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Abstract

We describe an architecture for practical mul-
ti-application,  multi-device  spoken-language
dialogue systems, based  on the  information-
state  update approach.  Our  system provides
representation-neutral  core  components  of  a
powerful  dialogue  system,  while  enabling:
scripted  domain-specific  extensions  to  rou-
tines such as dialogue move modeling and ref-
erence resolution; easy substitution of specific
semantic  representations  and  associated  rou-
tines; and clean interfaces to external compo-
nents for language-understanding (i.e. speech-
recognition and parsing) and -generation, and
to  domain-specific  knowledge  sources.  This
infrastructure forms the basis of a “plug and
play” dialogue management capability, where-
by new dialogue-enabled devices can be dy-
namically introduced to the system. The plug-
and-play infrastructure is an important aspect
of an environment for dialogue control of in-
car devices.
Keywords: multi-device dialogue system; in-
formation state; conversational interface.

1 Introduction

CSLI  has  been  developing  activity-oriented  dialogue
systems for a number of years, for applications such as
multimodal  control  of  robotic  devices  (Lemon  et  al
2002),  speech-enabled  tutoring  systems  (Clark  et  al
2001), and conversational interaction with in-car devices
(Weng et al 2004). The dialogue system architecture in-
cludes various components: speech-recognizer, language
parser, language generation, speech-synthesizer, and the
CSLI Dialogue Manager (CDM), as well as connections
to external application-specific components such as on-
tologies or knowledge bases, and the dialogue-enabled
devices themselves.
Clean  interfaces  and  representation-neutral  processes
enable the CDM to be used relatively seamlessly with
different  parsers  and language-generation  components.
Interaction with external devices is mediated by Activity

Models, i.e. declarative specifications of device capabil-
ities and their relationships to linguistic processes. How-
ever,  customization to  new domains  has generally re-
quired some significant programming effort, due to vari-
ations  in  dialogue  move  requirements  across  applica-
tions, as well as certain processes (e.g. reference resolu-
tion) having domain-specific aspects to them.
In this paper,  we describe recent enhancements to  the
CDM infrastructure that allows simpler customization to
new dialogue  domains  and  applications.  Further,  this
forms the basis of a “plug-and-play” dialogue manage-
ment architecture: device APIs encapsulate customized
dialogue moves, activity models, and knowledge bases,
as well as domain-specific extensions to core processes
(such as reference resolution). This enables multi-device
dialogue  management,  allowing  new dialogue-enabled
devices to be dynamically added to an existing multi-de-
vice dialogue system.1

2 Dialogue Manager Architecture

Figure 1 outlines the CSLI Dialogue System architec-
ture. The CDM has been designed to be used with dif-
ferent  components for  parsing, NL generation (NLG),
etc. Early applications of the CDM used the rule-based
head-driven parser GEMINI (Dowding et al 1993) with
grammars tailored to the particular application domain:
the advantage of this approach is that the parser itself
performed  semantic  normalization,  returning  semantic
logical forms directly corresponding to the specific rep-
resentations of device activities. Recent CDM applica-
tions have involved use of a third-party statistical parser,
returning only weakly normalized semantic forms.
The CDM uses the  information-state update approach
(Larsson and Traum 2000) to maintain dialogue context,
which  is  then  used  to  interpret  incoming  utterances
(including  fragments  and  revisions),  resolve  NPs,
construct  salient  responses,  track issues,  etc.  Dialogue
state is also used to bias speech-recognizer expectation
and improve  SR performance (Lemon and  Gruenstein
2004). Detailed descriptions of the CDM can be found
in (Lemon et al 2002).

