goal, including the DARPA Communica-
tor Project, Japan’s Fifth Generation pro-
gram, and the European Union’s ESPRIT
and Language Engineering programs. The
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impression of effortless spontaneous con-
versation with a computer has been fos-
tered by examples from science fiction
such as HAL in 2001: A Space Odyssey
or the computer on the Star Ship Enter-
prise. It is only recently, however, that
spoken language interaction with com-
puters has become a practical possibil-
ity both in scientific as well as in com-
mercial terms. This is due to advances
in speech technology, language process-
ing, and dialogue modeling, as well as
the emergence of faster and more power-
ful computers to support these technolo-
gies. Applications such as voice dictation
and the control of appliances using voice
commands are appearing on the market
and an ever-increasing number of soft-
ware and telecommunications companies
are seeking to incorporate speech technol-
ogy into their products. It is important,
however, to be aware of the limitations of
these applications. Commonly statements
are made in sales and marketing litera-
ture such as Talk to your computer as you
would talk to your next-door neighbor or
Teach your computer the art of conversa-
tion. However, the technologies involved
would not be sufficient to enable a com-
puter to engage in a natural conversation
with a user. Voice dictation systems pro-
vide a transcription of what the user dic-
tates to the system, but the system does
not attempt to interpret the user’s input
or to discuss it with the user. Command-
and-control applications enable users to
perform commands with voice input that
would otherwise be performed using the
keyboard or mouse. The computer recog-
nizes the voice command and carries out
the action, or reports that the command
was not recognized. No other form of dia-
logue is involved. Similar restrictions ap-
ply to most other forms of voice-based sys-
tem in current use.

Spoken dialogue systems, on the other
hand, can be viewed as an advanced appli-
cation of spoken language technology. Spo-
ken dialogue systems provide an interface
between the user and a computer-based
application that permits spoken interac-
tion with the application in a relatively
natural manner. In so doing, spoken dia-

logue systems subsume most of the ma-
jor fields of spoken language technology,
including speech recognition and speech
synthesis, language processing, and dia-
logue management.

The aim of the current survey is to de-
scribe the essential characteristics of spo-
ken dialogue technology at a level of tech-
nical detail that should be accessible to
computer scientists who are not special-
ists in speech recognition and computa-
tional linguistics. The survey provides an
overview for those wishing to research into
or develop spoken dialogue systems, and
hopefully also for those who are already
experienced in this field. Most published
work to date on spoken dialogue systems
tends to report on the design, implemen-
tation, and evaluation of individual sys-
tems or projects, as would be expected with
an emerging technology. The present pa-
per will not attempt to survey the growing
number of spoken dialogue systems cur-
rently in existence but rather will focus
on the underlying technologies, using ex-
amples of particular systems to illustrate
commonly occurring issues.1

1.1. Overview of the Paper

The remainder of the paper is structured
as follows. In the next section spoken di-
alogue systems are defined as computer
systems that use spoken language to in-
teract with users to accomplish a task. Di-
alogue systems are classified in terms of
different control strategies and some ex-
amples are presented in Section 3 that il-
lustrate this classification and give a feel
for the achievements as well as the lim-
itations of current technology. Section 4
describes the components of a spoken di-
alogue system—speech recognition, lan-
guage understanding, dialogue manage-
ment, external communication, response
generation, and text-to-speech synthesis.

1 Inevitably there are omissions, in some cases of
well-known and important systems, but this is un-
avoidable, as the aim is not to provide a comprehen-
sive review of dialogue systems but to focus on the
general issues of the technology. Interested readers
can follow up particular systems in the references
provided at the end of the survey and in Appendix A.
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The key to a successful dialogue system is
the integration of these components into
a working system. Section 5 reviews a
number of architectures and dialogue con-
trol strategies that provide this integra-
tion. Methodologies to support the specifi-
cation, design, and evaluation of a spoken
dialogue system are reviewed in Section 6.
Particular methods have evolved for spec-
ifying system requirements, such as user
studies, the use of speech corpora, and
Wizard-of-Oz studies. Methods have also
been developed for the evaluation of dia-
logue systems that go beyond the meth-
ods used for evaluation of the individual
elements such as the speech recognition
and spoken language understanding com-
ponents. This section also examines some
current work on guidelines and standards
for spoken language systems. A recent de-
velopment is the emergence of toolkits and
platforms to support the construction of
spoken dialogue systems, similar to the
toolkits and development platforms that
are used in expert systems development.
Some currently available toolkits are re-
viewed and evaluated in Section 7. Finally,
Section 8 examines directions for future
research in spoken dialogue technology.

2. SPOKEN DIALOGUE SYSTEMS----- A
DEFINITION

Spoken dialogue systems have been de-
fined as computer systems with which hu-
mans interact on a turn-by-turn basis and
in which spoken natural language plays
an important part in the communication
[Fraser 1997]. The main purpose of a spo-
ken dialogue system is to provide an in-
terface between a user and a computer-
based application such as a database or
expert system. There is a wide variety of
systems that are covered by this defini-
tion, ranging from question-answer sys-
tems that answer one question at a time
to “conversational” systems that engage in
an extended conversation with the user.
Furthermore, the mode of communication
can range from minimal natural language,
consisting perhaps of only a small set
of words such as the digits 0–9 and the
words yes and no, through to large vocab-

ulary systems supporting relatively free-
form input. The input itself may be spoken
or typed and may be combined with other
input modes such as DTMF (touch-tone)
input, while the output may be spoken or
displayed as text on a screen, and may be
accompanied by visual output in the form
of tables or images.

Spoken dialogue systems enable casual
and naive users to interact with complex
computer applications in a natural way us-
ing speech. Current IVR (Interactive Voice
Response) systems limit users in what
they can say and how they can say it.
However, users of speech-based computer
systems often do not know exactly what
information they require and how to ob-
tain it—they require the support of the
computer to determine their precise re-
quirements. For this reason it is essen-
tial that speech-based computer systems
should be able to engage in a dialogue with
users rather than simply respond to prede-
termined spoken commands. At the same
time spoken dialogue systems are more re-
stricted than conversational computers in
that their conversational topics are lim-
ited, usually to a single domain such as
flight enquiries.

Spoken dialogue systems can be classi-
fied into three main types, according to the
methods used to control the dialogue with
the user:

(1) finite state- (or graph-) based systems;
(2) frame-based systems; and
(3) agent-based systems.

The type of dialogue control strategy used
has a bearing on how the system accom-
plishes two of its main tasks: process-
ing the user’s input and recovering from
errors.

2.1. Finite State-Based Systems

In a finite state-based system the user
is taken through a dialogue consisting
of a sequence of predetermined steps or
states. Most commercially available spo-
ken dialogue systems use this form of di-
alogue control strategy. The dialogue flow
is specified as a set of dialogue states with
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transitions denoting various alternative
paths through the dialogue graph. The
system maintains control of the dialogue,
produces prompts at each dialogue state,
recognizes (or rejects) specific words and
phrases in response to the prompt, and
produces actions based on the recognized
response. The following is an example of
an interaction with a basic finite state-
based system in which the system veri-
fies the user’s input at each state of the
dialogue:

System: What is your destination?
User: London.
System: Was that London?
User: Yes.
System: What day do you want to travel?
User: Friday.
System: Was that Sunday?
User: No.
System: What day do you want to travel?

Generally systems with state-based di-
alogue control restrict the user’s input
to single words or phrases that provide
responses to carefully designed system
prompts. A major advantage of this form
of dialogue control is that the required vo-
cabulary and grammar for each state can
be specified in advance, resulting in more
constrained speech recognition and lan-
guage understanding. However, the dis-
advantage is that these systems restrict
the user’s input to predetermined words
and phrases, making correction of mis-
recognized items difficult as well as in-
hibiting the user’s opportunity to take the
initiative and ask questions or introduce
new topics. If augmented with a natural
language component, a state-based sys-
tem can accept more natural input in the
form of sentences or partial sentences.
Furthermore, with a simple data struc-
ture such as a form or frame that keeps
track of which information the user has
provided and what the system still needs
to know, a more flexible and more natu-
ral dialogue flow is possible. Verification
can also be delayed until the system has
gathered all the required information. The

Nuance demo banking system to be de-
scribed in Section 3 is an example of a
state-based system with these additional
functionalities.

2.2. Frame-Based Systems

In a frame- (or template-) based system
the user is asked questions that enable
the system to fill slots in a template in
order to perform a task such as provid-
ing train timetable information. In this
type of system the dialogue flow is not pre-
determined but depends on the content of
the user’s input and the information that
the system has to elicit. For example:

System: What is your destination?
User: London.
System: What day do you want to travel?
User: Friday.

System: What is your destination?
User: London on Friday around 10 in

the morning.
System: I have the following connec-

tion. . . .

In the first example the user provides one
item of information at a time and the sys-
tem performs rather like a state-based
system. However, if the user provides more
than the requested information, as in the
second example, the system can accept
this information and check if any addi-
tional items of information are required
before searching the database for a con-
nection. Frame-based systems function
like production systems, taking a partic-
ular action based on the current state of
affairs. The questions and other prompts
that the system should ask can be listed,
along with the conditions that have to be
true for a particular question or prompt
to be relevant. Some form of natural lan-
guage input is required by frame-based
systems to permit the user to respond
more flexibly to the system’s prompts,
as in the second example. Natural lan-
guage is also required to correct errors of
recognition or understanding by the sys-
tem. Generally, however, it is sufficient
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for the system to be able to recognize the
main concepts in the user’s utterance. The
Philips train timetable information, to be
described in Section 3, is an example of a
frame-based system.

2.3. Agent-Based Systems

Agent-based or AI systems are designed to
permit complex communication between
the system, the user, and the underlying
application in order to solve some prob-
lem or task. There are many variants on
agent-based systems, depending on what
particular aspects of intelligent behavior
are included in the system. The following
dialogue, taken from Sadek and de Mori
[1998], illustrates a dialogue agent that
engages in mixed-initiative cooperative di-
alogue with the user:

User: I’m looking for a job in the Calais
area. Are there any servers?

System: No, there aren’t any employment
servers for Calais. However, there
is an employment server for Pas-
de-Calais and an employment
server for Lille. Are you interested
in one of these?

In this example the system’s answer to
the user’s request is negative. But rather
than simply responding No, the system
attempts to provide a more cooperative
response that might address the user’s
needs.

In agent-based systems communication
is viewed as interaction between two
agents, each of which is capable of rea-
soning about its own actions and beliefs,
and sometimes also about the actions and
beliefs of the other agent. The dialogue
model takes the preceding context into ac-
count, with the result that the dialogue
evolves dynamically as a sequence of re-
lated steps that build on each other. Gener-
ally there are mechanisms for error detec-
tion and correction, and the system may
use expectations to predict and interpret
the user’s next utterances. These systems
tend to be mixed initiative, which means
that the user can take control of the dia-
logue, introduce new topics, or make con-

tributions that are not constrained by the
previous system prompts. For this rea-
son the form of the user’s input cannot
be determined in advance as consisting of
a set number of words, phrases, or con-
cepts, and, in the most complex systems,
a sophisticated natural language under-
standing component is required to process
the user’s utterances. The Circuit-Fix-It-
Shop system, to be presented in Section 3,
is an example of one type of agent-based
system. Other types will be discussed in
Section 5.

2.4. Verification

In addition to the different levels of lan-
guage understanding required by differ-
ent types of dialogue system, there are
also different methods for verifying the
user’s input. In the most basic state-
based systems, in which user input is re-
stricted to single words or phrases elicited
at each state of the dialogue, the sim-
plest verification strategy involves the sys-
tem confirming that the user’s words have
been correctly recognized. The main choice
is between confirmations associated with
each state of the dialogue (i.e., every time
a value is elicited the system verifies the
value before moving on to the next state),
or confirmations at a later point in the
transaction. The latter option, which is il-
lustrated in the example from the Nuance
banking system in Section 3, provides for
a more natural dialogue flow. The more
natural input permitted in frame-based
systems also makes possible a more flex-
ible confirmation strategy in which the
system can verify a value that has just
been elicited and, within the same utter-
ance, ask the next question. This strat-
egy of implicit verification is illustrated
in the example from the Philips train
timetable information system in Section 3.
Implicit verification provides for a more
natural dialogue flow as well as a poten-
tially shorter dialogue, and is made pos-
sible because the system is able to pro-
cess the more complex user input that may
arise when the user takes the initiative
to correct the system’s misrecognitions
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and misunderstandings. Finally, in agent-
based systems, more complex methods of
verification (or “grounding”) are required
along with decisions as to how and when
the grounding is to be achieved. Verifica-
tion will be discussed in greater detail in
Section 4.3.2, and some examples of veri-
fication strategies can be seen in the ex-
amples presented in Section 3.

2.5. Knowledge Sources for Dialogue
Management

The dialogue manager may draw on a
number of knowledge sources, which are
sometimes referred to collectively as the
dialogue model. A dialogue model might
include the following types of knowledge
relevant to dialogue management:

A dialogue history: A record of the dia-
logue so far in terms of the propositions
that have been discussed and the enti-
ties that have been mentioned. This rep-
resentation provides a basis for concep-
tual coherence and for the resolution of
anaphora and ellipsis.

A task record: A representation of the in-
formation to be gathered in the dialogue.
This record, often referred to as a form,
template, or status graph, is used to de-
termine what information has not yet
been acquired (see Section 5.2). This
record can also be used as a task mem-
ory [Aretoulaki and Ludwig 1999] for
cases where a user wishes to change
the values of some parameters, such as
an earlier departure time, but does not
need to repeat the whole dialogue to
provide the other values that remain
unchanged.

A world knowledge model: This model con-
tains general background information
that supports any commonsense reason-
ing required by the system, for example,
that Christmas day is December 25.

A domain model: A model with specific in-
formation about the domain in question,
for example, flight information.

A generic model of conversational compe-
tence: This includes knowledge of the
principles of conversational turn-taking
and discourse obligations—for example,

that an appropriate response to a re-
quest for information is to supply the
information or provide a reason for not
supplying it.

A user model: This model may con-
tain relatively stable information about
the user that may be relevant to the
dialogue—such as the user’s age, gen-
der, and preferences—as well as infor-
mation that changes over the course of
the dialogue, such as the user’s goals,
beliefs, and intentions.

These knowledge sources are used in dif-
ferent ways and to different degrees ac-
cording to the dialogue strategy chosen.
In the case of a state-based system these
models, if they exist at all, are represented
implicitly in the system. For example, the
items of information and the sequence
in which they are acquired are predeter-
mined and thus represented implicitly in
the dialogue states. Similarly, if there is
a user model, it is likely to be simple and
to consist of a small number of elements
that determine the dialogue flow. For ex-
ample, the system could have a mecha-
nism for looking up user information to
determine whether the user has previous
experience of this system. This informa-
tion could then be used to allow different
paths through the system (for example,
with less verbose instructions), or to ad-
dress user preferences without having to
ask for them.

Frame-based systems require an ex-
plicit task model as this information is
used to determine what questions still
need to be asked. This is the mechanism
used by these systems to control the dia-
logue flow. Generally the user model, if one
exists, would not need to be any more so-
phisticated than that described for state-
based systems. Agent-based systems, on
the other hand, require complex dialogue
and user models as well as mechanisms
for using these models as a basis for de-
cisions on how to control the dialogue. In-
formation about the dialogue history and
the user can be used to constrain how
the system interprets the user’s subse-
quent utterances and to determine what
the system should say and how it should
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Table I. Dialogue Control Strategies
Features /Dialogue
control strategy State-based Frame-based Agent-based
Input Single words or phrases Natural language with Unrestricted natural

concept spotting language
Verification Explicit confirmation—either Explicit and implicit Grounding

of each input or at end confirmation
of transaction

Dialogue model Information state represented Explicit representation Model of system’s
implicitly in dialogue states of information states intentions, goals,

Dialogue control represented Dialogue control and beliefs.
explicitly with state diagram represented with Dialogue history,

control algorithm context
User model Simple model of user Simple model of user Model of user’s

characteristics or characteristics or intentions, goals,
preferences preferences and beliefs

be said. These sorts of modeling involve
representations of discourse structure, of
intentions, goals, and beliefs, and of dia-
logue as a collaborative activity. Various
approaches to dialogue and user modeling
in agent-based systems will be exemplified
and discussed in later sections of this
survey.

2.6. Summary

This section has provided a classification
of spoken dialogue systems in terms of
the type of dialogue control strategy used
and has shown how the choice of dialogue
control strategy is closely related to the
form of the user’s input as well as the use
of particular error recovery mechanisms.
These points are summarized in Table I.
The next section presents three examples
of spoken dialogue systems that illustrate
these different control strategies.

3. EXAMPLES OF SPOKEN DIALOGUE
SYSTEMS

3.1. State-Based Dialogue Control: The
Nuance Automatic Banking System

The Nuance automatic banking system
enables callers to conduct transactions
over the telephone such as paying a bill,
transferring funds between accounts, or
obtaining an account balance. The system
conducts a dialogue in English with the
user, who can speak to the system using
relatively unrestricted speech. It should

be stressed that the following dialogues
are based on recorded interactions with a
demo system available in the UK (avail-
able at: +44 1223 516959), used here to
illustrate some important aspects of state-
based dialogue control. The shortcomings
that are presented in some of the exam-
ples would have been addressed in a fully
developed commercial application.

System: What would you like to do?
User: Pay a bill.
System: What company would you like to

pay?
User: Midland Bank.
System: How much would you like to pay?
User: One hundred and twenty-five

pounds fifty-seven pence.
System: What date would you like the pay-

ment to be made on?
User: Monday.
System: You want to pay HSBC one hun-

dred fifty-five pounds and fifty-
seven pence on April 5th? Is this
correct?

User: Yes.
System: Your payment will be sent. Would

you like to pay another bill?

In order to complete the transaction the
system has to elicit three specific values
from the caller—payee, amount, transfer
date. These are confirmed and the trans-
action is completed with a return to the
sub-menu for bill payments. Some points
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Fig. 1 . Dialogue flow for payment
of a bill.

worth noting in this example are that the
system is able to process phrases specify-
ing currency amounts, is able to transform
relative dates such as Monday into abso-
lute dates such as April 5th, and is able to
handle multiple synonyms (Midland Bank
or HSBC ).

The dialogue flow, which is system-
directed with a predetermined sequence
of questions, can be modeled as a set of
interconnected dialogue states, as shown
in Figure 1.

Transferring amounts between ac-
counts involves a different type of transac-
tion in which the system can accept more
complex natural language input from the
caller, thus reducing the number of ques-
tions to be asked and the time required
for the transaction:

System: What would you like to do?
User: I would like to transfer two hun-

dred and fifty pounds from my
current to my savings account.

System: You want to transfer two hundred
fifty pounds from current to sav-
ings. Is this correct?

User: Yes.

This transaction is also modeled using di-
alogue states combined with multiple slot

filling. Additional transitions need to be
provided depending on which combina-
tions of the values of amount, source ac-
count, and destination account are pro-
vided by the user in the natural language
input. Problems can arise if this func-
tionality is not available throughout the
dialogue, as illustrated in the following
excerpt:

System1: What company would you like to
pay?

User1: Abbey National.
System2: How much would you like to

pay?
User2: One hundred pounds next Mon-

day.
System3: What date would you like the

payment to be made on?
User3: Next Monday.
System4: You want to pay Abbey National

one hundred pounds and sixty-
one pence on April 5th? Is this
correct?

User4: No.
System5: Would you like to change the

company, amount, or date?
User5: Amount.
System6: How much would you like to

pay?
User6: One hundred pounds.
System7: You want to pay Abbey National

one hundred pounds on April
5th? Is this correct?

User7: Yes.

In User2 the user provides an overinfor-
mative answer, specifying not only the
amount requested in System2 but also the
date of the transaction. The system’s next
question (System3) indicates that either
the date was misrecognized or that the
system is not set up for multiple slot filling
at this dialogue state. Whatever the rea-
son, the system goes on to ask the question
required at the next dialogue state, that is,
for the date of the transaction. Thus the
user is requested to supply information
that had just been given in the previous
response. Moreover, as shown in System4,
the system has recognized next Monday
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not as a date but as part of the amount,
that is, as and sixty-one pence. As shown
in System5–User7, the system is able to
recover from this error by getting the user
to reconfirm the amount.

A final example illustrates some limita-
tions on the system’s mechanisms for error
recovery:

System: Would you like to change the com-
pany, amount, or date?

User: The company and the date.
System: Please say company, amount, or

date.

From this example it can be seen that the
system is unable to correct more than one
error at a time. Thus, while the strategy
of leaving the confirmation of the three
items of information until they have all
been elicited will normally result in a more
natural and faster transaction, it may lead
to a frustrating and rather unnatural dia-
logue where more than one item has to be
changed.

The Nuance banking system is an ad-
vanced spoken dialogue system that em-
ploys a state-based dialogue control in
conjunction with natural language under-
standing and multiple slot filling. Given
good recognition rates the system is likely
to perform well and complete transactions
efficiently and effectively. These sample
interactions were chosen carefully to il-
lustrate some potential problems that are
likely to arise when a state-based system
is extended to provide more sophisticated
functionality. The examples would appear
to indicate that the multiple slot filling af-
forded by the system’s natural language
processing is not available at each dia-
logue state. Although this can be easily
remedied, a further complication is intro-
duced as now the system has to maintain
a dialogue model of which slots have been
filled so as to direct the dialogue down al-
ternative paths. With small numbers of
slots this is not a problem, but with an
increasing number of slots the combina-
tions of state transitions soon reach un-
manageable proportions. This is particu-
larly the case when further transitions are
added to deal with verification of the slot

values. Thus, while state-based dialogue
control is useful for implementing simple
transactions, introducing more sophisti-
cated functionality may require additional
mechanisms such as an explicit dialogue
model that obscure the semantics of the
state-based control. This issue will be dis-
cussed in greater detail in Section 5. The
next example will show how a frame-based
system is able to handle these issues more
effectively.

3.2. Frame-Based Dialogue Control: The
Philips Automatic Train Timetable
Information System

The Philips Automatic Train Timetable
Information System (available at: +49
241 604020) provides information over
the telephone about train connections be-
tween 1,200 German cities. The system
conducts a natural dialogue in German
with the user, who can speak to the system
using fluent, unrestricted speech. The aim
of the dialogue is to enable the system to
construct an appropriate database query
that retrieves the information required by
the user and then to present that infor-
mation in a suitable form. This system
falls within a class of similar systems con-
cerned with the provision of information,
such as travel schedules, banking, stocks
and shares, and weather forecasts. The
German version of the system is a research
prototype, which is not connected with
the official information service provided by
German Rail (Deutsche Bahn AG). The fol-
lowing is an example of a dialogue with the
Philips Automatic Train Timetable Infor-
mation System, translated from the origi-
nal German [Aust et al. 1995]:

System1: Good morning. This is the au-
tomatic timetable information
service. How can I help you?

User1: I need a connection from
Hamburg to Munich.

System2: When would you like to go from
Hamburg to Munich?

User2: Next Friday at eight o’clock.
System3: So you want to travel on Sun-

day the 20th of November at
eight o’clock a.m.?
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User3: No, on Friday.
System4: So you want to travel on Friday

the 18th of November at eight
o’clock a.m.?

User4: Yes.
System5: There is the following con-

nection: With IntercityExpress
793, departure from Hamburg
at 8:02, arrival in Munich at
14:05. Do you want me to re-
peat the connection?

User5: No, but I need a train for the
return trip on Sunday.

System6: At what time would you like
to go from Munich to Ham-
burg on Sunday the 20th of
November?

User6: I have to arrive in Hamburg
late in the evening.

System7: So you want to arrive in Ham-
burg between nine p.m. and
eleven p.m.?

User7: Yes.
System8: There are three connections.

This is the first one: With In-
tercityExpress 880, departure
from Munich at 15:54, arrival
in Hamburg at 21:58. Do you
want the next connection?

User8: No, thanks, that one is fine.
System9: Do you need yet another con-

nection?
User9: No, thank you.
System10: We wish you a pleasant jour-

ney. Thank you for calling.
Good bye.

It is informative to examine the dialogue
flow in this example. The purpose of the
system is to guide the user toward pro-
viding all the required values—departure
city, destination city, departure time, and
departure date, as well as ascertaining
other values, such as whether the time is
a.m. or p.m. and whether the time refers to
the departure or arrival. These values are
acquired over the course of the dialogue
and once they have been acquired the sys-
tem can execute a suitably constrained
database query and provide one or more
connections.

This system could have been imple-
mented using state-based control in which
the system would progress through a num-
ber of states eliciting and verifying the
required values. Alternatively the sys-
tem could have been implemented as
a question-answer or natural language
database system in which the user would
have been required to provide all the re-
quired parameters in one utterance, which
could then have been translated directly
into a database query. However, one of the
aims of the designers of this system was
to enable a more flexible interaction in
which the user would not be constrained
either to input one value at a time or to
input all the values within one utterance.
This flexibility is necessary as it cannot
be determined in advance what a user
might know regarding the information re-
quired to make a valid query. For example,
the system may need to know if the user
wishes to travel on an Intercity train, re-
quires a train with restaurant facilities,
and so on. If the user is not aware of all
the possibilities, the system has to issue
relevant queries and elicit suitable values
in order to find the best connection.

A second aspect of dialogue flow con-
cerns the sequencing of the system’s ques-
tions. There should be a logical order to
the questions. This order may be largely
determined by what information is to be
elicited in a well-structured task such as a
travel information enquiry. The disadvan-
tage of a state-based approach combined
with natural language processing capa-
bilities is that users may produce overin-
formative answers that provide more in-
formation than the system has requested
at that point. In the Philips example at
System2–User2, the system’s more open-
ended prompt When would you like to go
from Hamburg to Munich? is ambiguous
in that it can allow the user to supply
departure time or date or both—as hap-
pens in User2. Even with a more con-
strained prompt such as On which day
would you like to go from Hamburg to
Munich? the user might supply both date
and time. A system that followed a pre-
determined sequence of questions might
then ask At what time would you like to go
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from Hamburg to Munich?—an unaccept-
able question as the time has already been
given. The Philips system uses a status
graph to keep track of which slots have
already been filled. This mechanism will
be described in greater detail in Section 5.

A close examination of the dialogue also
shows that the system is able to deal with
recognition errors and misunderstand-
ings. For example, in System3 the sys-
tem attempts to confirm the departure
date and time but has misrecognized the
departure date and is corrected by the
user in User3. More subtly, the system
uses different strategies for confirmation.
In System2 an implicit confirmation re-
quest is used in which the values for de-
parture city and destination provided by
the user in User1 are echoed back within
the system’s next question, which also in-
cludes a request for the value for the de-
parture date and/or time. If the system’s
interpretation is correct, the dialogue can
proceed smoothly to the next value to be
obtained and the user does not have to
confirm the previous values. Otherwise, if
the system has misunderstood the input,
the user can correct the values before an-
swering the next question. Conversely, an
explicit confirmation request halts the di-
alogue flow and requires an explicit confir-
mation from the user. An example occurs
in System3–User3 in which the system
makes an explicit request for the confirma-
tion of the departure date and time and the
user corrects the date. The next exchange
System4–User4 is a further example of an
explicit confirmation request to verify the
departure date and time.

