
Practical Plug-and-Play Dialogue Management

Danilo Mirkovic

CSLI, Stanford University
Cordura Hall, 210 Panama St, Stanford

CA 94305, USA
danilom@stanford.edu

Lawrence Cavedon

CSLI, Stanford University
Cordura Hall, 210 Panama St, Stanford

CA 94305, USA
lcavedon@stanford.edu

Abstract

We describe an architecture for practical mul-
ti-application, multi-device spoken-language
dialogue systems, based on the information-
state update approach. Our system provides
representation-neutral core components of a
powerful dialogue system, while enabling:
scripted domain-specific extensions to rou-
tines such as dialogue move modeling and ref-
erence resolution; easy substitution of specific
semantic representations and associated rou-
tines; and clean interfaces to external compo-
nents for language-understanding (i.e. speech-
recognition and parsing) and -generation, and
to domain-specific knowledge sources. This
infrastructure forms the basis of a “plug and
play” dialogue management capability, where-
by new dialogue-enabled devices can be dy-
namically introduced to the system. The plug-
and-play infrastructure is an important aspect
of an environment for dialogue control of in-
car devices.
Keywords: multi-device dialogue system; in-
formation state; conversational interface.

1 Introduction

CSLI has been developing activity-oriented dialogue
systems for a number of years, for applications such as
multimodal control of robotic devices (Lemon et al
2002), speech-enabled tutoring systems (Clark et al
2001), and conversational interaction with in-car devices
(Weng et al 2004). The dialogue system architecture in-
cludes various components: speech-recognizer, language
parser, language generation, speech-synthesizer, and the
CSLI Dialogue Manager (CDM), as well as connections
to external application-specific components such as on-
tologies or knowledge bases, and the dialogue-enabled
devices themselves.
Clean interfaces and representation-neutral processes
enable the CDM to be used relatively seamlessly with
different parsers and language-generation components.
Interaction with external devices is mediated by Activity

Models, i.e. declarative specifications of device capabil-
ities and their relationships to linguistic processes. How-
ever, customization to new domains has generally re-
quired some significant programming effort, due to vari-
ations in dialogue move requirements across applica-
tions, as well as certain processes (e.g. reference resolu-
tion) having domain-specific aspects to them.
In this paper, we describe recent enhancements to the
CDM infrastructure that allows simpler customization to
new dialogue domains and applications. Further, this
forms the basis of a “plug-and-play” dialogue manage-
ment architecture: device APIs encapsulate customized
dialogue moves, activity models, and knowledge bases,
as well as domain-specific extensions to core processes
(such as reference resolution). This enables multi-device
dialogue management, allowing new dialogue-enabled
devices to be dynamically added to an existing multi-de-
vice dialogue system.1

2 Dialogue Manager Architecture

Figure 1 outlines the CSLI Dialogue System architec-
ture. The CDM has been designed to be used with dif-
ferent components for parsing, NL generation (NLG),
etc. Early applications of the CDM used the rule-based
head-driven parser GEMINI (Dowding et al 1993) with
grammars tailored to the particular application domain:
the advantage of this approach is that the parser itself
performed semantic normalization, returning semantic
logical forms directly corresponding to the specific rep-
resentations of device activities. Recent CDM applica-
tions have involved use of a third-party statistical parser,
returning only weakly normalized semantic forms.
The CDM uses the information-state update approach
(Larsson and Traum 2000) to maintain dialogue context,
which is then used to interpret incoming utterances
(including fragments and revisions), resolve NPs,
construct salient responses, track issues, etc. Dialogue
state is also used to bias speech-recognizer expectation
and improve SR performance (Lemon and Gruenstein
2004). Detailed descriptions of the CDM can be found
in (Lemon et al 2002).

1 This supplements the plug-and-play approach to dy-
namic grammars of (Rayner et al 2001).

Figure 1: Dialogue System Architecture

The two central CDM components of the dialogue
information state are the Dialogue Move Tree (DMT)
and the Activity Tree (AT). The DMT represents the
historical context of a dialogue. Each dialogue
contribution is classified as a dialogue move (e.g.
Command, WhQuestion, etc.), and is interpreted in
context by attaching itself to an appropriate active node
on the DMT. For example, a WhAnswer attaches to an
active corresponding WhQuestion node. The tree
structure of the DMT specifically supports multi-
threaded, multi-topic conversations (Lemon et al 2002):
a new conversation topic spawns a new branch. A
dialogue move that cannot attach itself to the most
recent active node may attach to an active node in
another branch---corresponding to a resumed
conversation---or open a new branch by attaching itself
to the root node---corresponding to a new conversation
thread. The DMT also serves as context for interpreting
fragments, multi-utterance constructs, and revisions, and
provides discourse structure for tasks such as NP-
resolution.
The Activity Tree (AT) manages activities relevant to a
dialogue. When the user issues a command, this
generally results in a new activity being created and
added to the AT. Before the activity can actually be sent
to the device for execution, the system attempts to fully
resolve it, e.g. resolving all referring NPs or spawning a
sub-dialogue to elicit further information. Revisions and
corrections (e.g. “I meant/said …”) typically involve
editing an existing activity representation. Activity-
execution is monitored on the AT and changes may
result in a notification message being generated, e.g. on
failure or successful completion of a task.
Much device-specific information is encapsulated in an
Activity Model. The Activity Model is a declarative
specification of the capabilities of the agent or device
with which the CDM interfaces, and includes linguistic

information, such as mappings from predicate/argument
structure to device-actions. Arguments that are marked
as required may generate sub-dialogues when a user-
command is given with missing arguments. A small
portion of an Activity Model for an MP3 device is given
in Figure 2. Playable in the “required” argument
position corresponds to a class from the associated
ontology of objects associated with this application;
playable-object is a variable name filled by matching a
dialogue move, as described below.