1 This supplements  the  plug-and-play approach to  dy-
namic grammars of (Rayner et al 2001).



Figure 1: Dialogue System Architecture

The  two  central  CDM  components  of  the  dialogue
information state  are  the  Dialogue  Move Tree  (DMT)
and the  Activity  Tree  (AT).  The  DMT  represents  the
historical  context  of  a  dialogue.  Each  dialogue
contribution  is  classified  as  a  dialogue  move (e.g.
Command,  WhQuestion,  etc.),  and  is  interpreted  in
context by attaching itself to an appropriate active node
on the DMT. For example, a  WhAnswer attaches to an
active corresponding  WhQuestion node.  The  tree
structure  of  the  DMT  specifically  supports  multi-
threaded, multi-topic conversations (Lemon et al 2002):
a  new  conversation  topic  spawns  a  new  branch.  A
dialogue  move  that  cannot  attach  itself  to  the  most
recent  active  node  may  attach  to  an  active  node  in
another  branch---corresponding  to  a  resumed
conversation---or open a new branch by attaching itself
to the root node---corresponding to a new conversation
thread. The DMT also serves as context for interpreting
fragments, multi-utterance constructs, and revisions, and
provides  discourse  structure  for  tasks  such  as  NP-
resolution. 
The Activity Tree (AT) manages activities relevant to a
dialogue.  When  the  user  issues  a  command,  this
generally  results  in  a  new  activity being  created  and
added to the AT. Before the activity can actually be sent
to the device for execution, the system attempts to fully
resolve it, e.g. resolving all referring NPs or spawning a
sub-dialogue to elicit further information. Revisions and
corrections  (e.g.  “I  meant/said  …”)  typically  involve
editing  an  existing  activity  representation.  Activity-
execution  is  monitored  on  the  AT  and  changes  may
result in a notification message being generated, e.g. on
failure or successful completion of a task.
Much device-specific information is encapsulated in an
Activity  Model.  The  Activity  Model  is  a  declarative
specification of the capabilities of the agent or device
with which the CDM interfaces, and includes linguistic

information, such as mappings from predicate/argument
structure to device-actions. Arguments that are marked
as  required may generate  sub-dialogues  when a  user-
command  is  given  with  missing  arguments.  A  small
portion of an Activity Model for an MP3 device is given
in  Figure  2.  Playable in  the  “required”  argument
position  corresponds  to  a  class  from  the  associated
ontology  of  objects  associated  with  this  application;
playable-object is a variable name filled by matching a
dialogue move, as described below.

3 Domain-Independent Dialogue Scripts

In early versions of the CDM, dialogue moves were cod-
ed completely programmatically (in Java); our approach
involved  developing  libraries  of  general-purpose  dia-
logue moves (e.g.  Command,  WhQuestion,  WhAnswer,
etc) corresponding to the types of dialogue contributions
found in  activity-oriented  dialogues.  As  the  Dialogue
Manager was applied to new applications, new dialogue
moves were implemented as necessary, or existing dia-
logue moves refined  to  apply to  the  new application.
Multiple applications were implemented in this way.
Customizing dialogue moves to new domains typically
required substantial coding. Further, using off-the-shelf
parsers with wide-coverage grammars, or corpus-trained
statistical parsers, required the CDM to be able to han-
dle new input semantic forms. The requirement of broad
coverage dictates that the mapping from input to correct
dialogue move be easily extensible.2 One approach to
extending coverage is to normalize semantic information
against  a  broad  language  ontology  (e.g.  WordNet
(Miller  1995))  or  other  knowledge  base  (Dzikovska
2004). However, this still requires incoming forms to be
mapped to the internal representation.

2 Ideally, this could be learned automatically.
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To promote re-use of dialogue moves, enhance extensi-
bility, and cope with semantic variation across domains,
we have implemented a dialogue-scripting language for
writing dialogue moves, defining:
1. hierarchical definition of dialogue moves, allowing

inheritance and re-use of existing dialogue moves,
while allowing customization to a particular domain
or device;

2. direct mappings of input semantic forms to appro-
priate dialogue moves;

3. attachment rules for information update;

4. other  dialogue move-specific  information,  such as
specification of output to be generated for disam-
biguation, requests for required information, etc.

Note that our approach of using easily-extensible dia-
logue move scripts  is  consistent  with using other  ap-
proaches to achieve broad semantic  coverage,  such as
use  of  an  ontology  or  knowledge-base  as  mentioned
above. However, it provides a general approach for sup-
plying application-specific information to the CDM, for
customizing it to new domains, as well as enabling our
“plug and play” multi-device infrastructure. Figure 3 il-
lustrates a portion of a sample dialogue move script (de-
tails are described below).