One further aspect of the Philips sys-
tem is its robustness. An example can
be seen at System6–User6. In response
to the system prompt for the departure
time, the user does not provide a direct re-
sponse containing the required time but
states a constraint on the arrival time,
expressed vaguely as late in the evening.
The system is able to interpret this ex-
pression in terms of a range (between
9 p.m. and 11 p.m.) and to find an ap-
propriate departure time that meets this
constraint. More generally, the system is
robust enough to be able to handle a

range of different expressions for dates
and times (e.g., three days before Christ-
mas, within this month) and to be able to
deal with cases of missing and contradic-
tory information.

The provision of information such as
train times is a typical application of spo-
ken dialogue technology. Philips has de-
veloped a system with similar function-
ality for Swiss Rail, which has been an
official part of Swiss Rail’s information
service since 1996. Public reaction to the
system has been favorable, with over 80%
of the people who used the service rat-
ing it as “excellent.” Strik et al. [1996] re-
ported on a project involving adaptation
of the German system to the Dutch pub-
lic transport network, while the European
R&D project ARISE, which includes the
Dutch, French, and Italian railway opera-
tors, builds on earlier European projects
and on the Philips systems to provide
more elaborate services with a multilin-
gual component. The strengths and weak-
nesses of frame-based dialogue control are
discussed further in Section 5.

3.3. Agent-Based Dialogue Control for
Problem Solving—The Circuit-Fix-It
Shop System

Problem-solving tasks usually involve
some degree of co-operation between
agents, particularly when one of the
agents is unable to solve the problem
alone. Cooperation may take the form of
assigning particular subtasks to particu-
lar agents with the accomplishment of the
subtasks contributing to the completion of
the overall task. Such co-operative prob-
lem solving will require communication
between the agents to report on the state-
of-play of the problem solving and to sup-
ply the information required by the other
agent. The next example illustrates collab-
orative problem solving in the Circuit-Fix-
It Shop system [Smith and Hipp 1994].
Other agent-based systems will be dis-
cussed in Section 5.

The Circuit-Fix-It Shop system helps
users to fix an electronic circuit by engag-
ing in a spoken dialogue with the user.
Communication between system and user
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Fig. 2 . Goal tree before utterance System1.

is motivated by the fact that neither par-
ticipant is fully equipped to solve the prob-
lem alone. The system has all the neces-
sary knowledge about the task but does
not have the required sensory abilities
to monitor the state of the world or to
perform actions in the world. These are
the concern of the human user who has
also some knowledge of the task, which
can range from that of a novice to that
of an expert, depending on the individual
user. The system employs user modeling—
estimating the user’s knowledge of par-
ticular objects and actions based on
inferences from earlier exchanges in the
dialogue—to determine the content of
the information to be communicated to
the user. Context-dependent expectations
are also used to correct speech recogni-
tion hypotheses and to track when the user
shifts to a different subdialogue. The fol-
lowing is an example of a dialogue between
a user and the system:

System1: Is there a wire between connec-
tor 84 and connector 99?

User1: It is not there.
System2: Add a wire between connector 84

and connector 99.
User2: I need help.
System3: Obtain a wire.
User3: Done.
System4: Connect metal of one free end of

the wire to connector 84.
User4: How?
System5: Bend back connector 84.
User5: Done.
System6: Insert free end of wire into con-

nector 84.
User6: Wire between 84 and 99 is con-

necting.
System7: What is the LED displaying?

The dialogue evolves in the form of a proof,
which can be illustrated using a goal tree.
The goal tree represents the solution of
the problem as it evolves dynamically. The
system invokes rules to prove the goal
in a top-down fashion—as in Prolog-style
theorem proving. The proof may succeed
using internally available knowledge, in
which case no dialogue is required. How-
ever, the system is designed to deal with
cases where the proof fails because the in-
formation required to complete the proof
is not available to the system. In this case
the system engages in dialogue with the
user to obtain the missing information (de-
scribed as “missing axioms”) so that the
proof can succeed.

At the beginning of the dialogue, the
system does not know whether there is
a wire between connector 84 and connec-
tor 99. As this is a missing axiom in the
current proof, the system produces utter-
ance System1 to ask the user. The state
of the proof at this point is shown in the
following goal tree displayed in Figure 2.
The user confirms that the wire is miss-
ing. From this the system can infer that
the user knows the location of the connec-
tors and these facts are added to the user
model. Figure 3 shows the current state
of the goal tree. So that the current goal
can be completed, the system instructs the
user to add a wire between the connec-
tors. This yields the goal tree shown in
Figure 4. As the user does not know how
to do this, a subgoal is inserted instructing
the user on how to accomplish this task.
This subgoal consists of the actions: lo-
cate connector 84, locate connector 99, ob-
tain a wire, connect one end of wire to 84,
and connect other end of wire to 99. These
items are added to the goal tree depicted
in Figure 5. However, as the user model
contains the information that the user can
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Fig. 3 . Goal tree after utterance User1.

Fig. 4 . Goal tree after utterance System2.

Fig. 5 . Goal tree after utterance User2.

ACM Computing Surveys, Vol. 34, No. 1, March 2002.



Spoken Language Technology 103

locate these connectors, instructions for
the first two actions are not required and
so the system proceeds with instructions
for the third action, which is confirmed in
User3, and for the fourth action. Here the
user requires further instructions, which
are given in System5 with the action con-
firmed in User5. At this point the user
asserts that the wire between 84 and 99
is connecting, so that the fifth instruction
to connect the second end to 99 is not re-
quired. A further missing axiom is discov-
ered, which leads the system to ask what
the LED is displaying (System7).

3.4. Summary

The examples presented in this section
have illustrated three different types of
dialogue control strategy. The selection
of a dialogue control strategy determines
the degree of flexibility possible in the di-
alogue and places requirements on the
technologies employed for processing the
user’s input and for correcting errors.
There are many variations on the dialogue
strategies illustrated here, and these will
be discussed in greater detail in Section 5.
The next section will examine the com-
ponent technologies of spoken dialogue
systems.

4. COMPONENTS OF A SPOKEN
DIALOGUE SYSTEM

A spoken dialogue system involves the in-
tegration of a number of components that
typically provide the following functional-
ities [Wyard et al. 1996]:

Speech recognition: The conversion of an
input speech utterance, consisting of a
sequence of acoustic-phonetic parame-
ters, into a string of words.

Language understanding: The analysis
of this string of words with the aim
of producing a meaning representation
for the recognized utterance that can
be used by the dialogue management
component.

Dialogue Management: The control of the
interaction between the system and the
user, including the coordination of the
other components of the system.

Communication with external system:
For example, with a database sys-
tem, expert system, or other computer
application.

Response generation: The specification of
the message to be output by the system.

Speech output: The use of text-to-speech
synthesis or prerecorded speech to out-
put the system’s message.

These components are examined in the fol-
lowing subsections in relation to their role
in a spoken dialogue system (for a recent
text on speech and language processing,
see Jurafsky and Martin [2000]).

4.1. Speech Recognition

The task of the speech recognition com-
ponent of a spoken dialogue system is
to convert the user’s input utterance,
which consists of a continuous-time signal,
into a sequence of discrete units such as
phonemes (units of sound) or words. One
major obstacle is the high degree of vari-
ability in the speech signal. This variabil-
ity arises from the following factors:

Linguistic variability: Effects on the
speech signal caused by various linguis-
tic phenomena. One example is coartic-
ulation, that is, the fact that the same
phoneme can have different acoustic re-
alizations in different contexts, deter-
mined by the phonemes preceding and
following the sound in question.

Speaker variability: Differences between
speakers, attributable to physical fac-
tors such as the shape of the vocal tract
as well as factors such as age, gen-
der, and regional origin; and differences
within speakers, due to the fact that
even the same words spoken on a differ-
ent occasion by the same speaker tend
to differ in terms of their acoustic prop-
erties. Physical factors such as tired-
ness, congested airways due to a cold,
and changes of mood have a bearing
on how words are pronounced, but the
location of a word within a sentence and
the degree of emphasis it is given are
also factors which result in intraspeaker
variability.
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Channel variability: The effects of back-
ground noise, which can be either con-
stant or transient, and of the trans-
mission channel, such as the telephone
network or a microphone.

The speech recognition component of a
typical spoken dialogue application has to
be able to cope with the following addi-
tional factors:

Speaker independence: As the application
will normally be used for a wide variety
of casual users, the recognizer cannot
be trained on an individual speaker
(or small number of speakers) who will
use the system, as is the case for dic-
tation systems; instead, for speaker-
independent recognition samples have
to be collected from a variety of speak-
ers whose speech patterns should be
representative of the potential users of
the system. Speaker-independent recog-
nition is more error-prone than speaker-
dependent recognition.

Vocabulary size: The size of the vocabulary
varies with the application and with the
particular design of the dialogue sys-
tem. Thus a carefully controlled dia-
logue may constrain the user to a vocab-
ulary limited to a few words expressing
the options that are available in the sys-
tem, while in a more flexible system the
vocabulary may amount to more than a
thousand words.

Continuous speech: Users of spoken dia-
logue systems expect to be able to speak
normally to the system and not, for ex-
ample, in the isolated word mode em-
ployed in some dictation systems. How-
ever, it is difficult to determine word
boundaries in continuous speech since
there is no physical separation in the
continuous-time speech signal.

Spontaneous conversational speech: Since
the speech that is input to a spoken di-
alogue system is normally spontaneous
and unplanned, it is typically charac-
terized by disfluencies, such as hesita-
tions and fillers (for example, amm and
er, false starts, in which the speaker
begins one structure then breaks off
midway and starts again, and extra-

linguistic phenomena such as cough-
ing. The speech recognizer has to be
able to extract from the speech sig-
nal a sequence of words from which
the speaker’s intended meaning can be
computed.

The basic process of speech recognition
involves finding a sequence of words, using
a set of models acquired in a prior train-
ing phase, and matching these with the in-
coming speech signal that constitutes the
user’s utterance. The models may be word
models, in the case of systems with a small
vocabulary, but more typically the models
are of units of sound such as phonemes or
triphones, which model a sound as well as
its context in terms of the preceding and
succeeding sounds. The most successful
approaches view this pattern-matching as
a probabilistic process which has to be able
to account both for temporal variability—
due to different durations of the sounds re-
sulting from differences in speaking rate
and the inherently inexact nature of hu-
man speech—and acoustic variability—
due to the linguistic, speaker, and channel
factors described earlier. The following for-
mula expresses this process:

W∗ = argmax
w

P (O | W )P (W ).

In this formulaW∗ represents the word
sequence with the maximum a posteri-
ori probability, while O represents the ob-
servation that is derived from the speech
signal. Two probabilities are involved:
P (O | W ), known as the acoustic model,
which has been derived through a train-
ing process and which is the probability
that a sequence of words W will produce
an observation O; and a language model,
derived from an analysis of a language cor-
pus giving the prior probability distribu-
tion assigned to the sequence of wordsW.

The observation O comprises a series
of vectors representing acoustic features
of the speech signal. These feature vec-
tors are derived from the physical sig-
nal, which is sampled and then digitally
encoded. Perceptually important speaker-
independent features are extracted and
redundant features are discarded.
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Fig. 6 . A simple hidden Markov model.

Acoustic modeling is a process of map-
ping from the continuous speech signal
to the discrete sounds of the words to be
recognized. The acoustic model of a word
is represented in hidden Markov mod-
els (HMMs), as in Figure 6. Each state
in the HMM might represent a unit of
sound, for example, the three sounds in
the word dog. Transitions between each
state, A = a12a13 . . .an1 . . .ann, represent
the probability of transitioning from one
state to the next and model the temporal
progression of the speech sounds. Due to
variability in the duration of the sounds, a
sound may spread across several frames so
that the model can take a loop transition
and remain in the same state. For exam-
ple, if there were five frames for the word
dog, the states sequence S1, S1, S2, S2, S3
might be produced, reflecting the longer
duration of the sounds representing d
and o. A hidden Markov model is doubly
stochastic, as in addition to the transi-
tion probabilities the output of each state,
B = bi(ot), is probabilistic. Instead of each
state having a single unit of sound as
output, all units of sound are potentially
associated with each state, each with its
own probability. The model is “hidden” be-
cause, given a particular sequence of out-
put symbols, it is not possible to deter-
mine which sequence of states produced
these output symbols. It is, however, pos-
sible to determine the sequence of states
that has the highest probability of having
generated a particular output sequence.
In theory this would require a procedure
that would examine all possible state se-
quences and compute their probabilities.
In practice, because of the Markov as-
sumption that being in a given state de-

pends only on the previous state, an ef-
ficient dynamic programming procedure
such as the Viterbi algorithm or A∗ de-
coding can be used to reduce the search
space. If a state sequence is viewed as a
path through a state-time lattice, at each
point in the lattice only the path with the
highest probability is selected.

The output of the acoustic modeling
stage is a set of word hypotheses which
can be examined to find the best word
sequence, using a language model P (W ).
The language model contains knowledge
about which words are more likely in a
given sequence. Two types of model are
possible. A finite state network predicts
all the possible word sequences in the lan-
guage model. This approach is useful if all
the phrases that are likely to occur in the
speech input can be specified in advance.
The disadvantage is that perfectly legal
strings that were not anticipated are ruled
out. Finite state networks can be used to
parse well-defined sequences such as ex-
pressions of time.

Alternatively, an N -gram model can be
used. The use of N -grams involves com-
puting the probability of a sequence of
words as a product of the probabilities of
each word, assuming that the occurrence
of each word is determined by the preced-
ing N − 1 words. This relationship is ex-
pressed in the formula

P (W ) = P (w1, . . . , wn)

=
N∏

n=1

P (wn | w1, . . . , wn−1).

However, because of the high computa-
tional cost involved in calculating the
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probability of a word given a large num-
ber of preceding words, N -grams are usu-
ally reduced to bigrams (N = 2) or tri-
grams (N = 3). Thus in a bigram model
P (wi | wi−1) the probability of all pos-
sible next words is based only on the
current word, while in a trigram model
P (wi | wi−2, wi−1) it is based on two pre-
ceding words. N -gram models may also be
based on classes rather than words, i.e.,
the words are grouped into classes repre-
senting either syntactic categories such as
noun or verb, or semantic categories, such
as days of the week or names of airports.
A language model reduces the perplexity
of a system, which will usually result in
greater recognition accuracy. Perplexity is
roughly defined as the average branch-
ing factor, or average number of words,
that might follow a given word. If the
perplexity is low, recognition is likely to
be more accurate as the search space is
reduced.

The output of the speech recognizer
may be a number of scored alternatives
as in the following example representing
the recognizer’s best guesses for the in-
put string what time does the flight leave?
[Wyard et al. 1996]:

(1) what time does the white leaf 1245.6.
(2) what time does the flight leave 1250.1.
(3) what time does a flight leave 1252.3.
(4) what time did the flight leave 1270.1.
(5) what time did a flight leave 1272.3.

Sometimes there are only small differ-
ences between the alternatives, caused by
one or two words that may not contribute
to the meaning of the string. For this rea-
son, the alternatives can be more economi-
cally represented in a directed graph or as
a word lattice. The selection of the most
likely sequence may be the responsibility
of other system components. For example,
if the domain of the dialogue system is
flight enquiries, then the first sequence,
which had the best score from the speech
recognizer, would be discarded as contex-
tually irrelevant. Similarly, dialogue infor-
mation would assist the choice between
2 and 3, which ask about a flight departure
that has not yet taken place, and 4 and 5,

which ask about some departure that has
already happened.

As an alternative to returning the com-
plete sequence of words that matches the
acoustic signal, the recognizer can search
for key words. This technique is known as
word spotting. Word spotting is useful for
dealing with extraneous elements in the
input, for example, detecting yes in the
string well, uh, yes, that’s right. The main
difficulty for word spotting is to detect non-
key-word speech. One method is to train
the system with a variety of non-key-word
examples, known as sink (or garbage)
models. A word-spotting grammar net-
work can then be specified that allows any
sequence of sink models in combination
with the key words to be recognized.

Users of spoken dialogue systems are
generally constrained to having to wait
until the system has completed its out-
put before they can begin speaking. Once
users are familiar with a system, they
may wish to speed up the dialogue by in-
terrupting the system. This is known as
barge-in. The difficulty with simultane-
ous speech, which is common in human-
human conversation, is that the incoming
speech becomes corrupted with echo from
the ongoing prompt, thus affecting the re-
cognition. Various techniques are under
development to facilitate barge-in.

4.1.1. Summary. This section has out-
lined the main characteristics of the
speech recognition process, describing the
uncertain and probabilistic nature of this
process, in order to clarify the require-
ments that are put on the other system
components. In a linear architecture the
output of the speech recognizer provides
the input to the language understanding
module. Difficulties may arise for this com-
ponent if the word sequence that is out-
put does not constitute a legal sentence,
as specified by the component’s gram-
mar. In any case, the design of the lan-
guage understanding component needs to
take account of the nature of the output
from the speech recognition module. Sim-
ilarly, in an architecture in which the di-
alogue management component interacts
with each of the other components, one
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of the roles of dialogue management will
be to monitor when the user’s utterance
has not been reliably recognized and to de-
vise appropriate remedial steps. These is-
sues will be discussed in greater detail in
subsequent sections. For more extensive
accounts of speech recognition, see, for
example, Rabiner and Juang [1993] and
Young and Bloothooft [1997]. For tuto-
rial overviews, see Makhoul and Schwartz
[1995] and Power [1996].

4.2. Language Understanding

The role of the language understanding
component is to analyze the output of the
speech recognition component and to de-
rive a meaning representation that can be
used by the dialogue control component.
Language understanding involves syntac-
tic analysis, to determine the constituent
structure of the recognized string (i.e., how
the words group together), and seman-
tic analysis, to determine the meanings
of the constituents. These two processes
may be kept separate at the representa-
tional level in order to maintain general-
izability to other domains, but they tend to
be combined during processing for reasons
of efficiency. On the other hand, some ap-
proaches to language understanding may
involve little or no syntactic processing
and derive a semantic representation di-
rectly from the recognized string. The
advantages and disadvantages of these
approaches, and the particular problems
involved in the processing of spoken lan-
guage, will be reviewed in this section.

The theoretical foundations for lan-
guage processing are to be found in lin-
guistics, psychology, and computational
linguistics. Current grammatical formal-
isms in computational linguistics share a
number of key characteristics, of which
the main ingredient is a feature-based de-
scription of grammatical units, such as
words, phrases and sentences [Uszkoreit
and Zaenen 1996]. These feature-based
formalisms are similar to those used in
knowledge representation research and
data type theory.

Feature terms are sets of attribute-
value pairs in which the values can be

atomic symbols or further feature terms.
Feature terms belong to types, which may
be organized in a type hierarchy or as
disjunctive terms, functional constraints,
or sets. The following simple example
shows a feature-based representation for
the words lions, roar, and roars as well as
a simple grammar using the PATR-II for-
malism [Shieber 1986] that defines how
the words can be combined in a well-
formed sentence:

lexicon
lions: [cat:NP, head: [agreement: [number:

plural, person:third] ] ]
roar: [cat:V, head: [form: finite, subject:

[agreement: [number:plural,
person:third] ] ] ]

roars: [cat:V, head: [form: finite, subject:
[agreement: [number:singular,
person:third] ] ] ]

grammar
S→ NP VP
<S head> = <VP head>
<S head subject> = <NP head>

VP→ V
<VP head> = <V head>

The lexicon consists of complex feature
structures describing the syntactically rel-
evant characteristics of the words, such
as whether they are singular or plural.
The grammar consists of phrase structure
rules and equations that determine how
the words can be combined.

The means by which feature terms may
be combined to produce well-formed fea-
ture terms is through the process of unifi-
cation. For example: the words lions and
roar can be combined as their features
unify, whereas lions and roars cannot, as
the agreement features are incompatible.
This basic formalism has been used to ac-
count for a wide range of syntactic phe-
nomena and, in combination with unifi-
cation, to provide a standard approach to
sentence analysis using string-combining
and information-combining operations.

Feature-based grammars are often
subsumed under the term unification
grammars. One major advantage of uni-
fication grammars is that they permit
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a declarative encoding of grammatical
knowledge that is independent of any spe-
cific processing algorithm. A further ad-
vantage is that a similar formalism can be
used for semantic representation, with the
effect that the simultaneous use of syntac-
tic and semantic constraints can improve
the efficiency of the linguistic processing.

In computational semantics, sentences
are analyzed on the basis of their con-
stituent structure, under the assumption
of the principle of compositionality, that is,
that the meaning of a sentence is a func-
tion of the meanings of its parts. Each syn-
tactic rule has a corresponding semantic
rule and the analysis of the constituent
structure of the sentence will lead to the
semantic analysis of the sentence as the
meanings of the individual constituents
identified by the syntactic analysis are
combined. The meaning representation
from this form of semantic analysis is typ-
ically a logical formula in first order predi-
cate calculus (FOPC) or some more power-
ful intermediate representation language
such as Montague’s intensional logic or
Discourse Representation Theory (DRT).
The advantage of a representation of the
meaning of a sentence in a form such as
a formula of FOPC is that it can be used
to derive a set of valid inferences based on
the inference rules of FOPC. For example,
as Pulman [1996] showed, a query such as:

Does every flight from London to San Francisco
stop over in Reykyavik?

cannot be answered straightforwardly by
a relational database that does not store
propositions of the form every X has prop-
erty P. Instead a logical inference has to
be made from the meaning of the sentence
based on the equivalence between every X
has property P and there is no X that does
not have property P. Based on this infer-
ence the system simply has to determine if
a nonstopping flight can be found, in which
case the answer is no; otherwise it is yes.

While linguistics and psychology pro-
vide a theoretical basis for computational
linguistics, the characteristics of spoken
language require additional (or even al-
ternative) techniques. One problem is that
naturally occurring text, both in written

form, as in newspaper stories, as well as in
spoken form, as in spoken dialogues, is far
removed from the well-formed sentences
that constitute the data for theoretical lin-
guistics and psychology. In linguistics the
main concern is with developing theories
that can account for items of theoretical in-
terest, often rare phenomena that demon-
strate the wide coverage of the theory,
while in psychology the main concern is
with identifying the cognitive processes
involved in language understanding. Tra-
ditionally a symbolic representation is
used, with hand-crafted rules that pro-
duce a complete parsing of grammatically
correct sentences but with a target cover-
age based on a relatively small set of exem-
plar sentences. When confronted with nat-
urally occurring texts such as newspaper
stories, these theoretically well-motivated
grammars tend to generate a very large
number of possible parses, due to ambigu-
ous structures contained in the grammar
rules, while, conversely, they often fail to
produce the correct analysis of a given sen-
tence, often having a failure rate of more
than 60% [Marcus 1995].

Spoken language introduces a further
problem in that the output from the speech
recognizer will often not have the form of
a grammatically well-formed string that
can be parsed by a conventional lan-
guage understanding system. Rather it is
likely to contain features of spontaneous
speech, such as sentence fragments, after-
thoughts, self-corrections, slips of the
tongue, or ungrammatical combinations.
The following examples of utterances
(cited in Moore [1995]), from a corpus col-
lected from subjects using either a sim-
ulated or an actual spoken language Air
Travel Information System (ATIS), would
not be interpreted by a traditional linguis-
tic grammar:

What kind of airplane goes from Philadelphia to
San Francisco Monday stopping in Dallas in the
afternoon (first class flight)
(Do)(Do any of these flights)Are there any flights
that arrive after five p.m.

The first example is a well-formed sen-
tence followed by an additional fragment
or after-thought, enclosed in parentheses.
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The second example is a self-correction in
which the words intended for deletion are
enclosed in parentheses.

Some of these performance phenomena
occur sufficiently regularly that they could
be described by special rules. For example,
in some systems rules have been devel-
oped that can recognize and correct self-
repairs in an utterance [Dowding et al,
1993; Heeman and Allen 1997]. A conven-
tional grammar could be enhanced with
additional rules that could handle some of
these phenomena, but the problem is that
it would be impossible to predict all the
potential occurrences of these features of
spontaneous speech in this way. An alter-
native approach is to develop more robust
methods for processing spoken language.

Robust parsing aims to recover syntac-
tic and semantic information from unre-
stricted text that contains features that
are not accounted for in hand-crafted
grammars. Robust parsing often involves
partial parsing, in which the aim is not
to perform a complete analysis of the text
but to recover chunks, such as nonrecur-
sive noun phrases, that can be used to
extract the essential items of meaning in
the text. Thus the aim is to achieve a
broad coverage of a representative sam-
ple of language which represents a reason-
able approximate solution to the analysis
of the text [Abney 1997]. In some systems
mixed approaches are used, such as first
attempting to carry out a full linguistic
analysis on the input and only resorting
to robust techniques if this is unsuccess-
ful. BBN’s Delphi system [Stallard and
Bobrow 1992], MIT’s TINA system [Seneff
1992], and SRI International’s Gemini
system [Dowding et al. 1993] work in this
way. As Moore [1995] reported, different
results have been obtained. The SRI team
found that a combination of detailed lin-
guistic analysis and robust processing re-
sulted in better performance than robust
processing alone, while the best perform-
ing system at the same evaluation (the
November 1992 ATIS evaluation) was the
CMU Phoenix system, which uses only
robust processing methods and does not
attempt to account for every word in an
utterance.

4.2.1. Integration of the Speech Recognition
and Natural Language Understanding Compo-
nents. So far it has been assumed that
the speech recognizer and the natural
language understanding module are con-
nected serially and that the speech module
outputs a single string to be analyzed by
the language understanding module. Typ-
ically, however, the output from the speech
recognition component is a set of ranked
hypotheses, of which only a few will make
sense when subjected to syntactic and se-
mantic analysis. The most likely hypothe-
sis may turn out not to be the string that
is ranked as the best set of words identi-
fied by the speech recognition component
(see the example in Section 4.1). What this
implies is that, in addition to interpret-
ing the string (or strings) output by the
speech recognizer to provide a semantic in-
terpretation, the language understanding
module can provide an additional knowl-
edge source to constrain the output of
the speech recognizer. This in turn has
implications for the system architecture,
in particular for the ways in which the
speech recognition and natural language
understanding components can be linked
or integrated.

The standard approach to integration
involves selecting as a preferred hypoth-
esis the string with the highest recogni-
tion score that can be processed by the
natural language component. The disad-
vantage of this approach is that strings
may be rejected as unparsable that nev-
ertheless represent what the speaker had
actually said. In this case the recognizer
would be overconstrained by the language
component. Alternatively, if robust pars-
ing were applied, the recognizer could be
underconstrained, as a robust parser will
attempt to make sense out of almost any
word string.