Types {
Playable;
...

}
Slots {

Playable playable-object;
...

}

// Task definitions
taskdef<play, "play"> {

DefinableSlots {
required Playable playable-object; 
optional ...   // optional arguments (e.g. volume)

}
...

}
Figure 2: Portion of an Activity Model for an MP3 device

User Command:play {
// inherits from generic Command dialogue move
Description "play something"
Input {

              // “play/start X”
“s( features(mood(imperative)),
    predicate(#play/vb|#start/vb),

     ?arglist(obj:_,?sbj:*))”
      // “I want to play/hear X”
“s( features(mood(indirect)),
    predicate(#play/vb|#hear/vb),

     ?arglist(obj:_playable-object,?sbj:*))”
// other templates ...

}
Producing {     // Questions

System WHQuestion:disambiguate
System WHQuestion:fill:play:_playable-object {

Output {avs "(e1 / play
:question (q1 / what)

  :agent I)"
} ... }

      CloseOn System Report:play:playing {
      Output {avs "(e1 / play

     :patient (p1 / [song])
     :aspect continuous)"

} 
... } 

... }
Figure 3: Sample dialogue move script for a play Command for an MP3 device



Variables  in  the  dialogue  move  script  correspond  to
variables  in  the  Activity  Model  (AM)  for  the  corre-
sponding device. In particular, the AM for the MP3 de-
vice contains a play operation with a corresponding (re-
quired)  _playable-object argument. When an incoming
semantic form matches an  Input template in the above
script,  the unification operation fills the _playable-ob-
ject variable, which resolves to an object from the de-
vice’s domain of objects (see below) and fills the corre-
sponding slot in the activity constructed from the device
Activity Model.
Following are further details on the properties of the dia-
logue move scripting language.

3.1 Hierarchical dialogue move specification

The scripting language allows hierarchical specification
and refinement of dialogue moves. The move in Figure
3 corresponds to a  play command, and inherits from a
more generic Command dialogue move. The Command
dialogue move is implemented in Java: its script has a
field naming the Java class that implements it. The play
command  move  is  implemented  by  the  same  generic
code,  but  specifies  its  own patterns  for  triggering the
move, and defines attachment patterns and appropriate
generation messages. In general, the depth of inheritance
is unbounded: e.g. we could define a sub-move of the
play command move that is applicable in very specific
contexts.
One type of move for which this is particularly useful is
information-query  moves  across  devices.  Questions
about music in an MP3 database or restaurants in a city
information  guide  are  often  structurally  similar:  i.e.
query-construction itself is (relatively) domain-indepen-
dent. Each type of query can be handled by a different
dialogue  move  (corresponding  to  different  devices  or
knowledge sources), but each set of  Inputs is inherited
from a single Query dialogue move.
Other operations that can be applied at abstract levels of
dialogue move include  rewrite rules: these are used to
transform input forms before they are matched against
dialogue move Input templates, e.g., transforming indi-
rect  commands into direct  imperatives,  or  replacing a
temporal  marker  (e.g.  “now”) with an appropriate  se-
mantic  feature.  Rewrite  rules  are  attached  to  domain-
specific dialogue move scripts, or to generic scripts, as
appropriate.

3.2 Selecting dialogue move via semantic template

The Input section of a dialogue move script contains the
list of input items that would trigger this particular dia-
logue move.  These  templates  are matched against  the
output of the parser (in the case of the example in Figure
3, a statistical parser trained on a corpus collected from
Wizard of Oz experiments of users interacting with an
MP3 player (Cheng et al 2004)). Parsed forms may be
normalized or processed in any way (e.g., using an on-