One alternative approach to integration
is word lattice parsing, in which the
recognizer produces a set of scored word
hypotheses and the natural language
module attempts to find a grammatical
utterance spanning the input signal that
has the highest acoustic score. This ap-
proach becomes unacceptable in the case
of word lattices containing large numbers
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of hypotheses, particularly when there is
a large degree of word boundary uncer-
tainty. Another alternative is to use N -
best filtering in which the recognizer out-
puts the n-best hypotheses (where N may
range from between 10 to 100 sentence
hypotheses), and these are then ranked by
the language understanding component
to determine the best-scoring hypothesis
[Price 1996]. This approach has the ad-
vantage of simplicity but the disadvantage
of a high computational cost given a large
value for N . Many practical systems have,
however, produced acceptable results with
values as low as N = 5, using robust pro-
cessing if strict grammatical parsing was
not successful with the top five recognition
hypotheses [Kubala et al. 1992].

4.2.2. Some Solutions. Various solutions
have been adopted to the problem of de-
riving a semantic representation from the
string provided by the speech recognition
component. These include: comprehensive
linguistic analysis, methods for dealing
with ill-formed and incomplete input, and
methods involving concept spotting. Some
of these will be briefly reviewed in the fol-
lowing paragraphs.

4.2.2.1. SUNDIAL. In the SUNDIAL
project [Peckham 1993], which was con-
cerned with travel information in English,
French, German, and Italian, several dif-
ferent approaches were adopted, with the
following common features:

—a rich linguistic analysis;
—robust methods for handling partial and

ill-formed input;
—a semantic representation language for

task-oriented dialogues.

Linguistic analysis in the German version
is based on a chart parser using a uni-
fication categorial grammar [Eckert and
Niemann 1994]. Syntactic and semantic
structures are built in parallel by unifying
complex feature structures during pars-
ing. The aim is to find a consistent max-
imal edge of the utterance, but if no single
edge can be found, the best interpretation
is selected for the partial descriptions re-
turned by the chart parser. These partial

descriptions are referred to as utterance
field objects (UFOs). Various scoring mea-
sures are applied to the chart edges to de-
termine the best interpretation. Addition-
ally some features of spontaneous speech
such as pauses, filled pauses, and ellipses,
are represented explicitly in the grammar.
The following example illustrates the use
of UFOs in the analysis of the string I want
to go—at nine o’clock from Koeln [Eckert
and Niemann 1994]:

U1: syntax: [string: ‘I want to go’]
semantics: [type:want, theagent: [type:

speaker], thetheme: [type: go ]]
U2: syntax: [string: ‘at nine o’clock’]

semantics: [type: time, thehour: 9]
U3: syntax: [string: ‘from Koeln’]

semantics: [type: go, thesource: [type: location,
thecity: koeln ]]

This sequence of UFOs is a set of partial
descriptions that cannot be combined into
a longer spanning edge, as U2, an ellip-
tical construction, is not compatible with
U1 and U3. However, it is still possible
to build a semantic representation from
these partial descriptions, as shown in this
example.

This example also illustrates the se-
mantic interface language (SIL) which is
used in SUNDIAL to pass the content of
messages between modules. Two differ-
ent levels of detail are provided in SIL,
both in terms of typed feature structures:
a linguistically oriented level, as shown
above, and a task-oriented level, which
contains information relevant to an appli-
cation, such as relations in the application
database. The task-oriented representa-
tion for the partial descriptions in the ex-
ample above would be:

U1: [task param]: [none]]
U2: [task param]: [sourcetime: 900]]
U1: [task param]: [sourcecity: koeln]]

This task-oriented representation is used
by the dialogue manager to determine
whether the information elicited from the
user is sufficient to permit database access
or whether further parameters need to be
elicited.

Reporting on a comparative evaluation
between earlier versions of the system,
which did not include a robust semantic
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analysis, and a later version that did,
Eckert and Niemann [1994] found a much
better dialogue completion rate in the
later system, even though word accuracy
rate (the results from the speech rec-
ognizer) had remained roughly constant
across the systems.

4.2.2.2. SpeechActs. The SpeechActs
system [Martin et al. 1996], which enables
professionals on the move to obtain on-line
information and services, uses a feature-
based approach to encode the semantic
content of utterances in terms of the
underlying application that is being ac-
cessed, such as the Mail or Calendar tool.
The analysis aims to provide an accu-
rate understanding of the input while
tolerating misrecognized words. Thus the
analysis is more comprehensive than key-
word matching, which would miss subtle
shades of meaning, and a full semantic
analysis, which might fail due to missing
or misrecognized words from the speech
recognizer. Because there is wide varia-
tion in the linguistic demands of the dif-
ferent applications, the system is reset for
a new lexicon and grammar for each new
application.

Generally a grammar for a speech rec-
ognizer differs from the grammar of a
language understanding component. The
function of a speech recognition grammar
is to determine the words that were spo-
ken and to specify every possible utterance
that a user might say to the system. For
this purpose a finite state grammar or a
language model is normally used, as de-
scribed earlier. The role of the language
understanding component is to extract the
meanings of the words, and for this pur-
pose a more general grammar is required.
Two problems arise, however. First, given
that the grammar formalisms for differ-
ent recognizers vary widely, a developer
would have to write a different version of
the recognizer grammar each time a new
recognition system was used.2 A second

2 Note: due to rapid changes in technology, the devel-
opers of SpeechActs did not want to restrict future
developers to specific speech recognizers but to allow
them to use newly available technologies as plug-in
components.

problem concerns the degree of integration
between the speech recognition and lan-
guage understanding components. With
different grammar types this integration
would be less feasible.

The solution that was adopted was a
Unified Grammar, which could be com-
piled into a speech recognizer grammar
that would include constraints to help re-
duce perplexity, as well as into a corre-
sponding grammar for natural language
processing [Martin et al. 1996]. A Unified
Grammar consists of a collection of rules
that include finite state patterns and aug-
mentations. An example of a pattern is

“what” root=“be” (“in”–“on”) namePossessive
sem=calendar;

This pattern requires the first word to be
what, then a form of the verb be, then ei-
ther in or on, followed by the output of the
rule namePossessive (for example: Paul’s),
and finally a word with the semantics of
“calendar.” Augmentations include tests
such as

be.past-participle ! = t; be.ing-form ! = t;

stating that the form of the verb must not
be been or being, and the action

action := ‘lookup’;

which adds the feature “lookup” to the ac-
tion associated with this pattern. One ad-
vantage of these grammar rules for the
language understanding process is that a
number of different utterances with the
same meaning will result in the same
analysis. A second advantage is flexibil-
ity, which is achieved through the use of
wild cards in the patterns to cope with
confusions arising from the speech recog-
nizer between insignificant words such as
of, a, or the, which, if misrecognized, would
pose problems for a conventional language
processor.

4.2.2.3. The Philips Automatic Train Time-
table Information System. A rather differ-
ent approach was adopted in the Philips
train timetable information dialogue sys-
tem [Aust et al. 1995], which was illus-
trated in Section 3. This system also ac-
cepts partial structures as input, similar
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to those accepted by the SUNDIAL and
SpeechActs systems. The speech recog-
nition module generates word graphs,
consisting of about 10 edges per graph af-
ter graph optimization. Each path through
the graph represents a sentence hypoth-
esis. The language understanding mod-
ule has to find the best path through
the graph and then determine its mean-
ing. However, language analysis in this
system involves a search for meaningful
concepts using an attributed context-free
stochastic grammar to identify the rele-
vant phrases and compute their meanings.
Thus the grammar is semantic rather
than syntactic since it is not concerned
with the structure of the sentence but with
its meaning. In addition, each rule may
have a probability indicating how likely
it is to be applied, given its left hand-
side nonterminal. The following is an ex-
ample of some grammar rules for a train
timetable application:

<station> STRING
: ‘London’ {‘London’;}
| ‘Paris’ {‘Paris’;}
;

<origin> STRING
: ‘from’ <station> {#2;}
| ‘not’ ‘from’ <station> {NOT #3;}
;

Rules have a syntactic part in which
the left-hand side—preceding the colon—
comprises a nonterminal (in angular
brackets) and the right-hand side com-
prises a sequence of nonterminals and/or
terminals (enclosed in single quotes). The
semantic rules, which contain assign-
ments and expressions, are enclosed in
braces. The semantic part may also con-
tain a speech understanding expression
represented as an attribute reference,
with a number following the # symbol
indicating the position of the nontermi-
nal within an assigned sequence. Links
are provided between the attributes of the
grammar rules and the variables (or slots)
that represent the concepts for which val-
ues are to be obtained during the dialogue.

As many of the input strings are in-
complete or ungrammatical, in terms of
a traditional sentence-based grammar,

the system can generally still derive a
meaning for these strings at a fairly low
computational cost. This involves proce-
dures for dealing with filler arcs, that
is, those parts of a graph that do not
contain identified concepts (what are de-
scribed as meaningful fillers). In addition
to this, a concept bigram model is used to
model more frequently observed concept
sequences.

A semantics-driven approach such as
this permits the analysis of the ungram-
matical strings that characterize natu-
rally occurring spoken language. For ex-
ample: given an input string such as

I want to uh let me see from Frankfurt yes is there
a train to Hamburg from Frankfurt at about
10 o’clock?

the system could identify the essential
concepts such as source (from+Place-
name), destination (to+Placename), time
(at+ time expression) and compute a
meaning for the sentence, ignoring the
meaningful fillers in the string (I want to,
let me see, yes is there a train, etc.). How-
ever, as Moore [1995] pointed out, concept
spotting might not be able to handle more
complex examples such as

What cities does the train from Hamburg stop at?

as the case marking word at is separated
from its associated case word what cities.
Only a more sophisticated grammatical
analysis could determine this sort of re-
lationship between disjoint constituents.
Generally speaking, this type of construc-
tion is relatively infrequent and, if en-
countered sufficiently frequently, could be
modeled in the grammar. In any case,
a system with adequate repair facilities
should be capable of eliciting the required
information from the user through more
directed questions and prompts. Some of
these techniques for achieving this type of
robust behavior will be described below.

4.2.3. Summary. This section has exam-
ined the role of the language understand-
ing component and issues such as gram-
mar representation and robust parsing.
The construction of the language under-
standing component is determined on the
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Fig. 7 . An architecture for spoken dialogue systems.

one hand by the nature of the input as
received from the speech recognizer, and,
on the other hand, by the type of in-
put required by the dialogue manager.
Many systems, including the ATIS sys-
tems and the Philips train timetable in-
formation system, are essentially driven
by a template-filling mechanism. In the
ATIS systems the dialogue is driven by the
user who submits queries to the system,
while the system only takes the initiative
to elicit missing information in the tem-
plate. The Philips system is system-led,
with the selection of questions determined
by the system and the next step in the di-
alogue being determined by what is miss-
ing or needs to be clarified or confirmed
in the template. The SUNDIAL system
is similarly driven by the goal of elicit-
ing the information required to fill a tem-
plate and execute a database query, but
it is based on a more complex architec-
ture for dialogue management that re-
quires more extensive processing of the
linguistic input. The SpeechActs language
understanding component is carefully en-
gineered in terms of the underlying appli-
cation, with the main aim being to provide
a semantic analysis that can be handled by
the system’s dialogue manager in spite of
speech recognition errors. How a dialogue
manager handles the input from the lan-
guage understanding component and gen-
erates output to the user will be examined
in the next section.

4.3. Dialogue Management

The main function of the dialogue man-
agement component is to control the flow
of the dialogue. This involves the following
tasks:

—determining whether sufficient infor-
mation has been elicited from the user

in order to enable communication with
the external application;

—communicating with the external appli-
cation;

—communicating information back to the
user.

In a simple architecture these tasks could
be seen in terms of a serially ordered set
of processes: the system finds out what the
user wants to know or do, consults the ex-
ternal application, and reports the results
back to the user. More typically, however,
the process of determining what the user
wants to know or do will be more problem-
atic, as the information elicited from the
user may not be sufficient to enable the
system to consult the external application,
for reasons such as the following:

—the user’s input may be ill-formed,
with the result that it could not be
sufficiently interpreted by the speech
recognition and language understand-
ing components;

—the user’s input may be incomplete or
inaccurate, with the result that insuffi-
cient information is available to consult
the external application.

This subsection will describe the issues in-
volved in dealing with ill-formed, incom-
plete, or inaccurate input from the user.
Methods for controlling the dialogue flow
will be discussed in Section 5.

Various error-handling processes are re-
quired to deal with these situations, in-
volving clarification and verification sub-
dialogues between the system and the
user. This implies a more complex and
more integrated system architecture, in
which the dialogue management compo-
nent has a central controlling function,
as shown in Figure 7. Variations on this
architecture will be discussed in greater
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detail in Section 5. The next two subsec-
tions will examine two important func-
tions of the dialogue manager:

—dealing with input that the system rec-
ognizes as ill-formed or incomplete;

—using confirmation strategies to verify
that the input recognized by the sys-
tem is indeed what was intended by the
user.

4.3.1. Dealing with Ill-Formed or Incomplete
Input. The simplest way of dealing with
ill-formed or incomplete input is to sim-
ply report the problem back to the user
and to request a reformulation of the in-
put. This method is clearly inadequate as
it fails to distinguish the different ways
in which the input is ill-formed or incom-
plete, and it fails to support the user in
reformulating the input. A number of dif-
ferent solutions have been proposed.

Assuming that the user’s input has been
processed by the speech recognition and
language understanding components us-
ing the methods described in Sections 4.1
and 4.2, a number of higher level knowl-
edge sources can be brought to bear to
assist in the interpretation of ill-formed
input. The main knowledge sources that
have been used for this purpose include
interpretation based on

—speech acts;
—the discourse context;
—the dialogue structure;
—a user model.

4.3.1.1. Interpretation based on speech acts.
The concept of speech acts emerged out
of the work of Austin [1962] in the phi-
losophy of language and was further de-
veloped by Searle [1969]. A speech act is
defined as the function of an utterance—
for example, a request, promise, warn-
ing, or piece of information. Speech act
analysis involves a higher level of analy-
sis than syntactic and semantic analysis,
requiring reference to external informa-
tion such as the discourse context and the
speaker’s beliefs and desires. For example:
the utterance It’s cold in here has the syn-
tactic form of a declarative and a literal

semantic reading describing the level of
temperature. However, while in a particu-
lar context the utterance might have this
literal reading, in a different context it
could function as a request (for example,
to close a window or turn on the heating).
Speech act theory has been used as a ba-
sis for computational theories of commu-
nication in which responses to a speaker’s
utterances are guided by the hearer’s
recognition of the intentions underlying
the utterances [Allen and Perrault 1980;
Cohen and Levesque 1990].

Speech act analysis has been used in
the TRAINS project to support the inter-
pretation of ill-formed input. The TRAINS
project [Allen et al. 1995] is concerned
with the development of dialogue tech-
nology in support of collaborative prob-
lem solving. The current work has in-
volved an interactive planning assistant
that engages in dialogue with a user to
solve route-planning problems. The lin-
guistic analysis of the user’s utterances
is constructed by a bottom-up parser with
a feature-based grammar, in which each
rule specifies syntactic and semantic con-
straints. However, the output of the parser
is not a syntactic or semantic analysis,
but rather a sequence of speech acts that
provide the “minimal covering” of the in-
put, that is, the shortest sequence that
accounts for the input. This enables the
parser to output an analysis even if an
utterance is otherwise uninterpretable
[Allen et al. 1996]. For example: the utter-
ance Okay now let’s take the last train and
go from Albany to Milwaukee was output
from the speech recognizer as okay now I
take the last train in go from albany to is.
The best sequence of speech acts that cov-
ered this input was

(1) a CONFIRMATION/ACKNOWL-
EDGE (okay);

(2) a TELL, with content to take the last
train (now I take the last train);

(3) a REQUEST to go from Albany ( go
from albany).

Although the system was unable to per-
form a complete syntactic and seman-
tic analysis of this utterance, enough
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information was extracted to enable the
system to continue the dialogue, in this
case by generating a clarification subdia-
logue. Thus robust parsing using speech
acts enabled the system to compensate
for the errors emanating from the speech
recognition component.

4.3.1.2. Interpretation based on the dis-
course context. Discourse context is often
used to assist with the interpretation of
items that are otherwise uninterpretable
out of context, such as pronouns (he, she,
they, etc.) and deictic expressions such as
this one, the next one, the previous flight.
These expressions, which usually refer to
some item that has been mentioned pre-
viously in the dialogue, can only be inter-
preted if some record of previously men-
tioned items has been kept. Similarly, it
is often not possible to interpret input
that is incomplete due to ellipsis. Ellip-
sis involves clauses that are syntactically
incomplete in which the missing parts
can be recovered from a previous main
clause—for example, where in response to
the question Which flight do you wish to
book? the user says The London one. In
this case the incomplete input has to be
interpreted in terms of the preceding ques-
tion, that is, I wish to book the London
flight.

Considerable attention has been de-
voted in computational theories of dis-
course to the issues associated with
discourse context. The simplest method
involves maintaining a history list of
elements mentioned in the preceding dis-
course that can be referred to using pro-
nouns. A more elaborate approach in-
volves the concept of centering, which
states a preference for pronominalization
of entities in the history list that play a
central role in a main clause over those in
subordinate and adjunct clauses. In other
words, certain entities, such as those in
the subject position in a main clause, are
the center of the discourse focus and can be
referred to using pronouns in the next few
sentences until the focus shifts to another
entity. Grosz, et al. [1983] introduced the
concept of centering to computational dis-
course analysis, while Walker [1989] has

compared the simpler use of history lists
with analysis based on centering.

More generally, discourse phenomena
such as anaphora and ellipsis require
some representation of the local context
that contains the syntactic and seman-
tic structures of previous clauses. Sophis-
ticated language understanding systems
normally include such a discourse-pro-
cessing component, sometimes referred to
as the pragmatics module, to deal with is-
sues of context.

4.3.1.3. Interpretation based on the dialogue
structure. Interpretation based on the di-
alogue structure makes use of the expecta-
tions provided by the dialogue model. The
essential idea is that at each point in a dia-
logue there are constraints on what can be
said next. These constraints can be of var-
ious types and can assist several compo-
nents of a dialogue system. The constraint
that the next user utterance is likely to be
some form of the words yes or no, because
the system prompt was in the form of a
yes/no question, constrains the recognizer
to having to deal with only this limited
vocabulary at this point in the dialogue.
Similar expectation-based constraints can
help determine which grammatical and
semantic rules need to be active at any
given point in the dialogue.

In contrast to the methods described
for the resolution of anaphora and ellip-
sis, which are usually only applied after
a sentence has been completely recog-
nized by the speech recognition compo-
nent, Young et al. [1989] in the MINDS-II
system proposed the use of higher-level
knowledge sources to assist speech recog-
nition by reducing the search space for the
words in the speech signal. Unlike the lan-
guage models described earlier, this ap-
proach involves the dynamic prediction of
the concepts that are likely to be referred
to in the user’s next utterance, based on
the previous user query, the database re-
sponse, and the current state of the di-
alogue. The system predicts which goals
and subgoals the user is likely to try to
complete at the next point in the dialogue.
These are combined with information from
a user model that represents the domain
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concepts and relations among concepts
that the user is likely to know about.
The predicted concepts are then trans-
lated into word sequences that denote
these concepts and these word sequences
are combined into a semantic network that
represents a maximally constrained gram-
mar at this particular point in the dia-
logue. The results indicated that the use of
these higher-level knowledge sources re-
duced test set perplexity from 279.2 for a
complete grammar to 17.8 when best pre-
dictions were used, while the speech recog-
nition error rate decreased from 17.9%
to 3.5%.

Expectation-driven processing is also
used in the Circuit-Fix-It Shop system to
assist with the interpretation of the user’s
utterances. The approach used is based
on the notion of attentional state as de-
scribed in the theory of discourse structure
of Grosz and Sidner [1986]. Essentially the
attentional state refers to the focus of at-
tention of the conversational participants.
In this system the key idea is that at any
point in the dialogue there is a particular
task step which is under discussion and
that, given this information, the system
can derive a set of expectations of what
the user will say next. To take a particu-
lar example [Smith and Hipp 1994]:

Following a statement by the system that is an
attempt to have a specific task step S performed,
where S and another task step T must be com-
pleted as part of the performance of task step R,
there are expectations for any of the following
types of response:

(1) a statement about missing or uncertain
background knowledge necessary for the ac-
complishment of S (e.g. how do I do substep
S1?)

(2) a statement about a subgoal of S (e.g. I have
completed substep S1)

(3) a statement about the underlying purpose
for S (e.g. why does S need to be done?)

(4) a statement about ancestor task steps of
which accomplishment of S is a part (e.g. I
have completed R)

(5) a statement about another task step which,
along with S, is needed to accomplish some
ancestor task step (e.g. how do I do T?)

(6) a statement indicating accomplishment of S
(e.g. S is done)

These expectations are computed from two
sources:

(1) the domain processor, which provides
situation-specific expectations based
on the actions applicable within the
domain;

(2) the dialogue controller, which has
knowledge about the general nature of
task-oriented dialogues.

For example: if the topic is What is the
LED displaying? then the expectations
provided by the domain processor would
consist of the possible descriptions of the
LED display. With the same topic, the dia-
logue controller would examine the input
at a more abstract level as a query about
the observing of the value for a property
of an object. Expectations about observing
property values of an object would include
questions about its location, how to per-
form the observation, or definitions of the
property.

The expectations that are computed are
used to provide several types of contextual
interpretation of the user’s utterances, in-
cluding the resolution of anaphoric ref-
erence and elliptical responses as well
as the maintenance of dialogue coherence
when dealing with clarification subdia-
logues. The expectations also assist the
language understanding component, as in
the MINDS-II system, by providing a set
of strings that the dialogue controller ex-
pects the user to say next, along with an
estimate of the probability of each string.

4.3.1.4. Interpretation based on a user
model. Information about the user, often
referred to as a user model, is a further
source of information to assist with the in-
terpretation of the user’s utterances. User
modeling first emerged in the context of
the natural language dialogue systems of
the early 1980s as a means of provid-
ing more cooperative conversational be-
havior through the use of a model of the
user’s beliefs, goals, and plans [Wahlster
and Kobsa 1989]. One aspect of coopera-
tive conversational behavior that was in-
vestigated is the ability to respond to a
user’s queries that are underspecified or
ill-formed by inferring the plan underlying
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the user’s query and responding in terms
of the plan. Carberry [1989] developed a
system for incrementally constructing a
model of the user’s plans from an ongo-
ing dialogue and then using this model
to interpret subsequent utterances. At the
initial point in the dialogue the system
has no prior context to consider. The ut-
terance is interpreted in terms of a set of
domain-dependent plans and a set of can-
didate goals is derived that are incorpo-
rated into one or more models of the user’s
plan that can be used to provide a context
for the interpretation of future utterances.
As further utterances are input, these are
matched with the current context models,
which may either be expanded to incorpo-
rate a further aspect of the current focused
plan, or may be discarded as no longer rel-
evant. User models were also employed in
other work by Carberry and others to han-
dle elliptical queries and pragmatically ill-
formed queries—that is, queries involving
misconceptions, where the user’s beliefs
differ from those of the system (see also
Pollack [1986]). The use of information
about the user’s beliefs, goals, and inten-
tions in more recent dialogue systems such
as TRAINS will be reviewed in Section 5
in terms of BDI (Belief, Desire, and Inten-
tion) architectures.

4.3.2. Confirmations and Verifications. The
various knowledge sources described in
Section 4.3.1 enable the dialogue system to
compensate for input that is ill-formed or
incomplete without having to consult the
user with requests for repetition or clari-
fication. On the other hand, verification is
required to deal with potentially misrec-
ognized input where the system “realizes”
that it may have misrecognized or misun-
derstood what the user said. Verification
is common in human-human dialogues
to ensure that the information conveyed
is mutually understood and that a com-
mon ground is established and maintained
[Clark 1992]. Confirming that the system
has understood what the user actually in-
tended is even more necessary in spoken
dialogues with computers given the pos-
sibility of recognition and understanding
errors. There are several different ways

in which a dialogue system can verify or
confirm that the user’s utterances have
been correctly understood. Some examples
(from [Gerbino and Danieli 1993]) are pro-
vided to illustrate these different types.

4.3.2.1. Explicit Verification. Explicit veri-
fication takes the form of a question that
asks explicitly for confirmation of the in-
put. This may be accompanied by a request
to answer with yes or no:

Do you want to go from Trento to Milano? Yes or
no?

In this case two values are confirmed at
the same time. If one value is incorrect, the
user is able to correct, (e.g., No to Torino),
although it is problematic if both values
are incorrect as the potential for misrecog-
nition is increased if the user has to cor-
rect both values (e.g., No from Torino to
Merano). An alternative is to confirm each
value separately:

Do you want to go from Trento? Do you want to
go to Milano?

Although this is a more robust method
for confirming values, the disadvantage is
that the number of turns required to com-
plete the dialogue is increased.

4.3.2.2. Implicit verification. With im-
plicit verification the system embeds in
its next question a repetition of its under-
standing of what the user said. The user
can still correct the repeated value, but if
the user answers the question without cor-
recting the value, then that value has been
implicitly confirmed:

User: I want to travel from Milano to
Roma.

System: At what time do you want to leave
from Merano to Roma?

User: No I want to leave from Milano in
the evening.

In this case the user rejects the depar-
ture city proposed by the system and of-
fers a correction, at the same time an-
swering the question about the departure
time. This strategy is closer to natural
conversation and can be employed if the
system is reasonably confident with the
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output from the speech recognition and
language understanding components. The
main problem is that implicit requests
for verification can give rise to a wider
range of possible responses, which may
subsequently put greater demands on the
recognition and understanding processes
through increased complexity. A further
problem is that verification requests in-
volve a combination of the particular val-
ues that were misrecognized and those
new values that are to be elicited in the
system’s question. With even a relatively
small number of values the combinato-
rial possibilities expand rapidly, so that
the questions cannot be determined in
advance and a specific language genera-
tion component is required to generate the
questions on the fly.

Verification may take place over a series
of utterances that involve the application
of a sequence of different types of question
to ensure a correct response. The follow-
ing example illustrates an explicit recov-
ery strategy [Gerbino and Danieli 1993]:

User1: I want to go to Milano leaving
from Torino early in the morn-
ing. (Recognition problems—
EMPTY INPUT)

System1: I haven’t understood. Please re-
phrase your sentence.

User2: I want to go from Torino to
Milano and I want to leave
early in the morning. (Recog-
nition problems—EMPTY IN-
PUT)

System2: I haven’t understood. Where do
you want to leave from?

User3: From Torino, early in the morn-
ing. (Recognition problems—
EMPTY INPUT)

System3: I haven’t understood. Tell me the
name of the departure city, only
one word.

User4: Torino.
System3: Do you want to leave from

Torino?.
User4: Yes.