tology,  or  via  rewrite  rules)  before  being  matched
against Input templates. Input templates can be attached
to domain-specific dialogue moves or to generic moves
(and inherited).
The specific formalism of the Input templates in Figure
3 is not important: the formalism is specific to the output
of a particular statistical parser, but the templates can be
viewed as feature structures, and the matching operation
is effectively one-way unification. The special symbols
are interpreted as follows: “#” indicates a lexical item,
with part-of-speech tag following the “/” symbol; “|” in-
dicates alternatives; “?” indicates an optional argument;
“_” indicates a variable matching one from the Activity
Model; and “*” matches anything. Hence, the dialogue
move in Figure 3 matches “play X”, “start X”, or an in-
direct command involving “play X” or “hear X”;3  the
object to be played is marked as optional---i.e., the tem-
plate matches even when this argument is missing.
The CDM is representation neutral, in that the form of
the templates and the corresponding matching algorithm
can be replaced without affecting the rest of the CDM
infrastructure. This enables easy replacement of parser
or  NLG component  to  one using different  representa-
tions. For example, we could substitute a more standard
feature-structure  representation  and  feature-unification
algorithm, with no other changes to the Dialogue Man-
ager code required.
When an  input  form matches  an  entry  in  a  dialogue
move’s  Input section,  this  may cause  variables  to  be
bound; in particular, a variable that corresponds to one
from  the  Activity  Model.  For  example,  if  an  input
matching the dialogue move in Figure 3 contains a well-
formed  arg argument,  then  this  supplies  a  value  for
_playable-object; if no arg is present, then this variable
is  left  unfilled  (in  which case  the  Command dialogue
move generates a request for information).
In general, multiple matches are possible, since there are
generally multiple scripted dialogue moves and multiple
entries in each move’s Input section. Our current strate-
gy is to score each possible match using generic criteria
(e.g. applicability to current context; minimizing unre-
solved information). Current work inolves investigating
probabilistic approaches to incorporating evidence from
multiple criteria to select appropriate dialogue move, in-
cluding prosodic information and shallow topic-catego-
rization.

3.3 Specifying attachment rules

The dialogue scripting language provides a mechanism
for specifying attachment rules: i.e. which types of dia-
logue moves can attach to an existing active node in the
DMT. For example, Figure 3 shows that (amongst oth-
ers) a disambiguating  WhQuesion or a  WhQuestion for
filling  a  missing argument  can  attach  to  a  Command

3 For convenience, indirect commands have their embed-
ded sentence extracted using a generic rewrite rule.



node.4 Dialogue move information can be scripted “in
place” inside one of these specifications (as done for the
WhQuestion:fill:play move).
The scripts also encode which adjacent moves close a
dialogue move (i.e. inactivate it so no other move can
attach to it), in the CloseOn field. Closing a node for at-
tachment effectively closes the corresponding thread of
conversation.5 Nodes are also automatically closed after
a specified period.

3.4 Specification of system responses

Much of the system output is automatically generated,
e.g.  encoded in very general-purpose dialogue moves.
However,  applications  often  call  for  domain-  and  de-
vice-specific outputs. These can also be encoded in the
dialogue  move scripts;  since  these  will  be  system re-
sponses,  these  are  encoded  inside  System dialogue
moves.  Any representation  is  permitted,  so  long as  it
matches  the  representation  used  by the  specific  NLG
system with which the CDM is interfaced for the given
application. This is another way in which the CDM is
representation neutral: including a different NLG com-
ponent, using a different representation, in the dialogue
system may require modification of the scripts, but re-
quires no modification to the core of the CDM.

4 Multi-Device  Plug-and-Play  Dialogue
Management

Plug-and-play capability is an important feature of sys-
tems that can have their functionality extended without
going off-line. Plug-and-play typically involves adding
new  components  that  provide  enhanced  functionality
without disrupting the existing framework. Implement-
ing a plug-and-play environment requires at minimum a
specification language for components to advertise their
capabilities, as well as a clean encapsulation of the im-
plementation of the component. In our framework, the
first of these is provided as part of the dialogue-move
scripting; we discuss other aspects of device-encapsula-
tion here.