At User1 the Dialogue Manager receives
empty input from the speech recognizer

and asks for a rephrase (System1). Af-
ter the next user utterance, the input
is still empty, so the Dialogue Manager
starts a sequence of requests to collect
the parameters required to query the data
base (System2). The Dialogue Manager
uses predictions—expecting a departure
city—to interpret the user’s next input
(User3). As this strategy also fails, the Di-
alogue Manager switches to isolated word
recognition (System3). Following recogni-
tion of the input, the Dialogue Manager
confirms the parameters before continu-
ing (System4). The interaction style can
now switch back to continuous speech. The
following example illustrates an alterna-
tive implicit recovery strategy [Gerbino
and Danieli 1993]:

User1: I want to go to Milano leaving
from Torino early in the morn-
ing. (Recognition problems)

System1: Sorry, where do you want to
leave from?

User2: From Torino, early in the morn-
ing.

System2: Do you want to go from Torino
to Milano early in the morning?

User3: Yes.

When the Dialogue Manager receives
ill-formed input (either fewer parameters
than expected, or some unexpected pa-
rameters), it uses predictions based on the
current point in the dialogue to interpret
the input, that is, it expects a departure
city (System1–User2). The user inputs the
departure time as well as the departure
city (User3). Here the departure time can
be ignored as it was already introduced in
User1. All the parameters introduced in
User1 (departure time, arrival city) are
stored and used in the confirmation in
System2, while at the same time asking for
the missing parameter (departure city).

Verification is one of the most challeng-
ing issues in spoken dialogue systems. A
failure to verify correctly may lead to mis-
communication, while an explicit verifi-
cation strategy may result in an unrea-
sonably lengthy dialogue, which has an
adverse effect on user satisfaction. For
example: in one experiment in which a
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Fig. 8 . An architecture including an Information Manager.

user had to read a credit card number
consisting of four blocks of four digits, it
was reported that the worst case involved
100 spoken prompts before the dialogue
was successfully completed [Vergeynst
et al. 1993]. Considerable research is be-
ing directed toward the development of ef-
fective and efficient verification strategies
that allow the system to degrade grace-
fully, for example, by moving down a hi-
erarchy from implicit to explicit verifi-
cation, and finally to spelling mode, to
elicit the required value, and then switch-
ing back to higher-level modes once the
problem has been resolved. Applications of
these and similar strategies have been re-
ported in papers on the SUNDIAL project
[Heisterkamp and McGlashan 1996] (see
also Section 5.3.4), as well as in an
AAAI workshop on miscommunication in
human-machine dialogue [McRoy 1996].

4.4. External Communication

Generally dialogue systems require some
form of communication with an outside
source such as a database in order to re-
trieve the information requested during
the course of the dialogue. Most dialogue
systems communicate with a database.
For example: in the Philips train timetable
information system the user supplies the
required parameters, such as source and
destination stations, date, and time of de-

parture or arrival, that enable the system
to execute a database query. In other cases,
the external communication may be with
a knowledge base or with a planning sys-
tem. Each of these possibilities will be ex-
amined in the following subsections.

4.4.1. Communicating with a Database.
The processes involved in communicating
with a database are not generally dis-
cussed in the spoken dialogue systems
literature, presumably on the assumption
that once the parameters of the query
have been elicited during the course of
the dialogue, accessing the database to
retrieve the required information is a
straightforward process. However, prob-
lems may arise if the vocabulary of the
dialogue does not map directly on to the
vocabulary of the application, if the query
makes false assumptions concerning the
actual contents of the database so that no
straightforward response is possible, or if
the data that is retrieved is ambiguous or
indeterminate.

One solution to the problem of map-
ping between the vocabularies of the ap-
plication and of the dialogue is to add
an additional component to the archi-
tecture as shown in Figure 8. This is
the approach adopted by Whittaker and
Attwater [1996], who separated the di-
alogue and information aspects of the
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system and assigned any complex infor-
mation processing that is required to an
Information Manager. The Information
Manager interacts on the one hand with
the Dialogue Manager to communicate in-
formation events, and on the other hand
with the application database to handle
queries and search results. An additional
link in the architecture shown in Figure 8
is to the Speech Platform to provide recog-
nition constraints through the generation
and manipulation of speech recognition
vocabularies. Variations on this architec-
ture will be discussed in greater detail in
Section 5.

Some of the functions of the Infor-
mation Manager may include resolving
items of information that can be ex-
pressed in several ways, such as different
spellings for surnames, shortened forms
of first names, and problems associated
with place names. More generally, the In-
formation Manager may be responsible
for relationships within vocabularies, such
as synonyms and homophones, the ma-
nipulation of database hypotheses, such
as scoring of partial and complete en-
tries, and interactions with the applica-
tion database. The key structure is the
data model, which contains a number of
vocabulary models that are each associ-
ated with one vocabulary within the appli-
cation, so that a distinction can be made
between how items are represented in the
database and how they may be referenced
within a spoken dialogue.

Database queries may be ill-formed be-
cause the user has misconceptions about
the contents of the database. This issue
has received wide attention in the field of
natural language interfaces to databases,
but has not yet been incorporated into
spoken dialogue systems, due to the need
to deal with more basic problems result-
ing from speech recognition and language
processing errors. Early work by Kaplan
[1983] addressed the issue of false as-
sumptions, as illustrated in the following
example:

User: How many students got As in Lin-
guistics in 1991?

User: None.

The system’s response is correct if the set
of students that got an A in Linguistics
is empty, but it would also be correct if
there were no students taking linguistics
in 1991. However, in the latter case the
system’s response is misleading, as it does
not correct the user’s false assumptions.
Kaplan proposed solutions to this prob-
lem using corrective indirect responses and
suggestive indirect responses.

Problems may also arise if the user
has misconceptions about the world model
represented in the database. Carberry
[1986] discussed the query Which apart-
ments are for sale? which (in an American
real-estate context) is inappropriate, as
apartments are rented, not sold, although
apartment blocks may be sold, for exam-
ple, to property developers. Resolving this
problem involved discerning the user’s
goal that gave rise to the ill-formed query.
Other approaches involve identifying ob-
jects and their attributes that have been
incorrectly referenced and substituting a
viable alternative [McCoy 1986].

Problems of ambiguous or indetermi-
nate data have been treated to some ex-
tent in spoken dialogue systems, usu-
ally with some mechanism that has been
specifically devised to handle problems
that have been predicted in advance. For
example, the Philips Dialogue Descrip-
tion Language [Philips Speech Processing
1997] has a mechanism for handling un-
derspecified or ambiguous values, such as
more than one train station with the same
name. There are also mechanisms for com-
bining values, for example, if a user calls
in the afternoon with the utterance Today
at 8, the two values can be combined into
the single value 20.00 hours. Similarly,
values that contradict, such as the same
value for a destination and a source, can
be detected.

Database access may be unsuccessful
because a value did not find an exact
match in the database. For example: a
query concerning a flight to London at
8 might be unsuccessful, although there
may be flights to London just before or
just after this time. Enabling such a query
in the SUNDIAL system involved relax-
ing some of the parameters of the query
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Fig. 9 . The architecture of the Circuit-fix-it-Shop system.

[Giachin and McGlashan 1997]. In this
case, the destination would not be an ob-
vious candidate for relaxation, as the user
would probably not want a flight to some
other destination that leaves at 8. Re-
laxing the time would involve a simple
relaxation algorithm that computes time
intervals at increasing distances (for ex-
ample, 5 minutes per iteration) from be-
fore and after the requested time, up to a
given threshold.

Finally, there are problems concerning
how the output is to be presented to the
user. If a number of database solutions
have been found, it is necessary to decide
how much to present. In SUNDIAL the in-
terval of solutions was divided into four
subintervals:

0 . . .MinGoal . . .MaxGoal . . .Threshold . . . ,

where MinGoal and MaxGoal represented
the optimum range of solutions that
were presented directly, and entries be-
tween MaxGoal and Threshold were pre-
sented only in summary form [Giachin

and McGlashan 1997]. Some of these
issues are dealt with in more detail
in Section 4.5 (response generation) and
Section 4.6 (speech output) of this article.

4.4.2. Communicating with a Knowledge
Base. Communication with a knowledge
base is required for systems that support
problem solving rather than information
retrieval. The Circuit-Fix-It Shop system
[Smith and Hipp 1994], introduced in
Section 3.3, which helps users to fix an
electronic circuit, is a good example of
such a system. In addition to the usual
components that have been described so
far, this system also includes the types
of component found in knowledge-based
systems, such as a domain processor, a
general reasoning module, and a general
knowledge component. The relationships
between these components and the
linguistic and dialogue processing compo-
nents of the system are shown in Figure 9
[Smith and Hipp 1994]. The domain
processor is the application-dependent
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component of the system—dealing in this
case with electronic circuit repair. This
component contains all the information
about the application domain that enables
it to recommend to the dialogue controller
the steps that are required to accomplish
a task using a special notation GADL
(Goal Action and Description Language)
to represent goals, actions and states. The
domain processor also receives informa-
tion back from the dialogue controller,
which will have communicated with the
user to obtain information about the
current actions and states. This in turn
enables the domain processor to update
its world model and then to propose the
next task step to be achieved.

While the domain processor is applica-
tion-specific and in principle can be substi-
tuted by any other application domain, the
general reasoning component is domain-
independent and incorporates the general
mechanisms for reasoning with the knowl-
edge contained in the domain processor. In
the case of the Circuit-Fix-It Shop system
this reasoning takes the form of an inter-
ruptible theorem prover that requires in-
teraction with the outside world to resolve
missing axioms. This component provides
the basis for the dialogue control mech-
anisms of the Circuit-Fix-It Shop system
and will be discussed in greater detail in
Section 5.

The knowledge component, which is also
application-independent, includes knowl-
edge relevant to task-oriented dialogues,
such as how actions decompose into sub-
actions and how theorems are used to
prove goal completion. Among the other
types of knowledge included in this com-
ponent are general dialogue knowledge
about the linguistic realisations of task ex-
pectations and knowledge about the user
that is acquired during the course of the
dialogue.

Problem solving in the Circuit-Fix-It
Shop system involves cooperating with the
user to solve a specific goal, such as how to
repair a particular circuit. Problem solv-
ing is achieved through communication
between the system and the user to estab-
lish what actions have to be carried out
and what the current state of the task

might be. The components described in
this section support the system in its rea-
soning about the steps required to com-
plete a task, in deciding what information
to communicate to the user, and in the in-
tegration of information provided by the
user into the system’s model of the current
state of the task.

4.4.3. Communication with a Planning Sys-
tem. Problem solving can also be achieved
through the use of a planning system that
supports reasoning about goals, plans, and
actions. While the task structures used
in the Circuit-Fix-It Shop system involve
task decomposition into subtasks and sub-
sequently into primitive actions to be car-
ried out, the problem-solving mechanisms
are different from those that are used
in conventional planning systems. The
Circuit-Fix-It Shop system is presented
with an explicit goal at the beginning of
the dialogue and its task is to collaborate
with the user in proving the goal in much
the same way as a theorem is proved. Plan-
ning systems incorporate further compli-
cations in that often the system has to
infer the user’s goals from statements or
actions that may not explicitly represent
the goals (plan recognition). Planning sys-
tems typically include an explicit repre-
sentation of beliefs, desires, and intentions
that are reasoned about during the course
of the problem solving. These elements are
assumed implicitly in the Circuit-Fix-It
Shop system.

The TRAINS project [Allen et al. 1995]
is concerned with the integration of natu-
ral language dialogue and plan reasoning
to support collaborative problem solving.
The purpose of the dialogue is to negoti-
ate and develop a plan. The speech acts
that comprise the dialogue are motivated
by reasoning about the plan and are at the
same time interpreted in the light of the
current plan. Figure 10 provides a simpli-
fied view of the components of the TRAINS
system.

Plan reasoning in the TRAINS system
involves two algorithms—the incorpora-
tion algorithm and the elaboration algo-
rithm. The incorporation algorithm is con-
cerned essentially with plan recognition,
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Fig. 10 . The TRAINS architecture.

that is, with finding causal and moti-
vational connections between potential
interpretations of the current utter-
ance and the current plan. The algo-
rithm searches through a space of plan
graphs with nodes representing events
and states, and links representing rela-
tions between events and states such as
enablement, effect, generation, and justi-
fication. The elaboration algorithm sup-
ports the system’s construction of a plan
using means-ends planning. If the user
encounters some choice that requires con-
firmation, for example, an element in the
plan that is ambiguous, the system gener-
ates an utterance to request confirmation.

4.4.4. Summary. This discussion of the
role of the external communication com-
ponent in a spoken dialogue system has
shown how an integrated system archi-
tecture, as illustrated in Figure 7, is re-
quired in order to support interaction
between the dialogue management com-
ponent and the other system components.
In addition to the problem of determining
whether sufficient information has been

elicited from the user to provide input to
the external application, as discussed in
Section 4.3, obtaining the required infor-
mation from the external source is not
necessarily a straightforward task and
complex interactions may be required in-
volving mediations between the dialogue
manager and the user. In the case of a
database query the requested information
may not be available in the form that was
requested so that a reformulated query is
required. In a plan reasoning application
such as TRAINS the plan reasoner may
fail to find a connection between an event,
goal, or fact inferred from the user’s ut-
terance and a node in the plan graph, in
which case it could be assumed that the
user’s utterance had been misinterpreted
and the language understanding compo-
nent would be required to search for an al-
ternative interpretation, failing which the
system would request clarification or re-
pair. Thus the interpretation and resolu-
tion of the user’s query may involve com-
plex interaction with the external source
before the system can report a result back
to the user.
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4.5. Response Generation

Assuming that the requested informa-
tion has been retrieved from the exter-
nal source, the response generation com-
ponent now has to construct the message
that is to be sent to the speech output com-
ponent to be spoken to the user. Broadly
speaking, the construction of the message
consists of three decisions involving:

(1) what information should be included;
(2) how the information should be struc-

tured;
(3) the form of the message—for exam-

ple, the choice of words and syntactic
structure.

Response generation can be achieved us-
ing simple methods, such as the insertion
of the retrieved data into predefined slots
in a template. On the other hand, com-
plex methods using natural language gen-
eration techniques may be used, although
generally these more complex methods
have only been applied in research proto-
type systems.

Response generation in a dialogue sys-
tem involves additional tasks beyond
those required for other language gener-
ation tasks. Given that the information to
be generated is in the form of some nonlin-
guistic representation—for example, the
results of a database query or a chain of
reasoning from an expert system—the di-
alogue manager has to relate the informa-
tion to what was previously said (using a
discourse history) as well as to the user’s
goals and knowledge (using a user model).

Use of a discourse history enables the
system to provide a response that is con-
sistent and coherent with the preceding
dialogue. For example: if some entity that
has already been mentioned is to be re-
ferred to again, the system should check
whether an anaphoric expression can be
used unambiguously to refer to the en-
tity on a second mention, as in the follow-
ing example taken from Reiter and Dale
[1997]:

The next train is the Caledonian Express. It
leaves at 10 am. Many tourist guidebooks highly
recommend this train.

Little research has been done on the use
of pronouns in language generation, al-
though there has been some research
on generating definite descriptions—for
example, the use of the train if the
Caledonian Express and no other train
has been previously mentioned [Dale and
Reiter 1995].

As mentioned earlier, user modeling in
the early 1980s was concerned with mak-
ing natural language dialogue systems
more cooperative. In addition to support-
ing the interpretation of the user’s ut-
terances by modeling the user’s beliefs,
goals, and plans, the other main applica-
tion of user models was to enable a sys-
tem to adapt its output to the user’s per-
ceived needs [Wahlster and Kobsa 1989].
A number of research projects addressed
this issue, of which the following are
indicative.

The KNOME system [Chin 1989] pro-
vided different levels of explanation of
Unix commands depending on its catego-
rization of the user’s level of competence
and the degree of difficulty of the com-
mand in question. The TAILOR system
[Paris 1989] adapted its output to the
user’s level of expertise by selecting the
type of description and the particular in-
formation that would be appropriate for a
given user. Based on an extensive analysis
of scientific texts, it was found that texts
from adult encyclopedias and manuals for
experts mainly included structural infor-
mation that could be represented using
constituency schemas describing the parts
of the objects, while encyclopedias for
young children and manuals for novices
contained mainly process-oriented infor-
mation that described the functional char-
acteristics of the objects. TAILOR was
able to generate appropriate descriptions
to different types of users and to pro-
duce a range of descriptions for users
falling between the two extremes of novice
or expert. Finally, in the IMP system,
Jameson [1989] investigated the use of
anticipation feedback to determine the
bias of the system’s output. Basically
what this involves is that the system
attempts to anticipate the user’s reac-
tion to its output and then takes this
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anticipated reaction into account in fi-
nalizing its output. This technique is
particularly appropriate for evaluation-
oriented dialogues, such as personnel se-
lection interviews and dialogues involving
travel agents, hotel managers, and sales
people.

A user model was used in the Circuit-
Fix-It Shop system to enable the system
to determine what needed to be said to the
user and what could be omitted because of
existing user knowledge (see the example
discussed in Section 3.3). In this system
the dialogue controller invoked inferences
to derive additional axioms about the user
based on the user’s utterances. These in-
ferences, which are similar to those used
by Chin [1989] in the KNOME system,
included the following [Smith and Hipp
1994], p. 60):

If the axiom meaning is that the user has a goal
to learn some information, then conclude that the
user does not know about the information. If the
axiom meaning is that an action was completed,
then conclude that the user knows how to perform
the action.

These inferences, which are based on ab-
stract descriptions of actions and their ef-
fects, were used to provide user model ax-
ioms that could be used by the theorem
prover along with other axioms that were
available to prove goal completion. Thus
the user model information was employed
within the dialogue system to determine
the selection of the information to be pre-
sented to the user.

A considerable amount of research in
text generation has been concerned with
the organization of messages, that is,
their discourse structure. One of the most
widely known approaches involves the use
of rhetorical relations between elements
of a text, as described in Rhetorical Struc-
ture Theory (RST) [Mann and Thompson
1988]. Examples of rhetorical relations
are elaboration, exemplification, and con-
trast. Alternatively, schemas have been
used to provide the structure of the
information to be presented [McKeown
1985]. A schema sets out the main com-
ponents of a text, using elements such
as identification, analogy, comparison,

and particular-illustration, which have a
sequential ordering in a text and can oc-
cur recursively. Schema-based systems of-
ten use general programming constructs
such as local variables and conditional
tests.

The form of the output is known
as the linguistic realization. This in-
volves the choices of lexical items and
syntactic structures to express the de-
sired meaning. The choice of lexical items
might involve deciding between the words
leave and depart to express the concept
of “departure,” while syntactic decisions
might involve the choice of an active
or a passive sentence [Reiter and Dale
1997]. Linguistic realization also involves
the generation of grammatically correct
structures, for example, selecting the ap-
propriate tense and rules of agreement.
From the perspective of the construction
of a text, four different categories of con-
tent may be involved [Reiter and Dale
1997]:

(1) unchanging text, that is, parts of the
message that are always present in the
output text;

(2) directly-available data, that is, infor-
mation that has been retrieved from a
database or knowledge base;

(3) computable data, that is, information
that is derived from the data as a result
of some computation or reasoning (for
example, the number of records found
in the database for trains between two
cities);

(4) unavailable data, that is, information
that is not present in the data but
which supplements the information
(this is common in texts authored by
humans, for example, extra informa-
tion that a railway line may be blocked
by snow).

A dialogue system may make use of at
least the first three types, using unchang-
ing text for the constant parts of a mes-
sage, retrieved data to convey the informa-
tion that was requested, and computable
data to summarize the information or to
require a more specific choice from the
user.
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4.6. Speech Output

Speech output involves the translation
of the message constructed by the re-
sponse generation component into spoken
form. In the simplest cases prerecorded
canned speech may be used, sometimes
with spaces to be filled by retrieved or pre-
viously recorded samples, as in

You have a call from <Jason Smith>. Do you
wish to take the call?

in which most of the message is prere-
corded and the element in angular brack-
ets is either synthesized or played from
a recorded sample. This method works
well when the messages to be output
are constant, but synthetic speech is re-
quired when the text is variable and un-
predictable, when large amounts of infor-
mation have to be processed and selections
spoken out, and when consistency of voice
is required. In these cases text to speech
synthesis (TTS) is used.

Text-to-speech synthesis can be seen as
a two stage process involving

(1) text analysis;
(2) speech generation [Edgington et al.

1996a, 1996b].

Text analysis involves the analysis of the
input text that results in a linguistic
representation that can be used by the
speech generation stage to produce syn-
thetic speech by synthesizing a speech
waveform from the linguistic representa-
tion. The text analysis stage is sometimes
referred to as text-to-phoneme conversion,
although this description does not cover
the analysis of linguistic structure that is
involved. The second stage, which is often
referred to as phoneme-to-speech conver-
sion, involves the generation of a prosodic
description (including rhythm and intona-
tion), followed by speech generation that
produces the final speech waveform. A con-
siderable amount of research has been car-
ried out in text-to-speech synthesis which
is beyond the scope of the present survey
(see, for example, Edgington et al. [1996a,
1996b] and Carlson and Granström [1997]
for recent overviews). This research has
resulted in several commercially available

text-to-speech systems, such as DECTalk
and the BT Laureate system [Page and
Breen 1996]. The main aspects of text-
to-speech synthesis that are relevant
to spoken dialogue systems will be re-
viewed briefly. The text analysis stage
of text-to-speech synthesis comprises four
tasks:

(1) text segmentation and normalization;
(2) morphological analysis;
(3) syntactic tagging and parsing;
(4) the modeling of continuous speech

effects.

Text segmentation is concerned with the
separation of the text into units such as
paragraphs and sentences. In some cases
this structure will already exist in the re-
trieved text, but there are many instances
of ambiguous markers. For example, a full
stop may be taken as a marker of a sen-
tence boundary, but it is also used for sev-
eral other functions such as marking an
abbreviation (St.), as a component of a
date (12.9.97 ), or as part of an acronym
(M.I.5 ). Normalization involves the inter-
pretation of abbreviations and other stan-
dard forms such as dates, times, and cur-
rencies, and their conversion into a form
that can be spoken. In many cases ambigu-
ity in the expressions has to be resolved—
for example, St. can be “street” or “saint.”

Morphological analysis is required, on
the one hand, to deal with the problem of
storing pronunciations of large numbers
of words that are morphological variants
of one another, and, on the other, to as-
sist with pronunciation. Typically a pro-
nunciation dictionary will store only the
root forms of words, such as write. The
pronunciations of related forms, such as
writes and writing, can be derived using
morphological rules. Similarly, words such
as staring need to be analyzed morpho-
logically to establish their pronunciation.
Potential root forms are star+ ing and
stare+ ing. The former is incorrect on the
basis of a morphological rule that requires
consonant doubling (starring), while the
latter is correct because of the rule
that requires e-deletion before the -ing
form.
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Tagging is required to determine the
parts of speech of the words in the text
and to permit a limited syntactic analy-
sis, usually involving stochastic process-
ing. A small number of words—estimated
at between 1 and 2% of words in a typi-
cal lexicon [Edgington et al. 1996a]—have
alternative pronunciations depending on
their part of speech. For example: live as a
verb will rhyme with give, but as an adjec-
tive rhymes with five. The part of speech
also affects stress assignment within a
word—for example, record as a noun is
pronounced ’record (with the stress on the
first syllable), and as a verb as re’cord
(with the stress on the second syllable).

Modeling continuous speech effects is
concerned with achieving natural sound-
ing speech when the words are spoken in
a continuous sequence. Two problems are
encountered. First, there are weak forms
of words, involving mainly function words
such as auxiliary verbs, determiners, and
prepositions. These words are often un-
stressed and given reduced or amended
articulations in continuous speech. With-
out these adjustments the output sounds
stilted and unnatural. The second problem
involves coarticulation effects across word
boundaries, which have the effect of delet-
ing or changing sounds. For example: if the
words good and boy are spoken together
quickly, the /d/ in good is assimilated to
the /b/ in boy. Modeling these coarticula-
tion effects is important for the production
of naturally sounding speech.

There has been an increasing concern
with the generation of prosody in speech
synthesis, as poor prosody is often seen
as a major problem for speech systems
that tend to sound unnatural despite good
modeling of the individual units of sound.
Prosody includes phrasing, pitch, loud-
ness, tempo, and rhythm, and is used to
convey differences in meaning as well as
to convey attitude.

The speech generation process involves
mapping from an abstract linguistic rep-
resentation of the text, as provided by the
text analysis stage, to a parametric contin-
uous representation. Two main methods
have been used to model speech: articula-
tory synthesis, which models characteris-

tics of the vocal tract and speech articula-
tors, and formant synthesis, which models
characteristics of the acoustic signal. For-
mant synthesis has been the more success-
ful method and has produced commercial
systems such as DECTalk that yield a high
degree of intelligibility.

An alternative method that is used
in recent work, for example, in BT’s
Laureate system, involves concatenative
speech synthesis, in which prerecorded
units of speech are stored in a speech
database and selected and joined together
in speech generation. The relevant units
are usually not phonemes, due to the prob-
lems that arise with coarticulation, but di-
phones, which assist in the modeling of
the transitions from one unit of sound to
the next. Various algorithms have been
developed for joining the units together
smoothly.

Generally relatively little emphasis has
been put on the speech output process
by developers of spoken dialogue systems.
This is partly due to the fact that text-
to-speech systems are commercially avail-
able that can be used to produce reason-
ably intelligible output. However, there
are certain applications where more natu-
rally sounding output is desirable, for ex-
ample, in applications involving the syn-
thesis of speech for the handicapped, or in
systems for foreign language instruction.

4.7. Summary

The basic components of spoken dialogue
systems that have been described in the
preceding sections represent various tech-
nologies, each of which constitutes a major
research and development area in its own
right. An interesting aspect of spoken dia-
logue systems is that these separate tech-
nologies have to be somehow harnessed
and integrated to produce an acceptable,
working system. It is essential that the
components of the system should work
in integration—indeed, the efficiency of
the individual components is less impor-
tant than the efficiency of the complete
system. For example, it can be argued
that a system with a high-performance
speech recognizer would still be ineffective
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if the dialogue control component func-
tioned poorly. Conversely, a good dialogue
control component can often help com-
pensate for the weaknesses of the speech
recognizer by producing a reasonable re-
sponse in the face of unreliable input. One
of the major challenges for developers of
spoken dialogue systems is to integrate
the component technologies to produce a
robust and acceptable system, in which
the whole is greater than the sum of its
parts.

5. DIALOGUE CONTROL

There are two aspects to dialogue control:
the extent to which one of the agents main-
tains the initiative in the dialogue and
the ways in which the flow of the dia-
logue is managed. Dialogue control may be
system-led, user-led, or mixed-initiative.
In a system-led dialogue the system asks a
sequence of questions to elicit the required
parameters of the task from the user. In a
user-led dialogue the user controls the di-
alogue and asks the system questions in
order to obtain information. In a mixed-
initiative dialogue control is shared. The
user can ask questions at any time, but
the system can also take control to elicit
required information or to clarify unclear
information. The management of dialogue
control is not an issue for user-led dia-
logue as the user decides which questions
to ask, as in Question-Answer and Natural
Language Database Systems. In system-
led and mixed-initiative dialogue the con-
trol has to be managed in order to deter-
mine what questions the system should
ask, in what order, and when. Three main
strategies for dialogue control were iden-
tified in Section 2.5 and illustrated in
Section 3. Finite state-based dialogue con-
trol supports a system-led dialogue in
which all the questions that the system
asks have been predetermined. Frame-
based systems are also primarily system-
led, although they permit a limited degree
of user initiative. Agent-based systems
tend to be mixed-initiative. These distinc-
tions along with other aspects of dialogue
control will be examined in the following
subsections.

5.1. Finite State-Based Systems

5.1.1. The Basic Model. In a basic finite
state-based system the dialogue structure
is represented in the form of a state tran-
sition network in which the nodes repre-
sent the system’s questions and the tran-
sitions between the nodes determine all
the possible paths through the network,
thus specifying all legal dialogues. Each
state represents an information state in
which some information is elicited from or
confirmed with the user. Subdialogues can
be used within the basic network to sup-
port a more modular design approach and
to provide libraries of commonly occur-
ring transactions. Figure 11, taken from
the Danish Dialogue Project, illustrates
the use of a basic finite state network to
model the dialogue flow for an automatic
book club service [Larsen and Baeekgaard
1994]. In this dialogue the system pro-
gresses through a series of states, with
the transitions between states being de-
termined by the user’s responses. There
are various choice points and loops, as well
as subdialogues (for example, for the tasks
CHECK MEMBER, ORDER, CANCEL,
and OVERVIEW). Furthermore, in this
particular architecture, the user can use
the key words repeat and change, to
request repetition of the system’s out-
put and to change a previously accepted
parameter.

5.1.2. Advantages of Finite State Models. A
major advantage of the finite state model
is its simplicity. From a developer’s per-
spective state transition networks are par-
ticularly suitable for modeling dialogue
flow in a well-structured task involving
information to be exchanged in a prede-
termined sequence, with the system re-
taining control over the dialogue and de-
ciding which question to ask next. In this
way the semantics of the system is clear
and intuitive. Moreover, as the user’s re-
sponses are restricted, fewer technologi-
cal demands are put on the system compo-
nents, particularly the speech recognizer.
The lack of flexibility and naturalness may
be justified as a trade-off against these
technological demands. For these reasons
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Fig. 11 . Dialogue graph for an automatic book service.

most currently available commercial sys-
tems use some form of finite state dialogue
modeling.

It is interesting to note that there is
some support in empirical studies for
the use of state-based dialogue control.
Hone and Baber [1995] examined the re-
lationship between dialogue control and
transaction times, finding that more con-
strained dialogues that employed a menu-
like interaction style with yes/no confir-
mation of all user input tended to result in
dialogues with longer transaction times,
as would be expected. However, this effect
depended on the system’s level of recogni-
tion accuracy, which was manipulated in
the experiments. It was found that there
was a greater likelihood of errors in the
less constrained system as it permitted a
larger active recognition vocabulary.

In another study two versions of a sim-
ple call assistance application were built
[Potjer et al. 1996]. The system-led version

used isolated word recognition and word
spotting, while the mixed-initiative ver-
sion used continuous speech recognition
and more complex natural language pro-
cessing. In the system-led version the user
was prompted for the required service in
two steps, while in the mixed-initiative
version the user could request the ser-
vice in a single utterance. The minimum
number of turns per transaction was lower
for the mixed-initiative system, although
more additional turns were required for
the mixed-initiative system on account
of the greater number of recognition er-
rors. Thus the system-led interface was
not slower than its mixed-initiative coun-
terpart. Moreover, a subjective analysis of
user satisfaction indicated that users were
satisfied with both versions.

Similar results were found in a study
involving train timetable information in
which it was found that for simple services
a system-driven dialogue using isolated
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word recognition achieved good user ac-
ceptance [Billi et al. 1996]. This find-
ing was supported in a study of dialogue
strategies comparing explicit and im-
plicit recovery from communication break-
downs [Danieli and Gerbino 1995]. The
version incorporating explicit confirma-
tion and repair, which made greater use
of isolated word recognition and spelling,
was found to be robust and safe, even
though it increased the number of turns
required to complete the transaction. The
conclusion from these studies is that
system-led dialogue using state transi-
tions would appear to be suitable for sim-
ple tasks with a flat menu structure and
a small list of options, bringing also the
advantage of less complex spoken lan-
guage and dialogue modeling technology.
The lack of flexibility and naturalness may
be justified as a trade-off against these
technological demands.

As mentioned earlier, state transition
networks are particularly suitable for
modeling dialogue flow in well-structured
tasks. The automatic book service illus-
trated in Figure 11 is a good example.
Other examples are directory assistance,
questionnaires, and travel inquiries, pro-
vided the dialogue is constrained to a ba-
sic, system-led series of questions to elicit
a number of well-defined responses. Con-
sider the part of a directory inquiry di-
alogue in which the system elicits the
name of the person to be called: here the
system has to identify a unique individ-
ual, which generally requires eliciting a
first and last name. This might be ac-
complished in a single step—Request First
and Last Name—or in a series of steps—
Request Surname > Request Spelling of
Surname > Request First Name > Con-
firm First and Last Name. A finite state
dialogue model could be created for this
task with subdialogues for subtasks such
as requesting the surname and first name.
Additional states would be required for
cases of multiple individuals with the
same name, variations on first names, and
names that are pronounced similarly (ho-
mophones) and thus require spelling to
disambiguate. The main characteristic of
this task is that there is a finite and

clearly defined set of information items
to be exchanged, the information can be
elicited in a natural order, and the task
may be decomposed into a hierarchy of
well-ordered subtasks [McTear 1998]. A
finite state model could also be used for
similarly structured tasks such as obtain-
ing weather forecasts or football scores, or-
dering items from a catalogue, or making
simple bank transactions.

Dialogues for questionnaires are also
highly structured even though a large
number of questions may be required to
elicit the required information. For ques-
tionnaires the user can be constrained
through carefully designed prompts to
produce an acceptable range of responses
[Hansen et al. 1996]. In a large-scale
project involving the U.S. Census the di-
alogue was implemented using a finite
state network as the information had to
be elicited in a fixed order, for example:
Name > Gender > Birth date > Marital
Status, etc., with subdialogues being used
for the more complex items ([Cole et al.
1997]. Finite state models can be used
for similar tasks such as eliciting a per-
son’s personal details for financial trans-
actions or obtaining information for in-
surance quotes. The key characteristic of
this class of dialogues is that they are
well structured. Even though there may
be several items of information to be
elicited, these can be broken down into
well-structured subtasks that are inde-
pendent of one another.

5.1.3. Disadvantages of Finite State Net-
works. Finite state dialogue models are
not suitable for modeling less well-
structured tasks characterized by sub-
tasks whose order is difficult to predict,
by information modeled at different levels
of abstraction, or by complex dependen-
cies between items of information [Kamm
1995]. A good example is the Flight Reser-
vation System of the Danish Dialogue
Project [Dybkjær et al. 1998]. Although
the reservation task would appear to be
well structured, as it consists of a se-
ries of ordered subtasks, there are com-
plex dependencies in this system between
various parameters, for example, between
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discounted fares and flight availability. As
a result a client could opt for a discounted
fare and go on to confirm several param-
eters only to have to backtrack to a dif-
ferent dialogue path because the desired
departure time was not available at the
discounted price. The key word change can
be spoken by the user of this system to cor-
rect the latest piece of information given
to the system, but to correct earlier in-
formation change has to be used repeat-
edly to cause the system to backtrack se-
quentially until the item to be changed
is reached. Thus, when there are depen-
dencies between the items of information,
the use of a finite state dialogue model be-
comes unwieldy, leading to a combinato-
rial explosion of states and transitions.

Finite state dialogue models are inflex-
ible. This characteristic is not a problem
if the interaction with the user is con-
trolled by the system and restricted to a
well-ordered sequence of questions. How-
ever, because the dialogue paths are spec-
ified in advance, there is no way of manag-
ing deviations from these paths. Problems
arise if the user needs to correct an item or
introduce some information that was not
foreseen at the time of the design of the
dialogue. Adding natural language facili-
ties, while providing the user with greater
flexibility in what they can say, can add
to these problems. Taking the example of
a simple travel inquiry system, a natural
order for the system’s questions might be:
destination > origin > date > time. How-
ever, when answering the system’s ques-
tion concerning destination the user might
reply with a destination as well as the
departure time (or indeed other combi-
nations of the four required parameters).
A finite state-based system would simply
progress through its set of predetermined
questions, ignoring or failing to process
the additional information and then ask-
ing an irrelevant question concerning the
departure time.

The solution to this problem would be to
include a dialogue model so that the sys-
tem “knows” what it has already elicited as
well as what has still to be asked. The sys-
tem could then loop through the dialogue
model until all the required information

has been elicited. In this way the prob-
lem of irrelevant questions would also be
avoided. However, the problem is that, as
soon as the number of items grows, the
number of transitions to cater for each
required dialogue path grows to unman-
ageable proportions. This problem is fur-
ther augmented if adequate repair mech-
anisms are to be included at each node for
confirmation or clarification of the user’s
input. Thus it was estimated that in the
Philips system there were about 1,000 sys-
tem questions. Allowing for flexible adap-
tation to the user’s input—for example, in
the case where a user says more than the
system expected or provides an unantic-
ipated response—given that almost any
question could follow almost any other—
the network would require tens of thou-
sands of transitions [Aust and Oerder
1995].

Dialogues involving some form of ne-
gotiation between system and user can-
not be modeled using finite state meth-
ods, as the course of the dialogue cannot
be determined in advance. For example,
planning a journey may require the dis-
cussion of constraints that are unknown
by either the system or the user at the
outset. In these interactions some form of
negotiation and discussion of constraints
is required. For example, in the TRAINS
project, to be discussed below, the user
and the system collaborate to construct an
agreed upon executable plan that has to
be developed incrementally in order to in-
corporate new constraints that arise dur-
ing the course of the dialogue [Allen et al.
1995].

5.2. Frame-Based Systems

Rather than build a dialogue according to
a predetermined sequence of questions to
be asked, a frame-based system takes the
analogy of a form-filling task in which a
predetermined set of information is to be
gathered. This frame (or template) fulfils
the role of a dialogue model that keeps ac-
count of the items for which the system
requires information. Naturally this will
also involve questions, but the questions
do not have to be asked in a particular
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sequence. For example, in the Philips train
timetable system, the questions that the
system might ask are listed together with
their preconditions—that is, the condi-
tions under which that question should be
asked. Some questions for a travel system
might be

condition: unknown(origin) & unknown
(destination)

question: “Which route do you want to travel?”

condition: unknown(origin)
question: “Where do you want to travel from?”

condition: unknown(destination)
question: “Where do you want to travel to?”

Given all the questions and their precon-
ditions, which do not need to be stated in
chronological order, the dialogue control
component can decide the next question to
be asked based on those questions whose
preconditions are true. If several ques-
tions can be asked at a particular stage
in the dialogue, other factors can be used
to choose a question to be asked. For ex-
ample, in the Philips SpeechMania sys-
tem, each dialogue action (including the
questions) is coded with a key word that
determines the dialogue action’s priority
and thus the dialogue flow. Some examples
of these key words in their default order of
priority are

ONCE: for an action that has not yet been
executed, for example, the initial
greeting;

MULTIPLE: if more than one value has been
returned for a variable, so that
ambiguity resolution is required;

VERIFIABLE: to be used if a value has not been
confirmed by the user;

UNDEFINED: to be used when no value has been
defined for a variable and a question
is required to elicit the value from
the user.

Given this priority mechanism, problems
relating to what is ambiguous are resolved
before attempts to verify a value, which
are in turn resolved before questions for
new values. Thus a sequence of questions
evolves based on the current context of
the system (what has been asked so far,
what information is ambiguous, what has

to be confirmed), without having to specify
predetermined paths through a dialogue
network.

A similar mechanism has been used
in the Communicator system developed
at the University of Colorado, Boulder
[Ward and Pellom 1999]. This system ob-
tains information from the Internet on air-
line flights, hotels, and rental cars. The
dialogue control is described as “event-
driven,” meaning that the dialogue man-
ager decides what to do next based on the
current system context rather than a pre-
determined script. In this case the con-
text consists of the semantic content of the
user’s input together with a template of
slots to be filled. On assimilating a parsed
user’s utterance with the dialogue context,
the system decides on its next action ac-
cording to a set of priorities similar to
those used in the Philips system:

—clarify if necessary;
—finish if all done;
—retrieve data and present to user;
—prompt user for required information.

A variation on frames is the use of
a form consisting of a number of slots
for the relevant attributes in the do-
main. Dahlbäck and Jönsson [1999] de-
scribed their use of information specifica-
tion forms for a bus timetable information
system. Forms are also used as the main
dialogue items in VoiceXML documents.
A form in VoiceXML consists of field and
control items. A field gathers information
from the user using speech or DTMF in-
put while control items involve sequences
of procedural statements for prompting
and computation. The Form Interpreta-
tion Algorithm determines which items in
a form to visit depending on the status of
their guard condition. Thus, unless a field
variable within a form has the value un-
defined, that form will not be visited. In a
directed form the form items are executed
once in a sequential order, resulting in a
rigid, system-directed dialogue. A mixed-
initiative form, combined with a grammar,
enables the user to input all the required
items in one utterance, giving a more flex-
ible dialogue.
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Goddeau et al. [1996] discussed a more
complex type of form, the E-form (elec-
tronic form), which has been used in a
spoken language interface to a database
of classified advertisements for used cars.
E-forms differ from the types of form and
frame described so far, in that the slots
may have different priorities for different
users—for example, for some users the
color of a car may be more critical than
the model or mileage. Furthermore, in-
formation in slots can be related—for ex-
ample, a more recent model usually costs
more. The E-form allows users to explore
multiple combinations to find the car that
best suits their preferences. Thus the se-
lection of an appropriate car is viewed as
an optimization task which involves more
than the retrieval of a set of records from
a database. However, it is the user who
performs this optimization, whereas in a
problem-solving system the optimization
would be performed by the system or, ide-
ally, as a result of a negotiation dialogue
between system and user. The E-form is
used to determine the system’s next re-
sponse, which is based on the current sta-
tus of the E-form, the most recent system
prompt, and the number of items returned
from the database:

—If no records found, ask user to be more
general.

—If fewer than five records found, con-
sider the search complete and generate
a response that outputs the retrieved
records.

—Otherwise cycle through an ordered list
of prompts choosing the first prompt
whose slot in the E-form is empty.

—If too many records have been found and
all the prompt fields have been filled,
ask the user to be more specific.

Other data structures that can be used
to control the dialogue are schemas,
task structure graphs, and type hierar-
chies. Schemas are used in the Carnegie
Mellon Communicator system to model
more complex tasks than the basic in-
formation retrieval tasks that use forms
[Constantinides et al. 1998; Rudnicky
et al. 1999]. A schema is a strategy for

completing a goal in a task-based dia-
logue, such as determining an itinerary.
The itinerary is represented as a hierar-
chical data structure that is constructed
interactively over the course of the di-
alogue. At the same time the nodes in
the tree are filled with specific informa-
tion about the trip. While there is a de-
fault sequence of actions to populate the
tree that is maintained as a stack-based
agenda, the user and the system can both
control this ordering and cause the focus
of the dialogue to shift (for example: Let’s
talk about the first leg [of the itinerary]
again). Task structure graphs provide a
similar semantic structure to the E-form
and are used to determine the behavior of
the dialogue control module as well as the
language understanding module [Wright
et al. 1998]. The graph depicts relation-
ships between the elements of a customer-
services application and is used to provide
a contextual interpretation of spoken ut-
terances in a dialogue. Similarly, type hi-
erarchies can be used to model the domain
of a dialogue and as a basis for clarifica-
tion questions [Denecke and Waibel 1997].
Given that information in a type hierar-
chy can be missing or underspecified, clar-
ification requests are generated to enable
the user to achieve their communicative
goal.

In summary: there are a number of dif-
ferent types of data structure, such as
the frame, E-form, schema, task structure
graph, and type hierarchy that can be used
to model the structure of the information
required by the user and to determine the
actions to be taken by the dialogue system
to obtain this information.

5.2.1. Advantages of Frame-Based Systems.
The frame-based approach has several ad-
vantages over the finite-state-based ap-
proach, for the user as well as the de-
veloper. As far as the user is concerned,
there is greater flexibility. For example,
there is some evidence that it can be dif-
ficult to constrain users to the responses
required by the system, even when the sys-
tem prompts have been carefully designed
to do just that [Eckert et al. 1995]. The
ability to use natural language and the
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use of multiple slot filling enables the sys-
tem to process the user’s overinformative
answers and corrections. In this way the
transaction time for the dialogue can be
reduced, resulting in a more efficient and
more natural dialogue flow. The frame-
based system fulfilled a number of dia-
logue design requirements identified by
the Philips dialogue team, including the
following:

—there should not be a rigid question-
answer scheme to obtain the required
values;

—no more questions than necessary
should be asked;

—no more confirmation than necessary
should be required;

—information given by the caller, prior to
the system asking for it, should be used
[Philips Speech Processing 1997].

Similarly, the Communicator system de-
veloped at the University of Colorado
[Ward and Pellom 1999] enables a mixed-
initiative dialogue in which the user can
take control. This degree of user control is
greater than in the Philips system, where
the system has control of the dialogue flow
but the user can insert corrections to items
that the system has misrecognized or mis-
understood. In the Communicator system
the user can respond with anything to the
system’s question, that is, not necessar-
ily the answer to the question. The sys-
tem will parse the utterance and decide
whether and how to respond to it, putting
on hold prompts for any additional miss-
ing information that is required by the sys-
tem to build a database query.

From a developer’s perspective, im-
plementing this degree of flexibility in
a graph-based system becomes cumber-
some, if not impossible. A large number of
states and transitions are required to deal
with the number of different paths that di-
alogues might take. A frame-based system
can be specified declaratively with the sys-
tem’s questions listed as in a rule-based
expert system (or production system).

5.2.2. Disadvantages of Frame-Based Sys-
tems. Finite state-based and frame-based

approaches are appropriate for well-
defined tasks in which the system takes
the initiative in the dialogue and elicits
information from the user to complete a
task, such as performing a database query.
Frame-based systems provide greater flex-
ibility than state-based systems as the di-
alogue flow is event-driven and not pre-
determined. However, the system context
that contributes to the determination of
the system’s next action is fairly limited,
being confined essentially to the analysis
of the user’s previous utterance in conjunc-
tion with a template of slots to be filled and
a number of priorities for control of the di-
alogue. More complex transactions cannot
be modeled using these approaches for the
following reasons:

—different users may vary in the level
of knowledge they bring to the task, so
that a wide range of responses is re-
quired by the system;

—the state of the world may change dy-
namically during the course of the dia-
logue, with the result that it is not possi-
ble to specify all possible configurations
in advance;

—the aim of the dialogue is not just to ob-
tain sufficient information from the user
to execute a database query or carry out
some action—instead, the dialogue in-
volves the negotiation of some task to be
achieved, involving planning and other
types of collaborative interaction.

For the developer a frame-based approach
has the disadvantage of any production
system with a large number of rules and
contexts in that it is difficult to predict
which rule (or question) is likely to fire in a
particular context. A considerable amount
of experimentation may be required to en-
sure that the system does not produce
an inappropriate question under some cir-
cumstances that had not been foreseen at
design time.

5.3. Agent-Based Systems

Agent-based approaches draw on tech-
niques from Artificial Intelligence (AI)
and focus on the modeling of dialogue as
collaboration between intelligent agents.
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Several classes of agent-based system
will be described and evaluated, includ-
ing systems using theorem proving, plan-
ning, distributed architectures, and con-
versational agents.

5.3.1. Dialogue Control Using Theorem Prov-
ing. The functionality of the Circuit-
Fix-It Shop system was illustrated in
Section 3.3 and its architecture presented
in Section 4.4.2. A key aspect of the sys-
tem is that solutions are developed dy-
namically, on the basis of task steps recom-
mended by the domain processor, taking
into account the current situation and the
user’s current state of knowledge. This
dynamic development contrasts with the
approach adopted in some plan-based sys-
tems, in which a complete solution is de-
veloped by the system and then commu-
nicated to the user. Theorem proving is
used in the Circuit-Fix-It Shop system to
determine task completion, and dialogue
is required for the acquisition of axioms
that are missing but are required to com-
plete a task step. Thus dialogue is inte-
grated closely with task processing and is
invoked when the system is unable to com-
plete the task using its own resources. A
brief overview of the theorem-proving ap-
proach and of the role of missing axioms
in the production of dialogue is presented
in the following paragraphs.

The role of the theorem prover is to
determine task completion. The dialogue
controller receives a suggested task (or
goal) from the domain processor and se-
lects which goal is to be solved. The di-
alogue controller decides when theorem
proving is to be activated, whether lan-
guage can be used to acquire missing
axioms, and when theorems must be dy-
namically modified. The following exam-
ple (discussed earlier in Section 3.3) illus-
trates this process.

The task to be completed involves
the system finding out whether there is
a wire between connectors 84 and 99,
represented in GADL (Goal and Action
Description Language) as

goal(computer,learn(ext know(phys state
(prop(wire(84,99),exist,X),true)))).

Fig. 12 . Inserting a substep into the proof tree.

X represents an unknown value for the ex-
istence of the wire. One way to solve this
goal is to look for an appropriate axiom in
the knowledge base, such as:

axiom(phys state(prop(wire(84,99),exist,
present),true))—that is, wire is present,

or
axiom(phys state(prop(wire(84,99),exist,
absent),true))—that is, wire is absent.

As there is no appropriate axiom in the
knowledge base, the system determines
that the next step should be for the user
to add the wire, which should then pro-
vide the missing axiom that the wire is
present. This step is conveyed by the sys-
tem to the user using language. However,
at this point the user is unable to complete
this task step and requests help. This re-
sponse does not satisfy the missing axiom.
In conventional theorem proving, a new
rule for the proof would be sought using
backtracking. However, for this to be suc-
cessful, theorem descriptions would have
to be listed for every possible response that
provides an axiom other than the required
one. A more general approach is to modify
the original theorem by inserting the sub-
step that needs to be resolved (in this case,
how to add the wire), and then resume
the theorem-proving process once the sub-
step has been solved. To do this, an In-
terruptible Prolog SIMulator (IPSIM) is
employed to enable the dynamic modifica-
tion of theorems. IPSIM inserts into the
active theorem specification the required
substep (learning how to add the wire) be-
fore the theorem step of acquiring the re-
quired axiom about adding the wire (see
Figure 12).

As can be seen, the substep of learn-
ing how to add the wire has to be solved
before the missing axiom of adding the
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wire can be acquired. Thus the problem
solving that is involved in the Circuit-
Fix-it Shop system is accomplished using
theorem proving, while the Missing Ax-
iom theory provides the mechanism for us-
ing language. The interruptible theorem
prover creates subdialogues to solve sub-
steps that are inserted into the partially
completed proof. Given the overall control
exerted by the dialogue controller, it is pos-
sible to select which substep to work on
first and also to move between substeps (or
subdialogues) if this is appropriate given
the current state of the proof, the system’s
inferences concerning the user’s knowl-
edge, and the user’s responses. In this
way, dialogue is closely integrated with
problem solving, but the theorem-proving
paradigm that is used with the interrupt-
ible theorem prover allows the dialogue to
evolve dynamically.

5.3.2. Plan-Based Approaches. In plan-
based approaches to dialogue, utterances
are treated in the same way as actions in
a planning system that are performed in
order to achieve some goal [Cohen 1994].
The goal of the utterance may be some
desired physical state, such as having a
drink of beer in a bar. In this case, an ut-
terance that functions as a request for a
beer is incorporated into a plan that also
involves physical actions, such as the cus-
tomer handing over some money and the
bartender giving the beer. On the other
hand, an utterance that has the function
of conveying information effects a change
in the listener’s mental state. Much of the
early work involving plans in the 1980s
was concerned with recognizing the inten-
tion behind an utterance and matching
this intention with some part of a plan
that might achieve a particular goal [Allen
1983]. A cooperative system would adopt
the user’s goal, anticipate any obstacles
to the plan, and produce a response that
would promote the completion of the goal
[Allen and Perrault 1980].

A key element of this approach was
the modeling of utterances as speech
acts, which, like action operators in plan-
ning, consisted of roles, preconditions, con-

straints, and effects. For example: the fol-
lowing is a definition of the communicative
act ConvinceByInform [Allen 1995]:

Roles: Speaker, Hearer, Prop
Constraints: Agent(Speaker), Agent(Hearer),

Proposition(Prop),
Bel(Speaker,Prop)

Preconditions: At(Speaker, Loc(Hearer))
Effects: Bel(Hearer,Prop)

With this communicative act, if a speaker
informs a hearer of some proposition and
convinces the hearer of that proposition,
one constraint (a condition that must
be true) is that the speaker must be-
lieve the proposition. A precondition of
the act—which if not true, can be made
true through a further action—is that the
speaker should be at the same location
as the hearer (for face-to-face communica-
tion). As a result of the communicative act,
the hearer will believe the proposition. A
plan to achieve a goal involving language
would typically involve chaining together
a series of such communicative acts, in-
cluding acts that involve representing the
intentions and communicative actions of
another agent. Allen [1995] provided a de-
tailed account of the planning underlying
a simple dialogue concerned with the pur-
chase of a train ticket. Part of this plan
involves the agent purchasing the ticket
finding out the price of the ticket from the
clerk, which in turn requires the clerk to
produce a ConvinceByInform act stating
the price of the ticket. But to achieve this,
the agent buying the ticket has to pro-
duce a MotivateByRequest act that has as
its effect an intention on the part of the
clerk to produce the required Convince-
ByInform act. These acts are chained to-
gether in the correct sequence to achieve
the goal.

There are several problems with plan-
based approaches. In order to infer a
speaker’s plan, the listening agent has to
be able to recognize the communicative
act performed by the speaker’s utterance
and locate this act within a particular plan
schema. If the communicative act has been
incorrectly recognized, this will result in
an incorrect identification of the speaker’s
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plan. At the very least this will require
additional mechanisms for repairing the
incorrect assignment of the speaker’s in-
tention. In addition to this, however, there
is the problem that the processes of plan
recognition and planning, which involve
chaining from preconditions of plans to
actions, can in more complex cases be-
come combinatorially intractable. As plan-
ning algorithms require reasoning from
first principles, they are best suited for re-
stricted domains in which the reasoning is
kept to manageable proportions.

Much of the early work in planning fo-
cused on the analysis of individual utter-
ances rather than on how these utterances
could be combined to form a coherent dia-
logue. Litman and Allen [1987] extended
the basic model in two directions. First,
they introduced the notion of a hierarchy
of plans, which included subdialogues for
clarification or correction of a plan. They
also introduced a distinction between do-
main plans and discourse plans. Domain
plans, which involve task-related speech
acts, are modelled using traditional plan-
based approaches. Discourse plans, which
are task-independent, involve acts used to
control the dialogue such as “clarification”
and “correction.” However, this approach
still required an assumption of coopera-
tivity between the agents and did not pro-
vide an explanation of the dialogue activ-
ity of agents who did not share mutual
goals.