4.1 Device encapsulation

New devices  that  register  with  the  dialogue  manager
must encapsulate all information required for managing
dialogue with these new devices.  This information in-
cludes:
1. dialogue-move scripts, as described above;
2. Activity Model describing any device functionality

accessible by dialogue;
3. device-specific ontology and knowledge base (KB);

4 Such attachment rules are often specified at more ab-
stract levels, not at the level of specific commands.

5 Revisions may reopen a Command or Query node.

4. rules  for  device-specific  NP-resolution  (Section
4.3).

Device-specific  implementations  of  dialogue  manage-
ment processes can also be added, or overwrite generic
ones, by the device encapsulation including appropriate
new Java classes.  For  example,  a  dialogue-move that
handles a new form of interaction introduced by a new
device could be added. In general,  however,  the four
components above contain all device-specific informa-
tion required, and allow for dynamic plug-and-play of
dialogue-enabled devices.

4.2 Multi-device dialogue management

We have extended the Dialogue Move Tree (DMT) in-
frastructure so that it allows new devices to be plugged
in dynamically. New dialogue-enabled devices register
themselves with a Device Manager. Nodes in the DMT
are associated with specific devices where appropriate;
“current device” becomes part of the information-state
and interpreting incoming utterances is performed in this
context.
Device-selection---i.e., determining which device an ut-
terance is associated with---is a further complication in
this setting. The current decision process involves lexi-
cal and semantic information, dialogue move classifica-
tion,  discourse  structure,  as  well  as  bias  towards  the
“current device”. Relating NPs to the appropriate device
ontology is a specific strategy: e.g. reference to a “song”
will match a category in the ontology associated with an
MP3 device, but potentially with no other devices. This
strategy does not necessarily resolve all device-ambigui-
ties however: e.g. an address-book may be used by both
a phone-device (“get John on the phone”) as well as a
navigation service (“how do I get to John's house?”). In
general, the processes of device-selection and NP-reso-
lution are co-dependent: information about the resolu-
tion of NPs provides important clues about the device
being referred to; however, NP-resolution may actually
be quite  device-specific (as  discussed in Section 4.3).
Our approach is to perform a shallow NP analysis, e.g.
matching nouns and proper names against ontology cate-
gories and KB items associated with a specific device in
order to identify device, and then using the device-spe-
cific  NP-resolution rules (see Section 4.3) to fully re-
solve the NPs. 
We plan to use other features (e.g., shallow topic-cate-
gorization techniques) and develop probabilistic meth-
ods for this classification task. We are currently collect-
ing a corpus of multi-device dialogues and also hope to
be able to automatically learn this task.

4.3 Multi-device NP-resolution

Much of the NP-resolution process can be seen as fairly
domain-independent (e.g. anaphora resolution). Howev-
er, aspects of NP-resolution are both domain- and de-
vice-dependent. For example, interpreting “What's this”



is  handled  differently in  the context  of  music playing
over  an  MP3  player  than  when using  a  touch-screen
multimodal interface.
We address this problem in a manner analogous to our
approach to customizing dialogue moves: the core NP-
resolution capabilities implemented in the CDM can be
custom-adapted for a specific domain/device via an NP-
resolution scripting language. NP-resolution scripts are
effectively context-free grammars that allow the user to
define how NP objects are mapped to knowledge-base
queries for a specific device, in the context of the cur-
rent dialogue information state and input semantic form.
In particular, for the MP3 device, “this” in the context of
“What's this” would be mapped to a query that returns
the name of the currently playing song.
NPs are translated into Java objects implementing con-
straint-based KB-queries. Rules specify how to translate
NPs specified in the input semantic form into such ob-
jects. The dialogue manager contains a number of gener-
ic constraint objects and associated transformations, but
further objects may be included as part of the device en-
capsulation to provide any novel processing specific to
that device. For example, an MP3 device will need to
handle qualifiers such as “by artist”, and know to trans-
late this construct into an appropriate constraint on the
artist field of the KB.

The way in which information is extracted from an NP
representation depends, of course, on the specific format
of the input as well as the structure of the KB associated
with a device. We use a rule-based language for specify-
ing how an NP (in whatever format is used)  maps to
constraint-based query objects, making use of generic or
device-specific  frame-construction  operations.  Such
rules are used for handling synonyms (i.e. by mapping
multiple  nouns  into  the  same  query-type)  as  well  as
specifying  the  construction  of  complex  query  objects
from complex NPs.
The simple examples in Figure 5, taken from the NP-
resoltion script for an MP3 device, illustrate some of the
features of our approach. The left-hand side of each rule
matches  a  construct  from the  output  of  the  statistical
parser used in this particular application: the symbol ‘#’
indicates that the corresponding word has been marked
as a head word; the token following ‘/’ is the POS of the
matched item; entries in upper-case designate variables.
The right-hand side of each rule specifies how to con-
struct a query or constraint for the KB: the first item sig-
nifies what type of constraint this is (which determines
which construction process to use); the rest of the RHS
specifies the specific KB fields to test.

Figure 4: Sample NP-query object for “the song Vertigo by U2”

1. #song  -->  Simple system:hasCategory : music:Song
”What songs do you have?”

2. #this/dt  -->  MP3Specific this music:Song
”What’s this?”

3. ncomp(#by/in,sbj:FRAME)  -->  Frame music:songHasArtist|music:albumHasArtist
”Do you have anything by X?”

4. s(predicate(#called|#named),arglist(obj(#:WORD)))  -->  Simple system:hasName
”Do you have a song called/named X?”

5. ncomp(#on/in|#in/in|#from/in,sbj:FRAME)  -->  Frame music:hasSongList
”Play something from an album by X”

Figure 5: Example NP-resolution rules

In the figure, (1) constructs a simple query for objects of
type  “Song”;  (2)  utilizes  an  MP3-specific  constraint-
construction  processes  to  match  a  “Song”  labeled  as
“this” (which is mapped to the currently playing song);6

6 Note that this only matches when “this” is used on its
own, not as a determiner in an NP, as in “this artist”---that
case is handled separately.

(3)  maps  a  “by X”  complement  onto  a  constraint  on
“Artist” (for either a song or an album)---the FRAME
variable indicates that the embedded NP may be com-
plex and should be itself analyzed; (4) handles an em-
bedded sentence of the form “named X”; and (5) han-
dles other complements that may qualify a query for a
song.

KbFrame: Device: MP3
Simple Constraint: Type = Song
Simple Constraint: Name = Vertigo
Frame  Constraint: Artist = KbFrame: Device: MP3

Simple Constraint: Name = U2



The interesting issue here is not so much the particular
syntax or format of our rules but the fact that such con-
structions can be easily specified for a given new device
and  encapsulated  with  the  device.  As  with  dialogue-
move  scripts,  generic  constructs  can  be  inherited  or
overwritten in a device-specific script, while device-spe-
cific  NP-interpretation  rules  can be  encapsulated  with
the given device. This is an important aspect of the plug-
and-play device specification.

5 Related Work

Multi-domain dialogue management typically involves
taking a powerful generic dialogue management engine
(e.g. (Allen et al 2000)) and customizing it for a new do-
main by providing domain-specific information such as
language  grammars  and  knowledge-bases.  Extending
such systems to be multi-device applications usually in-
volves extending domain-specific components and pro-
cesses  so  as  to  cover  the  new  application  domains.
Dzikovska  et al (2003) describe a novel way of using
two ontologies---one associated with a broad-coverage
parser, and a second associated with a task-domain---to
reuse as much generic linguistic capabilities when cus-
tomizing their  dialogue system to new domains.  Such
approaches  are  consistent  with the  approach  we have
taken: they provide a canonical semantic form for input
to the CDM, with the dialogue-move scripting approach
being used to deal with any missing coverage.
Dynamic  plug  and  play  architectures  for  devices  and
services are becoming widespread in industry, e.g. via
interface  standards  for  Web services  and  the  service-
oriented computing paradigm (Singh and Huhns 2005).
Dynamic  management  of  intelligent  devices  has  also
long been an important topic of multi-agent systems re-
search (e.g. the Open Agent Architecture (Cheyer and
Martin 2001)).
For dialogue systems, (Rayner  et al 2001) supplement
device  plug-and-play  with  device-specific  speech  and
language processing capabilities. In particular, adding a
new device to the system can extend the generic unifica-
tion grammar for  speech and language processing,  by
adding one or more of: new lexical entries, new gram-
mar rules,  or new feature values.  Rayner  et al’s tech-
niques are specifically designed to allow grammars to be
built by incremental  addition while using existing and
newly introduced features to constrain rule application,
to ensure maximally tight speech-recognition language
models. Semantic interpretation rules can also be includ-
ed with a device. However, task descriptions and other
dialogue  phenomena  are  not  the  main  focus  of  their
work  and  these  representation  processes  are  simple.
Rayner et al’s work is set in the context of an intelligent
home, where new dialogue-enabled devices are dynami-
cally added to the system.