Some alternative approaches that ad-
dress these issues will be presented in the
next subsections. One direction, as illus-
trated in the TRAINS system, extends the
traditional plan-based approach by mod-
eling conversational agency within a mul-
tiagent action theory. A second direction,
implemented in the SUNDIAL system,
does not attempt to infer a speaker’s inten-
tions but bases decisions about dialogue
continuation on the current state of the
dialogue and the system’s current belief
state. Finally, a third approach, as exem-
plified by the ARTEMIS system, models
dialogue as a process of rational interac-
tion in which instances of dialogue struc-
ture emerge as a consequence of the dy-
namics of rationality principles.

5.3.3. Conversational Agency in the TRAINS
System. The TRAINS project has ex-
tended early work in plan-based systems
in two main directions. First, the approach
to problem solving has required more elab-
orate reasoning to support collaborative
and incremental planning. This is to en-
able the mixed-initiative planning that is
usually involved when two agents collab-
orate to solve a problem. In the TRAINS
project the system has the ability to plan
low-level details such as routes between
cities and has knowledge of constraints
such as congestion at certain stations or
whether an engine is available. The hu-
man manager, on the other hand, has
knowledge of high-level goals, is aware of
the motivations and justifications of par-
ticular plans of action, and can decide
whether to relax soft constraints such as
accepting a route that involves congestion
in a particular city on the route. The sys-
tem and the manager collaborate to con-
struct an agreed upon executable plan.
However, unlike in conventional planning
where the initial goal is completely speci-
fied and a complete plan can be produced,
in the TRAINS project the initial goal
is typically underspecified and the plan
has to be developed incrementally in or-
der to incorporate new constraints that
arise, such as information about conges-
tion. As a result modifications to the orig-
inal plan may be required. The general
model for this mixed-initiative planning
involves four steps [Ferguson et al. 1996]:

Focus: Identify the goal or subgoal under
consideration.

Gather constraints: Collect constraints
involving resources, background
information, and preferences.

Instantiate solution: Generate a solu-
tion as soon as one can be pro-
duced efficiently.

Criticise, correct or accept: If the so-
lution is criticized and modifica-
tions are required, continue with
Step 2; otherwise, if the solution
is acceptable, go to Step 1 and se-
lect a new goal or subgoal.
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Fig. 13 . The BDI model of conversational agency.

This model provides a basis for the tasks
to be performed in the dialogue and the or-
der in which they are to be performed. It
would be possible to develop a correspond-
ing task hierarchy and translate this di-
rectly into a dialogue structure. However,
a second aim of the project was to develop
a more elaborate model of dialogue that
would provide the required flexibility for
mixed-initiative interaction and would be
suitably integrated with the complex com-
monsense knowledge and reasoning of the
problem-solving component.

The dialogue manager in the TRAINS
system functions as a conversational
agent that performs communicative acts
when it sends messages to other agents,
observes the communicative acts of the
other agents, and maintains and monitors
its own mental state. Thus the model of
dialogue in the TRAINS system is more
ambitious than in most other systems
where the dialogue component is a tool
that provides a front-end interface to the
other components of the system [Traum
1996]. The theoretical foundation of the
conversational agent is provided by the
BDI (Belief, Desire, and Intention) archi-
tecture of Bratman et al. [1988], which
models agents that plan and execute ac-
tions in the physical world. The origi-

nal BDI model is specialized to conver-
sational actions, as shown in Figure 13
[Allen 1995]. Based on its current be-
liefs about the domain, including nested
beliefs about shared knowledge, and the
discourse obligations that each conversa-
tional agent has, the agent selects com-
municative goals, decides what speech act
to perform next, generates an utterance,
analyzes the manager’s response, and up-
dates its beliefs about the discourse state
and its own discourse obligations.

Discourse obligations are an important
element of the conversational agent.
Earlier plan-based models of dialogue
were based mainly on an analysis of
the intentions of speakers. A dialogue
agent would construct a model of a
speaker’s intentions, infer the speaker’s
goals, and adopt a goal to achieve these
goals. However, this model made strong
assumptions of cooperativeness and
failed to explain why an agent would
still respond when it did not know an
answer or did not wish to adopt the
speaker’s goals. The solution was to make
a distinction between the intentions that
an agent might have in performing a task
and the obligations that constitute the
conventions of cooperative conversation
[Traum and Allen 1994]. These discourse
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Table II. Some Obligation Rules [Traum and Allen 1994]

Source of obligation Obliged action
S1 Accept or Promise A S1 achieve A
S1 Request A S2 address Request: accept A or reject A
S1 YesNo Question whether P S2 Answer-if P
S1 WH-Question P(x) S2 Inform-ref x
utterance not understood or incorrect repair utterance

obligations are socially based—they
represent what an agent should normally
do and they are generally addressed
before task-related goals and intentions.
Table II presents some discourse obli-
gation rules. Thus, to take the example
of a request by S1, there is a discourse
obligation on S2 to respond to the request,
though not necessarily to accept it.

In addition to these discourse obliga-
tions, the agent has to consider various
general conversational obligations, such
as acknowledging the utterances of others
and not interrupting, coordinating mutual
beliefs (grounding), and planning the exe-
cution of domain goals. The following dis-
course actor algorithm shows how these
competing goals are prioritized [Traum
and Allen 1994]:

while conversation is not finished
if system has obligations
then address obligations
else if system has turn
then if system has intended conversation acts

then call generator to produce NL utterances
else if some material is ungrounded
then address grounding situation
else if some proposal is not accepted
then consider proposals
else if high-level goals are unsatisfied
then address goals
else release turn or attempt to end conversation

else if no one has turn
then take turn
else if long pause
then take turn

This algorithm produces a reactive-
deliberative model of dialogue agency
in which the agent reasons about its
discourse obligations and domain goals.
Where there is a conflict, the agent dis-
plays a “relaxed” conversational style in
which discourse obligations are addressed
before the agent’s own goals. This gives
rise to an interaction in which the initia-
tive of the other agent is followed. How-
ever, in a less cooperative situation, the
agent can continue to address its discourse
obligations but can respond in different

ways, for example, by rejecting requests
and refusing to answer questions. Finally,
the system can take the initiative, for
example, in a situation where the other
agent does not take a turn, by taking the
turn and using this opportunity to ad-
dress its own goals. Thus, depending on
the flow of the dialogue and on the behav-
ior of the other agent, the TRAINS conver-
sational agent can shift its focus from the
obligation-driven process of following the
other’s initiative to the goal-driven process
of taking the lead in the conversation.

5.3.4. Event-Driven Dialogue in a Distributed
Architecture—the SUNDIAL Dialogue Manager.
As mentioned earlier, plan-based ap-
proaches depend on the system being able
to assign an intention to the user’s ut-
terances that can be related to the user’s
plan. An alternative approach models dia-
logue on the basis of a combination of the
system’s belief and intention states, and
does not attempt to model these states in
the user. This is the approach adopted in
the SUNDIAL system [McGlashan et al.
1990], in which dialogue continuation is
based on the results of a contextual se-
mantic interpretation of the user’s ut-
terance and on monitoring changes in
the system’s belief state. This approach
is event-driven in the same way as a
frame-based system, but the difference
is that the representation of context in
SUNDIAL is more complex than that used
in frame-based systems. SUNDIAL uses
a distributed architecture, in which the
various functions of the dialogue compo-
nent are realized in different modules, as
shown in Figure 14. The task module rep-
resents the task structure of an applica-
tion, the belief module represents the in-
terpretation of utterances in the current
dialogue context, and the dialogue module,
which contains rules for dialogue behav-
ior, deals with predictions for the next user
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Fig. 14 . The SUNDIAL architecture.

utterance and strategies for how the dia-
logue should continue. The following dia-
logue can be used to illustrate this method:

System1: Hello Sundial reservation sys-
tem. Can I help you?

User1: I’d like a ticket from London to
Paris.

System2: London to Paris. When do you
plan to leave?

At the point in the dialogue where the user
has just produced User1, the Belief Mod-
ule has recorded that the items Depar-
ture City and Arrival City were recognized
with average recognition scores. The next
items on the agenda for the task module
are to request the Departure Date and De-
parture Time. Given these circumstances,
the system could choose from a range of
possibilities for continuing the dialogue:

(1) explicit confirmation of departure city
(Did you say you want to fly from
London?);

(2) explicit confirmation of departure city
(Did you say you want to fly to Paris?);

(3) explicit confirmation of arrival city
(Did you say you want to fly from
London?);

(4) request for departure date (On which
date do you wish to fly?);

(5) request for departure time (At what
time do you wish to depart?).

There are also many more possibilities
involving further combinations of these
items.

The solution that was adopted in the
current example was S2: London to Paris.
When do you plan to leave? Here two possi-
ble dialogue allowances are combined: an
implicit (rather than an explicit) request
for confirmation, as the recognition score
for the two parameters indicated reason-
ably reliable recognition, and a request
for information about the departure time.
Figure 15 presents a snapshot of the sys-
tem at this point in the dialogue.

The processes that underlie this behav-
ior are based on mappings from the sys-
tem’s belief state to the dialogue level
[Heisterkamp and McGlashan 1996]. The
user’s utterance is analyzed semanti-
cally, yielding a surface semantic de-
scription in the SIL representation (see
Section 4.2.2.1), and then interpreted in
the context of the current task to provide a
task-level interpretation. In this example,
two new items are added to the system’s
contextual model: the departure place and
the arrival place. The contextual functions
of these semantic items derived from the
user’s utterance result in some change in
the system’s contextual model and are rep-
resented as follows:

—new for system(goalcity:paris).
—new for system(sourcecity:london).
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Fig. 15 . Snapshot of the dialogue state.

Table III. Contextual Functions and Goals

new for system(X) confirm(X) or
specify([X,Y])

repeated by user(X) cancel ‘confirm’
goals for X

inferred by system(X) introduce goal
confirm(X)

modified by user(X) introduce repair
goal confirm(X)

negated by user(X) repair(X)

The next level of processing involves
evaluating the contextual functions to see
whether they solve a goal, modify a goal,
or introduce a new goal. The complete
list of contextual functions used and their
associated goals are shown in Table III.
The dialogue goals form a conflict set over
which the dialogue strategy operates to
determine the best dialogue continua-
tion. The goals are grouped into classes:
initiatives, responses, and evaluations.
Generally, evaluations are given a higher
priority than reactions, and reactions
have precedence over initiatives, with the
result than confirmations and answers
to the user’s questions will be resolved
earlier than questions to be asked by the
system.

Combining goals, as in this example,
where the system provides both an im-
plicit confirmation of two values as well as
a further question within the same utter-
ance (London to Paris, when do you plan

Fig. 16 . Metastrategy of degradation and recovery.

to leave?), depends on the current state
of the dialogue. The default setting is for
any number of reactions (except confirm
goals for inferred items) and one initia-
tive to be combined, thus enabling the di-
alogue to proceed more quickly. However,
a metastrategy of degradation and recov-
ery, in which the dialogue goals are or-
ganized hierarchically from more open to
more restricted interaction, as shown in
Figure 16 [Giachin and McGlashan 1997],
is used for situations when problems arise
and the system has to focus on repair, and
also to return to more flexible behavior
as dialogue processing improves. If prob-
lems occur in a dialogue, the confirmation
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strategy changes from implicit through
single explicit confirmation, moving at the
lowest level to the use of spelling or menus.
Once the problems are been resolved, the
opposite sequence comes into operation.

The approach adopted in the SUNDIAL
project overcomes the objections encoun-
tered in a state transition network ap-
proach in which the range of possible
dialogue transitions would be extremely
large at each node if flexible dialogue be-
havior were permitted that accounted for
all the required circumstances, such as the
degree of confidence in the recognition of
items in the user’s input. Thus, instead
of a global dialogue control structure in
which the dialogue paths are determined
in advance, this approach adopts a local
management strategy in which dialogue
control is determined on a turn-by-turn
basis depending on the information avail-
able in the various modules of the dia-
logue component. The focus on system be-
liefs and intentions avoids the difficulties
of identifying the user’s goals and atten-
tions that are associated with plan-based
approaches. This approach also offers a
more generic architecture which in prin-
ciple can be more easily ported to other
applications, whereas in the state transi-
tion network approach each new applica-
tion has to be constructed ab initio.

5.3.5. Dialogue as Rational Interaction. The
“Rational Interaction” approach to dia-
logue views communication as a special
case of intelligent behavior. The following
simple example illustrates this approach
[Sadek and de Mori 1998]:

User: Is server 36−68−02−22 operated
by Meteo France?

System: (answers ‘yes’ or ‘no’).

In order to make a decision as to how to an-
swer the user’s query, the system engages
in the following sequence of actions:

(1) system infers the intention of the user
to know if p (p = server 36−68−
02−22 is operated by Meteo France);

(2) system adopts the intention that the
user eventually comes to know if p;

(3) system adopts the intention of inform-
ing the user that p or of informing the
user that not p.

This chain of reasoning may appear at first
glance to be a case of “overkill” with re-
gard to this simple example. However, the
rationale for this approach becomes clear
if the answer to the query is no, as in order
to cooperatively address the user’s inten-
tion, the system would have to plan to sup-
ply additional information, for example,
that the server is operated by some other
operator, or that it is some other server
that is operated by Meteo France. This
plan would involve reasoning about the
relevance of the information, that is, what
the user needs to know as well as what the
user does not need to be told. Answering
yes could also involve a chain of reasoning,
for example, deciding whether the user is
authorised to know p or inferring the con-
sequences of telling the user that p.

In this approach dialogue structure
emerges dynamically as a consequence of
principles of rational cooperative inter-
action. Processes of dialogue can be ex-
plained in terms of the plans, goals, and
intentions of the agents involved in the di-
alogue. Plans themselves are not predeter-
mined schemas of action but are derived
deductively from rationality principles. To
take a simple example: since dialogue is
a joint activity between two agents, each
agent in the dialogue has a commitment
to being understood. This commitment ex-
plains and motivates the need for confir-
mations and requests for clarification in
dialogue [Cohen 1994]. While agents nor-
mally have the goal of behaving coopera-
tively in dialogue, an agent does not neces-
sarily have to adopt another agent’s goals,
if there is good reason not to. For exam-
ple, an agent should not supply informa-
tion that is confidential or assist in actions
that it knows to be illegal or harmful. In
other words, an agent has to attempt to
achieve a rational balance between its own
mental attitudes and those of other agents
and between these mental attitudes and
desired plans of action.

The theoretical framework for ratio-
nal agency is based on a set of logical
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axioms that formalize basic principles of
rational action and cooperative commu-
nication. The foundations for this frame-
work, developed by Cohen and Levesque
[1990], were extended by Sadek and im-
plemented as the basis of the dialogue
management component of the ARTEMIS
system. ARTEMIS is an agent technol-
ogy developed at France Telecom-CNET
as a generic framework for specifying and
implementing intelligent dialogue agents
[Sadek and de Mori 1998]. The AGS
application, which was developed using
ARTEMIS, provides information in the ar-
eas of employment and weather forecasts
[Sadek et al. 1997]. In addition to the usual
components of a spoken dialogue system,
the dialogue manager of ARTEMIS appli-
cations includes a “rational unit,” which
supports reasoning about knowledge and
actions and enables the dialogue agent to
produce rationally motivated plans of ac-
tion, including communicative acts, in re-
sponse to the user’s utterances. The es-
sential elements of the rational unit are
a number of principles of rationality and
cooperation.

The rationality principles describe an
agent’s reasoning about actions, beliefs,
and plans to modify the world, for ex-
ample, through actions, including commu-
nicative acts that change another agent’s
mental state. An agent’s intentions are de-
fined in terms of the agent’s beliefs about
the world, as well as its goals and commit-
ments. The principles are formalized as a
set of logical axioms. Some examples will
give a flavor of the formalism and how it
is applied to dialogue agency.

One of the properties of a rational agent
is consistency of beliefs. This property is
modeled in terms of mental attitudes such
as belief (B) and choice (C), as follows:

B(i, φ)⇒ ¬(i, ¬φ).

That is, if agent i believes formula schema
φ, then he or she will not believe that φ
is not true. The logical model for choice
specifies that an agent chooses the logical
consequences of its goals:

|=(C(i, φ) ∧ B(i, φ ⇒ ψ))⇒ C(i, ψ).

That is, it is a valid formula that, if agent i
desires that φ should be true and believes
that ψ is a consequence of φ, then he or
she will adopt the desire that ψ be true.
Within the world of action, there is a need
for an action model that specifies the ra-
tional effect (RE ) of an action, that is, the
reasons for which an action is performed.
Also needed are the action’s feasibility pre-
conditions (FP), that is, the conditions that
have to be true for the action to be feasible.
The following simple example illustrates
the act of informing:

〈i, Inform( j , φ)〉
FP : B(i, φ) ∧ ¬B(i, B( j , φ))
RE : B( j , φ).

In other words, for i to inform j about
φ, it must be the case that i believes φ
and that i believes that j does not already
know φ. The first part of the feasibility
precondition models the sincerity condi-
tion that is an integral element in coop-
erative communication, while the second
part models principles of quantity and re-
lation, that is, that an agent should not
tell another agent something that they al-
ready know. The rational effect of this com-
municative act is that agent j comes to
know φ.

The cooperation principles express the
motivation for an agent to behave coop-
eratively with respect to another agent.
Agents in dialogue accept a number of
minimal commitments, for example, to
participate actively in the conversation, to
attempt to understand the other agent’s
concerns, and to generate answers to these
concerns that are cooperative. For exam-
ple: there is a commitment to ensure mu-
tual understanding, which can involve
providing confirmations or making re-
quests for clarification, as well as taking
care that the other agent does not have er-
roneous beliefs. Cooperation also involves
adopting the other agent’s intentions, pro-
vided that this does not conflict with the
first agent’s own intentions. These prin-
ciples of cooperation have been formal-
ized in a similar way to the rationality
principles.
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The view that dialogue is a special case
of rational behavior brings several ad-
vantages. Given that dialogue involves a
joint commitment to mutual understand-
ing, there is a motivation for agents to
make their intentions clear through confir-
mations, clarifications, repairs, and elab-
orations. Although these behaviors are
included in other approaches, there is
no theoretical motivation for their inclu-
sion. The theory also accounts for different
contexts of interaction and explains why
an agent might provide more information
than is required by the other agent’s query.
For example: if a user asks for an address,
the system might also provide a telephone
number, if one is available. However, this
additional information should not be im-
plemented as an automatically generated
response schema but rather as something
to be determined within a particular con-
text of interaction on the basis of the ratio-
nality principles. Finally, the theory pro-
vides a basis for more advanced dialogues,
for example, those involving negotiation
rather than simple information retrieval,
where various types of cooperative and
corrective responses may be required.

5.3.6. Advantages of Agent-Based Systems.
As mentioned earlier, finite state-based
and frame-based dialogue control meth-
ods are not suitable for more complex
dialogues that involve more than the elici-
tation of a number of predetermined pa-
rameters to enable some information to
be retrieved from a database or a simple
transaction to be performed. More com-
plex technologies are required for dialogue
systems that support collaborative prob-
lem solving. Such dialogues involve nego-
tiation of a task in which both system and
user ask questions, request clarifications,
make corrections and suggestions, and
change the topic. In a mixed-initiative dia-
logue such as this, the dialogue agent has
to be able to maintain and reason over ex-
plicit models of the task at hand, of the cur-
rent dialogue state, and of its own and the
other agent’s beliefs and intentions. The
agent-based dialogue systems described
in this section, although mainly still at
the research laboratory stage, illustrate

a number of different approaches to the
long-term goal of enabling conversational
interaction with computers.

5.3.7. Disadvantages of Agent-Based Sys-
tems. The main disadvantage of agent-
based dialogue control is that it requires
much more complex resources and pro-
cessing than the simpler dialogue control
methods. In order to engage in a mixed-
initiative dialogue involving negotiation
and collaboration, a system requires more
sophisticated natural language capabil-
ities. Whereas simple pattern-matching
and concept-spotting techniques are suf-
ficient for finite state and frame-based
systems, a deeper semantic representa-
tion is required to interpret the user’s in-
put in more open-ended mixed-initiative
dialogues.

Integration of dialogue control with do-
main and task knowledge is a further
challenge for agent-based systems. It is
possible to handcraft domain-specific and
task-specific knowledge into a dialogue
system and then to use simpler dialogue
control methods. However, this raises the
issue of reusability as systems have to
be completely redesigned when porting
to new domains. A more satisfactory so-
lution is to develop a generic domain-
independent dialogue management com-
ponent that can be easily adapted to
new tasks. Essentially this is the solu-
tion adopted in the agent-based systems
described in this section. So, for example,
in the theorem-based approach, while the
domain processor is application-specific,
the general reasoning component and
the knowledge component are domain-
independent and incorporate general
mechanisms for reasoning with the knowl-
edge contained in the domain processor
(see Section 4.4.2). The same applies to
systems based on planning (Section 5.3.2)
and rational agency (Section 5.3.5). In
the TRIPS project, the successor to the
TRAINS project (Section 5.3.3) an archi-
tecture has been developed including an
abstract problem-solving model that sup-
ports the underlying structure for a col-
laborative task-based dialogue in terms of
key concepts such as objectives, solutions,
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resources, and situations. Porting to a new
domain and task is a matter of specifying
mappings from this model to operations in
the new domain [Allen et al. 2000].

Many of the techniques required to sup-
port agent-based dialogue control, such as
intention recognition and reasoning, are
computationally intensive. Finding ways
of implementing these techniques to en-
able real-time performance and to support
open-ended, mixed-initiative dialogues re-
mains a challenge for researchers in spo-
ken dialogue.

5.4. Summary

With such a number of different ap-
proaches to dialogue management, it is
reasonable to ask which approach is most
appropriate for a particular application.
Conversational agents that incorporate
principles of rationality and cooperation
would seem to be the obvious choice, as
they come closest to modeling human con-
versational competence. Certainly, for ap-
plications that involve cooperative prob-
lem solving with negotiated solutions, the
simpler types of dialogue control are not
sufficient. On the other hand, for simple
applications and for constrained subtasks
within some applications, more basic tech-
niques such as finite state and template-
based control may be appropriate.

Finite state networks are suitable for
simple, well-structured tasks that can be
decomposed into clearly defined subtasks.
They are also suitable for tasks involv-
ing sequential form filling. A finite state-
based system will be system-driven with a
predefined dialogue path from which the
user cannot deviate. Ideally the user’s re-
sponses should be short, in the form of sin-
gle words or simple phrases, and a ma-
jor task in the design of such a system
requires careful wording of the system
prompts to constrain the user to answer
in this way. When designed using a state
transition diagram, these systems have
a clear and intuitive semantics. The dis-
advantage of finite state systems is that
they are inflexible and cannot be easily de-
signed to permit the user to make a correc-
tion of some previously elicited value or to

change easily from one subtask to another.
Some of these deficiencies have been ad-
dressed by incorporating additional func-
tionalities such as natural language pro-
cessing and frames into the basic model
[McTear et al. 2000]. However, these addi-
tions tend to obscure the semantics of the
system and increase the number of alter-
native paths through the dialogue, with
the potential of leading to combinatorial
explosion. For these reasons finite state
systems are best used for simple tasks in-
volving the elicitation of a small number
of items from the user, or for well-defined
subtasks within a larger application, such
as eliciting a date or time.

Frame-based systems permit a greater
degree of flexibility, as the user can pro-
vide more information than required by
the system’s question, and in addition does
not need to supply all the information at
one time if this is not possible. The sys-
tem keeps track of what information is
required and asks its questions accord-
ingly. The design of a frame-based system
is declarative, as in a production system,
thus providing a clear semantics. How-
ever, frame-based systems are restricted
to basic information retrieval tasks with
no facility for negotiation of the infor-
mation. Some of the dialogue behaviors
that a frame-based system might display,
such as clarifying old information before
asking for new values, are hard-coded
into the system’s control structure. In a
system based on conversational agency
these behaviors would be more flexible
and would be based on a process of ex-
plicit deliberation by the system. Thus, for
applications involving the elicitation of a
fixed set of information from the user and
the retrieval by the system of a clearly
defined set of information in return, a
frame-based system provides a suitable
solution with greater flexibility than a fi-
nite state-based system. The Philips train
timetable system is a good example of
such an application. However, an appli-
cation that involved consideration of con-
straints imposed by the user’s goals, such
as the need to make particular connec-
tions or to be able to change goals dur-
ing the course of an interaction, would

ACM Computing Surveys, Vol. 34, No. 1, March 2002.



146 McTear

be beyond the scope of a frame-based
system.

There is a wide range of agent-based
approaches. These are usually motivated
by particular theories of dialogue. The
Circuit-Fix-It Shop system views prob-
lem solving as theorem proving. Dialogue
control evolves dynamically through the
mechanism of interruptible theorem prov-
ing, which is used to deal with missing
axioms and user requests for clarification
and help. Axioms that describe aspects of
the user’s domain-specific knowledge are
used effectively to enable the system to en-
gage in a limited amount of user modeling.
Other approaches, such as those adopted
in TRAINS, SUNDIAL, and Traum’s con-
versational agency, are motivated more by
linguistic theories of dialogue, where the
focus is on a cooperative dialogue strategy
that evolves dynamically over the course
of the interaction. In these systems goals,
beliefs, intentions, and obligations form
a conflict set that is resolved according
to a particular conversational metastrat-
egy. Finally, in the rational agency ap-
proach, communication is viewed as a spe-
cial case of rational behavior and dialogue
control is determined in terms of axioms
that encode principles of rational coopera-
tive behavior.

While there have been no comprehen-
sive studies to date of the costs and ben-
efits of these different dialogue manage-
ment approaches, some of the methods
that have been developed for the design
and evaluation of spoken dialogue systems
address these issues in part. These will be
reviewed in the next section, while Sec-
tion 7 will examine some dialogue devel-
opment tools that are available to build fi-
nite state and frame-based systems.

6. SPECIFYING, DESIGNING, AND
EVALUATING A SPOKEN DIALOGUE
SYSTEM

Developing a spoken dialogue system can
be viewed as a special case of software en-
gineering, with its own methods and eval-
uation criteria that have evolved over the
past few years. A recent EU project, DISC
(Spoken Language Dialogue Systems and

Components), is concerned with specify-
ing a best-practice methodology for the
development and evaluation of spoken
dialogue systems [Dybkjær et al. 1997].
Various sets of guidelines and standards
have emerged as a result of research
projects such as the Danish Dialogue
Project [Bernsen et al. 1998], the EU-
funded EAGLES project on standards for
spoken language systems [Gibbon et al.
1997], and projects funded in the US un-
der the ARPA initiatives on spoken lan-
guage systems [Hirschman 1995]. The
main trends in this work are reviewed in
this section, looking first at the methods
employed to support the specification, de-
sign, and development of spoken dialogue
systems, and then at methods of evalua-
tion that have been used.