The problem of device-resolution within this same appli-
cation area is addressed in (Quesada and Amores 2002).
Device-properties (e.g. location, device-type) are hierar-
chically-structured, allowing appropriate device in a re-
ferring  expression  to  be  resolved  by lookup (e.g.  for
“outdoor  lights”,  location=outdoors and  device-type=
light). Dynamic addition of devices involves categoriz-
ing such new devices appropriately in the device KB.
However, this work does not address how other dialogue
processes are dynamically extended on adding a device.
The  approach  to  plug-and-play  dialogue  management
taken by Pakucs  (2002,  2003)  has  similarities  to  that
taken here. In particular, Packucs’ SesaME system asso-
ciates  a  Dialogue  Description  Collection  (DDC)  with
the dialogue engine; these are associated with services
or devices and are updated on changes to these. DDCs
contain simple dialogue scripts, written in a formalism
based on VoiceXML, and contain task- and domain-spe-
cific dialogue scripting, as well as any application-inde-
pendent scripting for error-handling and meta-dialogues
(e.g. for providing information about available services).
In  essence  this  is  similar  to  the  general  approach we
have taken, although within a much lsimpler dialogue-
management framework.
Many dialogue-management systems support interaction
with multiple  devices,  and may use a  device-manager
component to  support  dynamic integration of new de-
vices. Such approaches typically involve extending data
and processes to be broader-coverage so as to cover ex-
tended domains introduced by these new devices, as op-
posed  to  encapsulating the  extensions to  the  dialogue
manager with the dialogue-enabled device.
Our approach also contrasts with other implementations
based on the TrindiKit (Larsson and Traum 2000), such
as DIPPER (Bos et al 2003), which provides a rich col-
lection of primitive constructs  for  building a dialogue
manager. Rather, we provide a powerful practical imple-
mentation of a core system, customizable via scripting to
new domains and applications, paying particular atten-
tion to encapsulating device information so as to enable
a plug-and-play dialogue management system.

6 Discussion

We have presented an extension to the CSLI Dialogue
Manager that enhances extensibility, customization, and
reuse,  as  well  as  forming the  basis  of  a  multi-device
plug-and-play dialogue system. Our approach contrasts
with  other  implementations  based  on  the  TrindiKit
(Larsson and Traum 2000), such as DIPPER (Bos et al
2003), which provides a rich collection of primitive con-
structs for building a dialogue manager. Rather, we pro-
vide a powerful practical implementation of a core sys-
tem, customizable via scripting to new domains and ap-
plications,  paying particular  attention  to  encapsulating
device information so as to enable a plug-and-play dia-
logue management system.



The CDM and the plug-and-play architecture is part of a
system for dialogue control of in-car electronic compo-
nents, such as entertainment systems, navigation system,
and  telematic  devices.7 The  vision  is  a  framework
whereby new devices, or dialogue-capability for existing
devices, can be added easily and without disruption to
the existing infrastructure.
The device-encapsulation approach, and in particular the
dialogue  move  scripting  language  and  NP-resolution
rules described here, has been applied to an initial do-
main---controlling an MP3 music player and accessing a
music database. Evaluation of a multi-device system, in-
volving the MP3 player and a restaurant recommenda-
tion capable of also providing navigational directions, is
scheduled for July 2005; evaluation results will be avail-
able for presentation at the workshop.
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