6.1. Development Methodologies

Developing a spoken dialogue system in-
volves deciding on the tasks that the sys-
tem has to perform in order to solve a
problem interactively with a human user;
specifying a dialogue structure that will
support the performance of the task; deter-
mining the recognition vocabularies and
language structures that will be involved;
and designing and implementing a solu-
tion that meets these criteria.

Various methods are in common use for
establishing system requirements. These
include: literature research, interviews
with users to elicit the information re-
quired to construct the domain and task
models; field-study observations or record-
ings of humans performing the tasks; field
experiments, in which some parameters
of the task are simulated; full-scale sim-
ulations; and rapid prototyping. In or-
der to illustrate the issues involved, the
two most commonly applied methods—
design based on an analysis of human-
human dialogues, and design based on
simulations—will be described, followed
by a discussion of usability issues and of
design guidelines and standards.

6.1.1. Design Based on the Analysis of
Human-Human Dialogues. Human-human
dialogues provide an insight into how
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humans accomplish task-oriented dia-
logues. Considerable effort has gone into
collecting corpora of relevant dialogues,
many of which are publicly available, such
as the TRAINS corpora and the CSLU
corpora. Analysis of the TRAINS corpora
can provide information about the struc-
ture of the dialogues in support of conver-
sational modeling—for example, whether
task-oriented dialogues consist mainly
of a single topic—and about the range of
vocabulary and language structures in-
volved. The CSLU corpora, on the other
hand, are focused mainly on modeling ac-
cents and multilingual pronunciations.

Analysis of natural dialogues may also
pinpoint some aspects of how humans in-
teract with software such as email and
calendar applications when they are us-
ing a speech-based rather than a graphical
user interface. In the SpeechActs projects
at Sun Microsystems Laboratories, pre-
design studies are used before dialogue de-
sign to help the designer view the task
from the user’s perspective and to de-
velop a feel for the style of interaction
[Yankelovich n.d.]. One of the findings was
that users of the calendar application typi-
cally used relative dates such as tomorrow
or next Monday, whereas absolute dates
would be used in the version provided in
the graphical user interface. The organiza-
tion of information, such as the number-
ing of messages in Sun’s Mail Tool GUI,
gave rise to confusion in the spoken lan-
guage interface as it became difficult to
keep track of which messages were new
and to refer back easily to previously read
messages [Yankelovich et al. 1995]. Thus
it was concluded that users of a speech
user interface (SUI) employ a different
set of mental abilities compared to when
they use a graphical user interface (GUI).
For this reason it was recommended that
methods need to be developed to cope
for the lack of visual cues when inter-
acting with software applications over
a telephone line. The predesign stud-
ies had an important bearing on issues
such as these as well as for the design
of prompts, the selection of verification
strategies, and the provision of immediate
feedback.

6.1.2. Design Based on Simulations: Wizard
of Oz and “System in the Loop.”. Although
the analysis of human-human dialogues
can provide useful information to sup-
port the design of spoken dialogue sys-
tems, the main drawback of this approach
is that it is not possible to generalize
from unrestricted human-human dialogue
to the more restricted human-computer
dialogues that can be supported by current
technology. Current systems are restricted
by limited speech recognition capabilities,
limited vocabulary and grammatical cov-
erage, and limited ability to tolerate and
recover from error. To investigate how hu-
mans might talk to a more restricted di-
alogue partner, such as a computer sys-
tem in a situation where no such system
presently exists, some sort of simulation
of the system is required.

The Wizard-of-Oz (WOZ) method is com-
monly used to investigate how humans
might interact with a computer system
[Fraser and Gilbert 1991]. In this method
a human simulates the role of the com-
puter, providing answers using a synthe-
sized voice, and the user is made to be-
lieve that he or she is interacting with a
computer. The situation is controlled with
scenarios, in which the user has to find out
one or more pieces of information from the
system, for example, a flight arrival time
and the arrival terminal. The use of a se-
ries of carefully designed WOZ simulated
systems enables designs to be developed
iteratively and evaluation to be carried out
before significant resources have been in-
vested in system building [Gibbon et al.
1997]. One of the greatest difficulties fac-
ing the WOZ method is that it is difficult
for a human experimenter to behave ex-
actly as a computer would, and to antic-
ipate the sorts of recognition and under-
standing problems that might occur in the
real system.

To overcome this disadvantage, the
“System in the Loop” method may be used.
In this case, a system with limited func-
tionality is used to collect data. For exam-
ple: the system might incorporate on the
first cycle speech recognition and speech
understanding modules, but the main dia-
logue management component may still be
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missing. On successive cycles additional
components can be added and the func-
tionality of the system increased, thus per-
mitting more data to be collected. It is also
possible to combine this method with the
WOZ method, in which the human wizard
simulates those parts of the system that
have not yet been implemented.

6.1.3. Usability Analysis. As with any
other software, the success of a spoken dia-
logue system does not depend solely on the
functionality and performance of the soft-
ware but also on its usability and accep-
tance by the users for whom it is intended.

One aspect of usability is to determine
the costs and benefits of the proposed sys-
tem. Lennig et al. [1995] described the
development of a system that aimed to au-
tomate the handling of some directory as-
sistance (DA) calls in Bell Canada. One
of the initial investigations involved de-
termining where potential savings could
be made. Since the average operator work
time per call was found to be approxi-
mately 25 seconds, and the cost to com-
panies in the US of providing directory as-
sistance was estimated to be over $1.5B,
a reduction of 1 second in the work time
per call would represent savings of over
$60M per year. Operator acceptance was
another factor that was investigated in
this study. Operators were generally pos-
itive and particularly welcomed the fact
that with the automatic system they did
not have to continually repeat the same
information. Using the system was easier
on their voice and also required less key-
ing, thus avoiding the problems of repeti-
tive strain injury.

Similar findings emerged in a part-
automated directory enquiries system
developed by Vocalis for Telia TeleRe-
spons, Sweden’s leading network services
provider [Peckham n.d.]. A major concern
was how to reduce the running costs of
directory enquiries without compromising
customer satisfaction. The solution was a
semiautomated system using a combina-
tion of voice response and speech recogni-
tion technology. The main tasks of an op-
erator handling a directory enquiry call

are identified and those parts that can
be handled automatically are specified.
Voice processing technology is used at the
beginning and end of calls—to greet the
caller and to release the requested num-
ber. The search for the number is handled
by the human operator. Word spotting al-
lows the speech recognition component to
recognize key words in the midst of extra-
neous words and sounds, while “talkover”
allows the caller to speak over the system
output if they do not wish to wait for the
machine to finish before they begin speak-
ing. The commercial benefits of the system
include increased staff productivity and
substantial cost savings. From the tech-
nical perspective, the system achieves a
speech recognition accuracy level of 97%,
while Telia TeleRespons benefits from an
8% increase in efficiency and savings of
millions of pounds each year. Research
from Telia TeleRespons shows that over
90% of people are pleased to use the sys-
tem and that an additional 6–7% actually
prefer it. All the significant factors, includ-
ing market conditions, pricing, the role of
the operators, and the views of the unions,
suppliers, and customers, were analyzed
at the outset before the technical require-
ments of the system were considered.

6.1.4. Requirements Specification. Follow-
ing the analysis of requirements for a spo-
ken dialogue system based on one or more
of the methods described in the preceding
paragraphs, a formal requirements speci-
fication can be produced. The most elab-
orate approach would appear to be that
employed in the Danish Dialogue Project
in which two sets of documents—a Design
Space Development (DSD) and a Design
Rationale (DR)—are produced [Bernsen
1993]. A DSD document (or frame) rep-
resents the design space structure and
designer commitments at a given point
during system design, so that a series of
DSDs provide a series of snapshots of the
evolving design process. A DSD contains
information about general constraints and
criteria as well as the application of these
constraints and criteria to the system un-
der development in the Danish Dialogue
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Table IV. Contextual Functions and Goals
A. General constraints and criteria B. Application of constraints and criteria
Overall design goal: to the artefact within the design space

Spoken language dialogue system prototype System aspects:
operating via the telephone and capable of 500 words vocabulary.
replacing a human operator. Max. 100 words in active vocabulary.

Realism criteria: Limited speaker-independent recognition of
The artefact should be preferable to current continuous speech.

technological alternatives. Close-to-real-time response.
The system should run on machines which could Sufficient task domain coverage.

be purchased by a travel agency. Task aspects:
Usability criteria: User Tasks:

Maximize the naturalness of user interaction Obtain information on and perform booking of
with the system. flights between two specific cities.

Constraints on system naturalness resulting Use single sentences (or max. 10 words).
from trade-offs with system feasibility have Use short sentences (average 3–4 words).
to be made in a principled fashion based on C. Hypothetical issues
knowledge of users in order to be practicable Is a vocabulary of 500 words sufficient to capture
by users. the sublanguage vocabulary needed in the task

domain?

Project. Table IV shows some sample en-
tries from a DSD (from [Dybkjær et al.
1996]). A DR frame represents the reason-
ing about a particular design problem. An
example given in Dybkjær et al. [1996] de-
scribes a feature which had not been taken
into account in the original specification—
that users were not able to get the price
of the tickets they had reserved. The DR
contains information concerning the justi-
fication for the original specification, a list
of possible options, the resolution adopted,
and comments. In this way the evolving
design and its rationale are comprehen-
sively documented.

In addition to requirement specification
documents such as these, the EAGLES
handbook [Gibbon et al. 1997] recom-
mends a formal and explicit description of
the proposed dialogue. One way to do this
would be to represent the dialogue flow
as a flowchart, state transition network,
or dialogue grammar, in which all reach-
able states in the dialogue are specified,
along with information on what actions
should be performed in each state and how
to decide which state should be the next.
Tools exist for displaying this type of in-
formation graphically. For example, in the
Danish Dialogue Project DDL (Dialogue
Description Language), a graphical lan-
guage for describing state transition dia-
grams for event-driven systems is used to
provide a formal specification of spoken di-
alogue systems.

6.1.5. Design Guidelines. The theoretical
basis for much of the work on design guide-
lines comes from a theory of cooperative
conversation, developed by the philoso-
pher of language, Grice [1975]. Grice
identified a number of maxims underly-
ing cooperative conversation concerning
quantity, quality, relation, and manner of
communication. For example: the quan-
tity maxim stated that a speaker should
be as informative as required, but not
more informative than required; the qual-
ity maxim related to the truth of a conver-
sational contribution, and the relevance
maxim to its relevance. Some commonly
used evaluation metrics, such as Contex-
tual Appropriateness (Section 6.2.2), as
well as the usability guidelines developed
in the Danish Dialogue Project (see next
section) are based loosely on Grice’s work.

6.1.5.1. Guidelines in the Danish Dialogue
Project. Gricean maxims have been devel-
oped and extended into a set of usability
guidelines in the Danish Dialogue Project
[Bernsen et al. 1996]. A first set of the
guidelines was developed on the basis of
analysis of 120 examples of user-system
interaction problems identified in a cor-
pus of dialogues from the Wizard-of-Oz
(WOZ) simulations of the Danish dialogue
system. The guidelines were subsequently
refined and consolidated into a tool
called DET (Dialogue Evaluation Tool),
which can be used to support the design
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of cooperative dialogue systems and as
a tool for diagnostic evaluation [Dybkjær
et al. 1997]. DET consists of 22 guide-
lines grouped under seven different as-
pects of dialogue, such as informativeness
and partner symmetry, and divided into
generic (GG) and specific guidelines (SG).
The following are some examples (those
marked with * are based on Grice):

Informativeness
GG1... *Make your contribution as infor-

mative as is required (for the current pur-
poses of the exchange).

SG1... Be fully explicit in communicating
to users the commitments they have made.

Partner Symmetry
GG10... Inform the dialogue partners of

important nonnormal characteristics that
they should take into account in order to
behave cooperatively in dialogue. Ensure
the feasibility of what is required of them.

SG4... Provide clear and comprehensi-
ble communication of what the system can
and cannot do.

(Source: [Dybkjær et al. 1997]).

Using the guidelines for evaluation in-
volves analyzing transcripts of dialogues
to identify instances of violations of the
guidelines, which are marked up in the
transcripts. The violations can then be ex-
amined in greater detail, disagreements
between analyzers resolved, and recom-
mendations developed for enhancing coop-
erativity in the dialogue system. The gen-
erality of the guidelines has been explored
by applying them successfully as a dia-
logue design guide to part of a corpus from
the Sundial project [Dybkjær et al. 1997].

6.1.5.2. The EAGLES Guidelines. In the
EAGLES handbook a series of recommen-
dations have been proposed to support
the design of spoken dialogue systems.
These guidelines include recommenda-
tions for the design of interactive voice
response (IVR) systems and for the de-
sign of prompts. The following is a sum-
mary of the recommendations for the de-
sign of dialogue systems [Gibbon et al.
1997]:

(1) Data collection:
—Study of recordings of human-

human interaction in a situation
similar to the one in which the sys-
tem will be used.

—Wizard-of-Oz simulations.
—Transcription of the dialogues.

(2) Specification, design, and implementa-
tion of a first version (X) of the dialogue
system.

(3) Tests:
—Laboratory tests using corpora

recorded in Wizard-of-Oz simula-
tions, and then with laboratory staff
simulating users, recording new
data.

—Field tests with real users, recording
new corpora.

(4) Tune the system by iteratively modify-
ing, then testing it.

(5) Design and implement an X + 1 ver-
sion of the system, integrating new
technologies.

(6) Tests (as in step 3).
(7) Return to step 4 unless the system is

deemed to be complete.

Specific recommendations concerning the
dialogue model and the vocabulary of the
system are included in the following addi-
tional guidelines:

(1) Conduct a dialogue act analysis of the
dialogues collected in the corpora, pay-
ing special attention to the conditions
that must be satisfied in order to pro-
ceed from one dialogue state to the
next.

(2) Describe the dialogue state transitions
using some formally explicit apparatus
(such as a flowchart or formal specifi-
cation language).

(3) Use the data to identify the total lex-
icon required, then divide it into sub-
lexicons, where each sublexicon is as-
sociated with a dialogue act.

(4) Use the data to identify a covering
grammar, then divide it into subgram-
mars, where each subgrammar is asso-
ciated with a dialogue act.
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6.2. Evaluation

Most of the methods used to support the
specification and design of spoken dia-
logue systems—such as corpus analysis,
WOZ, and system-in-the-loop—can also be
used to collect data for evaluation. This
section will focus on the metrics that are
employed rather than on the methods of
data collection.

Evaluation of spoken dialogue systems
can involve either evaluation of the in-
dividual components ( glass box evalua-
tion), or evaluation of the system as a
whole (black box evaluation). Evaluation
of individual components, with measures
such as word accuracy and sentence ac-
curacy, have been employed for some time
to measure the performance of spoken lan-
guage systems under the ARPA initiatives
[Hirschman 1995]. It is only more recently
that measures have been developed for
spoken dialogue systems as a whole. Both
types of evaluation have been described in
some detail in a review paper by Baggia
[1996], from which much of the material
in this section is derived. See also Smith
[1997] and Smith and Gordon [1997] for a
comparable set of evaluation methods.

6.2.1. Evaluation of Individual Components.
Evaluation of individual components is
generally based on the concept of a ref-
erence answer, which determines the de-
sired output of the component to be com-
pared with its actual output. Reference
answers are easier to determine for com-
ponents such as the speech recognizer and
the language understanding component,
but more difficult with the dialogue man-
ager where the range of acceptable behav-
iors is greater. The most commonly used
measure for speech recognizers is Word ac-
curacy (WA). WA accounts for errors at the
word level, which include insertion (WI ),
deletion (WD), and substitution of words
(WS). WA is calculated as a percentage us-
ing the formula

WA = 100
(

1− WS +WI +WD

W

)
%,

where W is the total number of words in
the reference answer.

Sentence accuracy (SA) is a measure of
the percentage of utterances in a corpus
that have been completely and correctly
recognized. In this case the recognized
string of words is matched exactly with the
words in the reference answer. Sentence
understanding rate (SU), on the other
hand, measures the rate of understood
sentences in comparison with a reference
meaning representation. An alternative
measure of understanding is concept accu-
racy (CA), which measures the percentage
of concepts that have been correctly under-
stood. CA is similar to WA, as it measures
errors at the concept level which include
insertions, deletions, and substitutions.
Text understanding (TA), a measure used
in the Message Understanding Confer-
ences, measures the amount of significant
information that has been extracted from
a text, using templates as the reference
answers. Finally, an evaluation method
has been developed in the ARPA Spoken
Language System program to measure the
correctness of database query responses
by matching the actual responses with
reference answers expressed as a set of
minimal and maximal tuples [Hirschman
1995]. The correct answer must include at
least the information in the minimal an-
swer and no more information than is in
the maximal answer. This measure is sim-
ilar to some of the measures for dialogue
success to be discussed below.

Some interesting results have emerged
from evaluation studies using these mea-
sures. Hirschman [1995] reported that, in
the various ARPA evaluations, the error
rate for sentence understanding was much
lower than that for sentence recognition
(10.4% compared with 25.2%), indicating
that it is easier to understand sentences
than to recognize them and that sentence
understanding, by using robust process-
ing techniques, is able to compensate to
some extent for errors produced by the
speech recognition component. Similar re-
sults were reported by Boros et al. [1996]
in a comparison of word accuracy and
concept accuracy measures. Boros et al.
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found that it is possible to achieve per-
fect understanding with less than per-
fect recognition, but only when the mis-
recognitions affect semantically irrelevant
words. When misrecognition affects parts
of the utterance that are significant for
understanding, CA may be lower than
WA. Thus it is important to examine
closely the relationships between different
measures.

6.2.2. Evaluation of Spoken Dialogue Sys-
tems. The performance of a spoken dia-
logue system can be measured in terms of
the extent to which it achieves its task,
the costs of achieving the task (for exam-
ple, the time taken or number of turns
required to complete the task), and mea-
sures of the quality of the interaction, such
as the extent to which the system behaves
cooperatively (see the EAGLES handbook
[Gibbon et al. 1997] for a detailed account
of the measures described below together
with annotated examples).

A set of core metrics was identified in the
SUNDIAL project that measures these as-
pects of dialogic interaction [Simpson and
Fraser 1993].

Transaction success (TS ) is similar to
the ARPA measure of the correctness of
database query responses discussed ear-
lier, in that this metric measures how suc-
cessful the system has been in providing
the user with the requested information.
TS was defined as a four-valued measure
to account for cases of partial success as
well as instances where the user’s goal was
not clearly identifiable or changed dur-
ing the course of the interaction: S (suc-
ceed), SC (succeed with constraint relax-
ation), SN (succeed with no answer), and
F (fail).

Number of turns is a measure of the du-
ration of the dialogue in terms of the num-
ber of turns taken to complete the trans-
action. An alternative measure is the time
taken to complete the transaction. These
measures can be used in conjunction with
different dialogue strategies to give an
indication of the costs of the dialogue,
which may be compared with other mea-
sures such as transaction success or user
acceptance.

Correction rate (CR) is a measure of the
proportion of turns in a dialogue that are
concerned with correcting either the sys-
tem’s or the user’s utterances, which may
have been the result of speech recognition
errors, errors in language understanding,
or misconceptions. A dialogue that had
a high degree of CR might be judged to
have high costs in terms of user accept-
ability, as well as potentially high costs
financially.

Contextual appropriateness (CA) is a
measure of the extent to which the system
provides appropriate responses. The met-
ric can be divided into a number of values,
such as: TF (total failure), AP (appropri-
ate), IA (inappropriate), AI (appropriate/
inappropriate), and IC (incomprehensi-
ble). With TF, the system fails to respond
to the user. IA is used for responses
that are inappropriate, defined usually in
terms of Gricean maxims ([Grice 1975],
see above). AI is used when the evalua-
tor is in doubt, and IC when the content of
an utterance cannot be interpreted.

The Behavioral Coding Scheme is a sim-
ilar measure of the quality of responses
produced in an interaction with a spoken
dialogue system [Sutton et al. 1995]. Be-
havioral coding classifies the user’s utter-
ances to an automated questionnaire into
11 different types, some of which are illus-
trated in Table V. The Behavioral Coding
Scheme has proven useful for the objec-
tive evaluation of user behavior, for evalu-
ating the performance of the system, and
as a basis for further refinement of the
system.

A number of more qualitative mea-
sures have been developed, including a
metric for evaluating dialogue strategies,
such as strategies for recovering from
errors [Danieli and Gerbino 1995]. Im-
plicit recovery (IR), which can be com-
pared with implicit verification as illus-
trated in Section 4.3.2, has been defined
as the ability to overcome errors produced
by the speech recognizer or parser and to
rectify these implicitly. This strategy con-
trasts with an explicit strategy involving
correction that can be measured using the
correction rate (CR) metric. The follow-
ing example illustrates implicit recovery
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Table V. Categories from the Behavioral Coding Scheme

Code Response Class Description Example
AA1 Adequate Answer 1 Answer is concise and S: Have you ever been married?

responsive. U: Yes.
AA2 Adequate Answer 2 Answer is usable but not S: Have you ever been married?

concise. U: No I haven’t.
AA3 Adequate Answer 3 Answer is responsive but not S: Have you ever been married?

usable. U: Unfortunately.
IA1 Inadequate Answer 1 Answer does not appear to be S: What is your sex, female or male?

responsive. U: Neither.
IA2 Inadequate Answer 2 User says nothing at all. S: What is your sex, female or male?

U: <silence>

(values understood by the system in an-
gular brackets):

User1: I want to go from Roma to
Milano in the morning.
<arrival-city =MILANO,
departure-time=MORNING>

System1: Sorry, where do you want to
leave from?

User2: From Roma.
<departure-city = ROMA, cost-

of-ticket?>
System2: Do you want to go from Roma to

Milano leaving in the morning?

Although the user’s first utterance con-
tains the concepts that the system re-
quires to retrieve the desired information,
the departure city has not been recog-
nized, so the system takes into account the
concepts that have been correctly under-
stood and asks for the concept that was not
understood. The user’s second utterance
contains the required information but ad-
ditional words have been inserted at the
recognition level that are interpreted as a
request for the cost of the ticket. As this
concept is not relevant in the current con-
text, it is disregarded by the system and
the user is asked to confirm the correct
concepts. In this case the IR score is 100%
and the system has succeeded in spite of
recognition and parsing errors but without
having to engage in explicit correction.

In a study comparing explicit and im-
plicit recovery strategies and using the
other measures described earlier such as
contextual appropriateness, Danieli and
Gerbino [1995] found that the system that
used an explicit recovery achieved greater

robustness in terms of dealing with er-
rors, although at the cost of longer trans-
actions. It was also found that, as users
became more familiar with the system,
the recovery results for the system us-
ing implicit recovery improved substan-
tially. Thus several aspects have to be
considered and balanced when evaluating
a dialogue system, including transaction
success and dialogue duration, which mea-
sure the ability of the system to find the
required information, and contextual ap-
propriateness, which measures the qual-
ity of the dialogue. However, it is not pos-
sible using these measures to determine
whether the higher transaction success
of the system using the explicit recovery
strategy was more critical to performance
than the efficiency of the system using the
implicit recovery strategy.

A recently developed tool for the
evaluation of spoken dialogue systems,
PARADISE (PARAdigm for Dialogue Sys-
tem Evaluation), addresses the limita-
tions of the methods discussed so far
by combining various performance mea-
sures such as transaction success, user
satisfaction, and dialogue cost into a sin-
gle performance evaluation function, and
by enabling performance to be calculated
for subdialogues as well as complete dia-
logues [Walker et al. 1997]. In this frame-
work the overall goal of a dialogue sys-
tem is viewed in terms of maximizing user
satisfaction. This goal is subdivided into
the subgoals of maximizing task success
and minimizing costs. The latter is in turn
subdivided into efficiency measures and
qualitative measures. A brief overview
of this framework is provided in the
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following paragraphs, although for more
detail and a comprehensive set of illus-
trative examples, see Walker et al. [1997],
citeyearwalker:2.

Transaction success is calculated by
using an attribute value matrix (AVM)
that represents the information to be ex-
changed between the system and the user
in terms of a set of ordered pairs of at-
tributes and their possible values. For ex-
ample: departure-city might have val-
ues Milano, Roma, Torino, Trento, while
departure-range might have the values
morning, evening. The correct values for
each attribute are determined by scenar-
ios (for example, the user might be re-
quired to find a train that leaves from
Torino to Milano in the evening). These
values are referred to as the scenario keys,
and these are plotted on a confusion ma-
trix along with any incorrect values that
occurred during the actual dialogue. This
confusion matrix is used to calculate the
kappa coefficient, κ [Carletta 1996], which
indicates how well the system has per-
formed a particular task within a given
scenario, using the following formula:

κ = P (A)− P (E)
1− P (E)

,

where P (A) is the proportion of times that
the AVMs for the actual dialogues agrees
with the AVMs for the scenario keys, and
P (E ) is the proportion of times that the
AVMs for the dialogues and the keys are
expected to agree by chance. Unlike other
measures of transaction success and con-
cept accuracy, κ takes into account the in-
herent complexity of the task by correcting
for expected chance agreement.

Dialogue costs are measured in terms
of cost measures ci that can be applied
as a function to any subdialogue. The in-
formation goals that an utterance con-
tributes to are determined by using the
AVM representation to tag the dialogue
with the attributes for the task. In this
way dialogue strategies used to achieve
the task can be evaluated both in the di-
alogue as a whole as well as in subdi-
alogues. Given a set of measures ci the

different measures are combined to deter-
mine their relative contribution to perfor-
mance, using the formula

Performance = (a ∗N (κ))−
n∑

i=1

wi ∗N (ci),

in which α is a weight on κ, the cost func-
tions ci are weighted by wi, and N is a Z
score normalization function that is used
to overcome the problem that the values of
ci are not on the same scale as κ and may
also be calculated over varying scales. The
weights for α and wi are solved using mul-
tiple linear regression. Using this formula
it is possible to calculate performance in-
volving multiple dialogue strategies, in-
cluding performance over subdialogues.

PARADISE is a framework for evalu-
ating dialogue systems that incorporates
and enhances previously used measures.
It supports comparisons between dialogue
strategies and separates the tasks to be
achieved from how they are achieved in
the dialogue. Performance can be calcu-
lated at any level of a dialogue, such as
subtasks, and performance can be asso-
ciated with different dialogue strategies.
Furthermore, subjective as well as objec-
tive measures can be combined and their
relative cost factors to overall performance
can be specified. PARADISE has been used
as a tool to evaluate a number of applica-
tions, including accessing train schedules
and email as well as voice dialing and mes-
saging [Walker et al. 1998; Kamm et al.
1999].

6.3. Summary

It can be seen that considerable atten-
tion has been devoted in recent years to
the engineering aspects of spoken dialogue
systems and to their specification, design,
and evaluation, and that there is some
degree of convergence on methodologies
and frameworks, due in large part to con-
certed efforts in large-scale research and
development projects sponsored by ARPA
and the EU, and also due to the view of
best practice in dialogue engineering as a
specialization of best practice in software
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engineering, exemplified in projects such
as DISC. A further factor is the increas-
ing availability of large corpora that can
be used both to support initial specifica-
tion and design of systems and also as
data for evaluation studies. It is salutary
to conclude this section with a comment
on the importance of customer satisfaction
for the success of spoken dialogue systems
in the marketplace:

From a commercial perspective, the success of a
spoken dialogue system is only slightly related
to technical matters. . . . I have, for example, seen
trial systems with a disgracefully low word ac-
curacy score receiving a user satisfaction rating
of around 95%. I have also seen technically excel-
lent systems being removed from service due to
negative user attitudes. (Norman Fraser, cited in
Dybkjær [et al. 1997])

7. TOOLKITS FOR DEVELOPING SPOKEN
DIALOGUE SYSTEMS

The development of a spoken dialogue sys-
tem is a complex process involving the in-
tegration of the various component tech-
nologies described in Section 4. It would
be a formidable task to build and inte-
grate these components from scratch. For-
tunately a number of toolkits and author-
ing environments have become available
that support the construction of spoken di-
alogue systems, even for those who have
no specialist knowledge of the component
technologies such as speech recognition
and natural language processing. The fol-
lowing are some of the dialogue devel-
opment environments that are currently
available:

—the Generic Dialogue System Platform
(CPK, Denmark);

—GULAN—An Integrated System for
Teaching Spoken Dialogue Systems
Technology (CCT/KTH);

—the CSLU toolkit (Center for Spo-
ken Language Understanding at the
Oregon Graduate Institute of Science
and Technology);

—CU Communicator system;
—the Nuance Developers’ Toolkit (Nuance

Communications);
—SpeechWorks;

—Natural Language Speech Assistant
(NLSA) (Unisys Corporation);

—SpeechManiaTM: A Dialogue Appli-
cation Development Toolkit (Philips
Speech Processing);

—the REWARD Dialogue platform;
—Vocalis SpeechWareTM.

The first three systems were developed
mainly to support academic research and
to support the teaching of spoken lan-
guage technology. The CPK toolkit, de-
veloped at the Centre for PersonKommu-
nikation at the University of Aalborg in
Denmark, has been incorporated into the
REWARD dialogue platform and is ac-
companied by a Web-based course. This
material, which includes details of the
development platform to be used for im-
plementation, is currently not available
publicly. GULAN, a system for teaching
spoken dialogue technology, is under de-
velopment at KTH (Stockholm) and at
Linköping University and Uppsala Uni-
versity [Sjölander et al. 1998]. The sys-
tem, which is currently in Swedish but
due to be ported to English, is presently
only runnable locally. The CSLU toolkit,
to be described in greater detail below,
is available free-of-charge under a license
agreement for educational, research, per-
sonal, or evaluation purpose. The commer-
cial systems are available under a range
of license agreements. Some systems are
available as evaluation versions and oth-
ers can be obtained at a relatively low cost
for academic purposes. Web sites with fur-
ther information about these systems, in-
cluding pricing, are listed in Appendix B.

A comprehensive description and eval-
uation of all these systems is beyond the
scope of the current survey. To give a
flavor of what is available, one academi-
cally oriented system, the CSLU toolkit,
and one commercial system, the Philips
SpeechManiaTM system, will be examined,
followed by a brief outline of desirable fea-
tures of spoken dialogue toolkits.

7.1. The CSLU Toolkit

The CSLU toolkit has been developed
at the Center for Spoken Language
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Fig. 17 . Using RAD to simulate an auto attendant
at a furniture store.

Understanding (CSLU) at the Oregon
Graduate Institute of Science and Tech-
nology to support speech-related research
and development activities [Sutton et al.
1998]. The toolkit includes core technolo-
gies for speech recognition and text-to-
speech synthesis, as well as a graphically
based authoring environment (RAD) for
designing and implementing spoken dia-
logue systems. This section will focus only
on RAD. Information about other compo-
nents of the CSLU toolkit can be found at
the CSLU web site (see Appendix B).

A major advantage of the RAD interface
is that users are shielded from many of the
complex specification processes involved
in the construction of a spoken dialogue
system. Building a dialogue system in-
volves selecting and linking graphical di-
alogue objects into a finite-state dialogue
model, which may include branching de-
cisions, loops, jumps, and subdialogues,
as illustrated in Figure 17. Each object
can be used for functions such as gener-
ating prompts, recording and recognizing
speech, and performing actions. As far as
speech recognition is concerned, the in-
put can be in the form of single words,
for which a tree-based recognizer is used,
or as phrases or sentences that are spec-
ified using a finite state grammar, which

also enables key word spotting. There are
additional built-in facilities for digit and
alpha-digit recognition. The words speci-
fied for recognition at a given state are au-
tomatically translated by the system into
a phonetic representation called Worldbet
using built-in word models stored in dic-
tionaries. Pronunciations can also be cus-
tomised using the Worldbet symbols. It is
also possible to implement dynamic recog-
nition, in which case a list of words to be
recognized is obtained from some external
source, such as a Web page, and pronunci-
ation models for the words are generated
dynamically at run-time. Prompts can be
specified in textual form and are output
using the University of Edinburgh’s Fes-
tival TTS (text-to-speech) system, or they
can be prerecorded, and, with some addi-
tional effort, spliced together at run-time.
The use of the subdialogue states permits
a more modular dialogue design, as sub-
tasks, such as eliciting an account num-
ber, can be implemented in a subdialogue
that is potentially reusable. Repair dia-
logues are a special case of subdialogue.
A default repair subdialogue is included
that is activated if the recognition score
for the user’s input falls below a given
threshold, but it is also relatively easy
to design and implement customized re-
pair subdialogues. There is also a spe-
cial dialogue object for inserting pictures
and sound files at appropriate places in
the dialogue without the need for com-
plex programming commands. The list-
builder object simplifies the programming
of a repetitive series of exchanges, such
as questions, answers, and hints in an in-
teractive learning programe, by allowing
the programmer to specify lists of ques-
tions, answers, and hints in a simple dia-
logue box with the system looping through
each of the alternatives either in serial
or random order. A number of online tu-
torials, accompanied by simple illustra-
tive examples of dialogue systems, pro-
vide an introduction to the basic functions
of RAD.

Functions are provided in RAD for voice-
based Web access. For example, a given
URL can be accessed and the HTML doc-
ument read and parsed, relevant strings
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can be identified, tags removed, and the
required information output using text-to-
speech. Although not documented in the
current online tutorials, it is also rela-
tively simple to develop an interface to
databases and spreadsheets. Recently a
natural language processing component
has been developed that allows recognized
strings to be parsed and relevant concepts
to be extracted [Kaiser et al. 1999]. Finally,
the toolkit includes an animated conversa-
tional agent (BALDI), developed at Uni-
versity of California at Santa Cruz, which
presents visual speech through facial an-
imation synchronized with synthesized or
recorded speech.

RAD is currently being used effectively
to provide interactive language learning
for profoundly deaf children [Cole et al.
1999a] and to provide a practical intro-
duction to spoken dialogue technology for
undergraduate students [McTear 1999].
Plans are underway to develop multilin-
gual versions of the toolkit [Cole et al.
1999b].

7.2. SpeechMania TM

SpeechManiaTM, a product of Philips
Speech Processing, is an application de-
velopment environment to support the de-
velopment of telephone-based spoken dia-
logue systems. The software allows people
to talk with computers over the phone to
access information services such as rail-
way and flight timetables, bank state-
ments, and stock exchange quotations, or
to engage in transactions such as reserv-
ing a hotel room or reserving seats for a
movie through a call center. The basic sys-
tem architecture is shown in Figure 18.

Processing is divided into modules for
speech recognition, speech understanding,
dialogue control, and speech output, with
serial communication between the mod-
ules. Speech recognition, which is based
on hidden Markov models with continuous
mixture densities, is provided as part of
the system in the form of acoustic models
for particular languages such as American
or British English, German, and Dutch.
The other modules are specified using
HDDL (High-level Dialogue Description

Fig. 18 . The SpeechManiaTM architecture.

Language), a dedicated declarative pro-
gramming language for automatic enquiry
systems. HDDL consists of a number of
sections, of which two of the most impor-
tant are Rules and Actions. The Rules
section contains attributed context-free
grammars for speech understanding (see
Section 4.2.2.3 for an example). Dialogue
control is specified in the Actions sec-
tion using conditional actions (condac-
tions) (see Section 5.2.1). For speech out-
put all the required words and phrases
are prerecorded and the appropriate seg-
ments are concatenated and replayed as
specified by the dialogue control module.
Finally, there is a transaction interface to
external systems such as databases.

In addition to these modules, Speech-
ManiaTM includes a range of tools that
support the development and evaluation
of a spoken dialogue system. Applications
can be tested offline using a text-based in-
terface. The HDDL code can be checked
using the HDDL parser, which in addi-
tion generates a list of words not present
in the system’s speech recognition lexicon
and produces a list of the system prompts
for recording using the Recording Station
tool. A transcription tool enables the de-
veloper to optimize the system’s speech
recognition by comparing the words spo-
ken by the user in a series of logged
dialogues with the words recognised by
the system. Dialogues can be marked up
for subsequent statistical analysis, sys-
tem evaluation, and system refinement
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Table VI. Features of Spoken Dialogue Toolkits

Visual programming
Dialogue design Subdialogues
Prompts Recording tools

TTS
Simulation and testing Design prototyping and simulation

WOZ
Offline testing
Data capture

Natural language understanding Grammar development
Multimodality Graphics

Facial animation
System training and tuning Training the speech recognizer and other components
Interfaces Databases, Web, APIs
Reusable components Commonly used recognizers, grammars, subdialogues
Platform Programming languages and environment

through training of the language model
and the stochastic grammar.

7.3. Features of Spoken Dialogue Toolkits

Spoken dialogue toolkits can be compared
and evaluated across a number of dimen-
sions. Table VI presents a preliminary set
of features that can be used. This list needs
to be treated with some caution, however,
as the presence or absence of a particular
feature has to be considered in relation to
the users and uses for which a given toolkit
is intended. For example, in respect of ease
of use, the CSLU toolkit, due to its graph-
ical authoring environment, provides an
excellent facility for students to quickly
develop and test small dialogue systems.
In contrast, developing even a simple sys-
tem with SpeechManiaTM involves a rela-
tively steep learning curve as the dialogue
control and natural language understand-
ing have to be programmed in HDDL. On
the other hand, however, SpeechManiaTM

provides a number of powerful tools to
support the developer, including a fully
functional telephone interface, that are
not available in the CSLU toolkit. Thus
when comparing the two toolkits it is
important to consider their main pur-
poses: the CSLU toolkit is designed mainly
as an educational tool, whose graphi-
cal interface shields developers from the
complexities involved in programming an
interface using some sort of program-
ming language. SpeechManiaTM, as well

as the Nuance toolkit, in which the func-
tions for state transitions and other state
functions are programmed using C-code,
are sophisticated development environ-
ments intended for commercial software
developers.

Most of the toolkits listed above use
some sort of visual programming to repre-
sent dialogue states and transitions. This
facility is useful as long as the dialogues
are simple enough to be implemented us-
ing finite state methods (see Section 5).
To date SpeechManiaTM is the only toolkit
that provides an alternative form of dia-
logue control that is programmed declara-
tively rather than visually.

Facilities for developing system prompts
vary across the toolkits. In RAD the Fes-
tival TTS is closely integrated with the
graphical authoring environment, with
the result that prompts can be designed
by simply typing in the text to be synthe-
sized into a prompt dialogue box. There
are also facilities for adjusting various pa-
rameters in the synthesized voice as well
as recording prompts as wave files. In
SpeechManiaTM, as in other toolkits such
as NLSA, there is a sophisticated record-
ing tool that is used to record and manip-
ulate sections of sound files that can be
concatenated at run time to provide sys-
tem prompts.

Support at the design and testing stages
is an important feature that is available in
most toolkits. The CSLU toolkit supports
rapid prototyping through its easy-to-use
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graphical authoring environment. There
is also a facility for data capture that al-
lows complete dialogues to be recorded
and replayed. SpeechManiaTM also sup-
ports data capture but in addition the
recorded items of user input can also be
used by tools provided within the devel-
opment environment to optimize speech
recognition and understanding and to pro-
vide data for training and testing. Simi-
lar facilities are provided in the Nuance
toolkit. The NLSA Dialogue Assistant not
only provides a visual representation of
the dialogue flow but also a simulation
tool that enables Wizard-of-Oz testing of
the viability of an application even before
a speech recognition module has been in-
stalled. With the NLSA Dialogue Assis-
tant the developer can simulate an ap-
plication using actual phone lines, select
system prompts and responses, and record
caller responses, thus collecting data that
can be used as a basis for subsequent re-
design of the dialogue.

Most toolkits support some form of nat-
ural language understanding, generally
with a semantic or concept-based gram-
mar with terms that map closely on to
domain-specific items such as entities in a
database. Grammar development is gen-
erally not supported and it is the role
of the developer to design the required
grammar rules according to the formal-
ism supported within the toolkit. One ex-
ception is the NLSA toolkit, which pro-
vides a tool Speech Assistant—to auto-
mate the process of creating grammars.
Speech Assistant has a format similar to
a spreadsheet. The words and phrases
that constitute potential user utterances
are entered into rows of the tables and
for each set of related phrases a token is
provided that represents the meaning of
the responses. BNF grammars that are
used by the speech recognition and nat-
ural language understanding components
are compiled automatically from these
tables.

Most spoken dialogue toolkits assume
a telephone interface and so do not need
to support pictures, animations, and other
visual displays. The main exception is the
CSLU toolkit, which, as described earlier,

supports the display of pictures and also
provides an animated talking head. As re-
quirements emerge for multimodal spoken
dialogue systems, as in public information
kiosks, there will need to be greater sup-
port in toolkits for other modalities in ad-
dition to voice.

Each of the toolkits provides a number
of additional tools and functions, for ex-
ample, to customize and optimize speech
recognition, and APIs are provided to en-
able a seamless interface to other appli-
cations. For example, the Festival TTS
and BALDI animated face are launched
automatically in RAD, and there are
a number of supporting tools, such as
SpeechView, to record, view, and manip-
ulate waveforms. As expected, the com-
mercially oriented toolkits such as Nuance
and SpeechManiaTM have greater sup-
port for telephony functions, as these
systems are most likely to be deployed
with a telephone interface. There has also
been more attention paid in these com-
mercial toolkits to interfaces with exter-
nal information sources such as large
databases, although these facilities can
also be provided with a little effort in
RAD. Most of the toolkits provide their
own speech recognition system, in some
cases with barge-in facilities that allow
the user to interrupt system prompts.
NLSA is recognizer-independent, with
support for a number of commercially
available speech recognisers, so that
developers can choose the recognizer
that is best suited to their particular
applications.

Reuse is an important issue for any soft-
ware development environment. Each of
the toolkits addresses this issue in some
way. In RAD it is possible to create and
save subdialogues and customized repair
subdialogues for reuse in other applica-
tions. Similarly files of commonly used
items, such as variants of words such as
yes and no, can be loaded along with their
pronunciations as required. Similar facil-
ities exist in SpeechManiaTM. Other prod-
ucts take the issue of reuse still further.
SpeechWorks provides DialogModulesTM,
reusable objects containing prebuilt vo-
cabularies and grammars as well as
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error-recovery routines that can be eas-
ily integrated into an application. Ex-
amples of these reusable objects include
subdialogues for continuous digits, tele-
phone numbers, zip codes, currency, and
credit card numbers. The Nuance toolkit
and NSLA have similar reusable com-
ponents that can be imported into an
application.

Most of the toolkits are available on
several platforms such as Unix and ver-
sions of Windows such as 95, 98, and NT.
The most commonly used languages are
C, C++, TCL, HDDL, and Java. Many
of the toolkits are compliant with speech
API standards (SAPI) such as Microsoft
SAPI and are customized for telephone
API- (TAPI-) compliant telephony cards.

7.4. Summary

In this section a number of toolkits that
support the development of spoken dia-
logue systems have been examined. Most
of the toolkits provide fairly similar fea-
tures with varying degrees of support
for particular functionalities. The focus
in this section has been mainly on the
support provided in the toolkits for the
dialogue management component. Natu-
rally, the performance of individual com-
ponents, in particular the speech recog-
nizer, will have an important bearing on
the acceptability of a dialogue system de-
veloped with a given toolkit, although this
issue may become less relevant with the
movement towards open architectures, in
which developers can slot in recognizers
and other components that suit their par-
ticular applications.

8. FUTURE DIRECTIONS

There are a number of ways in which spo-
ken dialogue technology may develop over
the next decade. As far as research is con-
cerned, there are several initiatives aim-
ing at conversational systems that support
more natural mixed-initiative dialogues.
The focus of much of this work is on work-
ing systems rather than on the develop-
ment of the individual components. Thus,

instead of concentrating, for example, on
the development of a sophisticated natu-
ral language understanding component in
isolation, research is likely to be directed
toward the ways in which such a compo-
nent can be integrated with the other com-
ponents of a spoken dialogue system, and
on how it can be deployed in real-world
applications. Measurement of the perfor-
mance of such components will be in terms
of their contribution to the performance of
the complete system.

Studies of human-human dialogue have
provided useful insights into how more
sophisticated dialogue systems might be-
have and have resulted in theories of
cooperative interaction that inform the de-
sign and evaluation of interactive speech
systems [Bernsen et al. 1998] as well as
models of conversational agency [Traum
1996], which integrate AI work on plan-
ning with speech act theory. As speech
recognition and natural language under-
standing become more robust, more so-
phisticated dialogue managers that have
been developed in text-based systems as
noted, for example, Carberry and Lambert
[1999], will emerge. Jurafsky and Martin
[2000] (Chapter 19) is a recent review of
the theoretical background as well as re-
cent developments in dialogue and con-
versational agency. Another trend is to-
ward the use of statistical techniques
in dialogue management. For example,
dialogue sequences have been modeled
as dialogue-act-N-grams in order to help
predict upcoming dialogue acts [Nagata
and Morimoto 1994]. Probabilistic meth-
ods are being used in conjunction with
reinforcement learning algorithms to en-
able the automated learning of optimal
dialogue strategies. Dialogue is modeled
as a Markov decision process (MDP) and
viewed as a trajectory in a state space
determined by system actions and user
responses. Given multiple action choices
at each state, reinforcement learning is
used to explore the choices systematically
and to compute the best policy for ac-
tion selection based on rewards associated
with each state transition [Litman et al.
2000].
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While most of this survey has been con-
cerned with dialogue systems that pro-
vide a spoken language interface, there
has been a recent development toward the
integration of spoken language technology
with other modalities [Cohen and Oviatt
1995]. In the TRAINS project, for exam-
ple, the system displays a map of the
area under discussion with the route being
planned marked and highlighted. Some of
the travel information systems, such as
the ATIS (Air Travel Information System)
in the United States and the EU Esprit
MASK project involve multimodal inter-
action. For example, the MASK system is
planned as a multimodal, multimedia ser-
vice kiosk to be located in train stations,
with the user being able to speak to the
system as well as use a touch screen and
keypad, while the system displays infor-
mation to the user on a screen [Lamel
et al. 1995]. The selection and coordination
of different media in relation to differ-
ent types of content to be displayed and
the varying needs of the user and the
task have been the subject of much re-
search (see, for example, the papers in
Maybury [1993]). Although this work is
still in its infancy and many of the so-
lutions adopted tend to be ad hoc and
application-specific, there has been some
progress toward a general theory of input
and output modalities and of how speech
might be integrated within a multimodal
context [Bernsen 1994].

Another important application area is
the World Wide Web. With the increas-
ing integration of the Internet and do-
mestic television, there is a potential for
applications using spoken dialogue tech-
nology to perform services such as home
shopping, or to control and program ap-
pliances around the home such as mi-
crowave ovens and VCRs. These needs
are being addressed through VoiceXML
(Voice eXtensible Markup Language)—
an XML-based mark-up language for cre-
ating distributed voice applications that
feature synthesized speech, digitized au-
dio, recognition of spoken and DTMF
key input, recording of spoken input,
telephony, and mixed-initiative dialogues

[VoiceXML Forum n.d.]. VoiceXML pro-
vides an open environment with standard-
ized dialogue scripting and speech gram-
mar formats. Furthermore, because it is
based on XML, a vast selection of edit-
ing and parsing tools is available, includ-
ing both commercial and freely available
open-source tools. A VoiceXML document
specifies each interaction dialogue to be
conducted by a VoiceXML interpreter. A
VoiceXML document forms a conversa-
tional finite state machine, with some de-
gree mixed-initiative that allows users in
a limited way to input more than one value
in a particular dialogue state. VoiceXML
has been accepted as a standard for
Web-based spoken dialogue systems and
VoiceXML servers may well replace cur-
rent proprietary development platforms
for spoken dialogue systems. Further work
will be required to integrate the more
complex functionalities described in this
survey into the next versions of the
standard.

Bringing these points together, some of
the issues that are likely to be important
in spoken dialogue research in the next
decade are

—more robust speech recognition, in-
cluding the ability to perform well in
noisy conditions, to deal with out-of-
vocabulary words, and to integrate more
closely with technologies for natural
language processing;

—the use of prosody in spoken dialogue
systems, both to provide more naturally
sounding output and to assist recogni-
tion by identifying phrase boundaries as
well as the functions of utterances;

—research concerned with component in-
tegration and with investigating the
extent to which the language under-
standing and dialogue management
components can compensate for defi-
ciencies in speech recognition;

—investigations of the applicability of dif-
ferent technologies for particular ap-
plication types, such as the costs and
benefits of parsing using theoretically
motivated grammars compared with
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robust and partial parsing and with
more pragmatically driven methods
such as concept spotting;

—studies of different approaches to di-
alogue management in relation to the
requirements of an application, indi-
cating, for example, where state-based
methods are applicable and in which cir-
cumstances more complex approaches
are required;

—the incorporation of more sophisticated
approaches to dialogue management de-
riving from AI-based research;

—research into the use of stochastic and
machine learning techniques;

—the development of multimodal dialogue
systems;

—dialogue systems with Web integration.

It is unlikely that all of these issues will
be addressed in commercial systems in
the short term, although there is con-
siderable interest in the commercial po-
tential of voice commerce, involving the
integration of spoken language and Inter-
net technologies. In general, however, the
emphasis in dialogue research is on de-
veloping more advanced systems and on
testing theories of dialogue, while in the
commercial environment the aim is to pro-
duce systems that will work in the real
world. Here the performance of the sys-
tem is measured not in terms of the eval-
uation measures applied to a laboratory
prototype but in terms of its efficiency,
effectiveness, usability and acceptability
under real-world conditions. Factors that
determine the successful deployment of a
system include marketability, profitabil-
ity, and user acceptance, for which con-
siderable effort has to be directed toward
managing user expectations in respect
of the constraints of the technology and
convincing users of the benefits of the
technology.

In conclusion, as can be seen from this
survey, there has been a dramatic increase
in interest in spoken dialogue systems
over the past decade, and there is every
indication that this interest will continue,
given that there are still many problems to

be resolved and given the obvious benefits
of the technology.

APPENDIX

A. SELECTED WORLD WIDE WEB
ADDRESSES FOR DIALOGUE
RESEARCH PROJECTS

The following is a list of Web sites for spo-
ken dialogue technology, covering many of
the major projects that could not be dis-
cussed within the scope of the survey. The
links have been tested and were valid at
the time of writing.

— AAAI Workshop on Miscommunication
in Dialogue, August 1996
http://www.cs.uwm.edu/faculty/
mcroy/mnmPapers.html

— Center for PersonKommunikation
(CPK), Aalborg, Denmark—member of
the Danish Dialogue Project
http://cpk.auc.dk/

— Computers that listen—examples of ap-
plications in commercial use
http://www.voiceio.com/examples.htm

— CONVERSA—voice enabling technolo-
gies
http://www.conversa.com

— CSLR Home Page (Center for Spo-
ken Language Research, University of
Colorado)
http://cslr.colorado.edu

— CSLU Home Page (Center for Spoken
Language Understanding, Oregon)
http://cslu.cse.ogi.edu/

— Dialogues 2000 Project (BT and Univer-
sity of Edinburgh)
http://www.ccir.ed.ac.uk/d2000/

— DISC—Spoken Language Dialogue
Systems and Components Best prac-
tice in development and evaluation
http://www.disc2.dk/

— EAGLES Project: Expert Advisory
Group on Language Engineering Stan-
dards
http://coral.lili.uni-bielefeld.de/
gibbon/EAGLES/
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— INRIA—dialogue projects at INRIA
(France)
http://www.inria.fr/Equipes/
DIALOGUE-eng.html

— LIMSI: Projects on spoken language
(France)
http://www.limsi.fr/Recherche/TLP/
projects.html

— Links to spoken dialogue systems
(University of Hamburg)
http://nats-www.informatik.uni/
hamburg.de/j̃um/research/dialog/
sys.html

— Microsoft User Interface Research—
Persona Project, Conversational
Interfaces
http://www.research.microsoft.com/
research/ui/

— Natural Interactive Systems Lab-
oratory (NIS), Odense University,
Denmark
http://www.nis.sdu.dk/

— Research on Dialogue Processing,
Ministry of Education, Science, Sports,
and Culture, Japan
http://winnie.kuis.kyoto-u.ac.jp/Text/
taiwa/e-abst.html

— SIGDIAL—special interest group of
ACL for dialogue and discourse
http://www.sigdial.org/

— Speech Applications Project (Sun Mi-
crosystems)
http://www.sun.com/research/speech/
index.html

— Spoken Language Systems Group
(MIT)
http://sls-www.lcs.mit.edu/SLShome.
html

— TOOT project on evaluation of spoken
dialogue systems (AT&T Research)
http://www.research.att.com/d̃iane/
TOOT.html

— TRAINS Project Home Page (Univer-
sity of Rochester)
http://www.cs.rochester.edu/research/
trains/

— Verbmobil (Large project based in
Germany on spoken language and
dialogue)

http://www.dfki.uni-
sb.de/verbmobil/overview-us.html

— VoiceXML Forum
http://www.voicexml.org

— Waxholm dialog project (Sweden)
http://www.speech.kth.se/
waxholm/waxholm2.html

B. WORLD WIDE WEB ADDRESSES FOR
SPOKEN DIALOGUE TOOLKITS

— CPK Generic Dialogue System Plat-
form
http://www.kom.auc.dk/l̃bl/IMM/
S9 98/SDS course overview.html

— CSLU toolkit
http://cslu.cse.ogi.edu/toolkit/

— CU Communicator system
http://cslr.colorado.edu/beginweb/
cumove/cucommunicator.html

— GULAN—CCT/KTH
http://www.speech.kth.se/j̃ocke/
publications/gulan.html

— IBM Voice Server
http://www-4.ibm.com/software/
speech/

— Natural Language Speech Assistant
(NLSA)(Unisys Corporation)
http://www.unisys.com/

— NUANCE Developers Toolkit
http://www.nuance.com/

— SpeechManiaTM (Philips)
http://www.speech.be.philips.com/

— SpeechWorks
http://www.speechworks.com/

— Vocalis SpeechWareTM

http://www.vocalis.com/
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