3 Domain-Independent Dialogue Scripts

In early versions of the CDM, dialogue moves were cod-
ed completely programmatically (in Java); our approach
involved developing libraries of general-purpose dia-
logue moves (e.g. Command, WhQuestion, WhAnswer,
etc) corresponding to the types of dialogue contributions
found in activity-oriented dialogues. As the Dialogue
Manager was applied to new applications, new dialogue
moves were implemented as necessary, or existing dia-
logue moves refined to apply to the new application.
Multiple applications were implemented in this way.
Customizing dialogue moves to new domains typically
required substantial coding. Further, using off-the-shelf
parsers with wide-coverage grammars, or corpus-trained
statistical parsers, required the CDM to be able to han-
dle new input semantic forms. The requirement of broad
coverage dictates that the mapping from input to correct
dialogue move be easily extensible.2 One approach to
extending coverage is to normalize semantic information
against a broad language ontology (e.g. WordNet
(Miller 1995)) or other knowledge base (Dzikovska
2004). However, this still requires incoming forms to be
mapped to the internal representation.

2 Ideally, this could be learned automatically.

 Device API Device API Device API

 Activity Tree Dialogue Move Tree

Input
processor

Output
processor

NP resolver

Knowledge
Manager

Device
ManagerKnowledge

sources

ASR and Parser NLG and TTS

NP-resolution
grammar

 CSLI
 Dialogue
 Manager

DM process
extensions

Dialogue
moves script

Devices

Activity
model

To promote re-use of dialogue moves, enhance extensi-
bility, and cope with semantic variation across domains,
we have implemented a dialogue-scripting language for
writing dialogue moves, defining:
1. hierarchical definition of dialogue moves, allowing

inheritance and re-use of existing dialogue moves,
while allowing customization to a particular domain
or device;

2. direct mappings of input semantic forms to appro-
priate dialogue moves;

3. attachment rules for information update;

4. other dialogue move-specific information, such as
specification of output to be generated for disam-
biguation, requests for required information, etc.

Note that our approach of using easily-extensible dia-
logue move scripts is consistent with using other ap-
proaches to achieve broad semantic coverage, such as
use of an ontology or knowledge-base as mentioned
above. However, it provides a general approach for sup-
plying application-specific information to the CDM, for
customizing it to new domains, as well as enabling our
“plug and play” multi-device infrastructure. Figure 3 il-
lustrates a portion of a sample dialogue move script (de-
tails are described below).

Types {
Playable;
...

}
Slots {

Playable playable-object;
...

}

// Task definitions
taskdef<play, "play"> {

DefinableSlots {
required Playable playable-object;
optional ... // optional arguments (e.g. volume)

}
...

}
Figure 2: Portion of an Activity Model for an MP3 device

User Command:play {
// inherits from generic Command dialogue move
Description "play something"
Input {

 // “play/start X”
“s(features(mood(imperative)),
 predicate(#play/vb|#start/vb),

 ?arglist(obj:_,?sbj:*))”
 // “I want to play/hear X”
“s(features(mood(indirect)),
 predicate(#play/vb|#hear/vb),

 ?arglist(obj:_playable-object,?sbj:*))”
// other templates ...

}
Producing { // Questions

System WHQuestion:disambiguate
System WHQuestion:fill:play:_playable-object {

Output {avs "(e1 / play
:question (q1 / what)

 :agent I)"
} ... }

 CloseOn System Report:play:playing {
 Output {avs "(e1 / play

 :patient (p1 / [song])
 :aspect continuous)"

}
... }

... }
Figure 3: Sample dialogue move script for a play Command for an MP3 device

Variables in the dialogue move script correspond to
variables in the Activity Model (AM) for the corre-
sponding device. In particular, the AM for the MP3 de-
vice contains a play operation with a corresponding (re-
quired) _playable-object argument. When an incoming
semantic form matches an Input template in the above
script, the unification operation fills the _playable-ob-
ject variable, which resolves to an object from the de-
vice’s domain of objects (see below) and fills the corre-
sponding slot in the activity constructed from the device
Activity Model.
Following are further details on the properties of the dia-
logue move scripting language.

3.1 Hierarchical dialogue move specification

The scripting language allows hierarchical specification
and refinement of dialogue moves. The move in Figure
3 corresponds to a play command, and inherits from a
more generic Command dialogue move. The Command
dialogue move is implemented in Java: its script has a
field naming the Java class that implements it. The play
command move is implemented by the same generic
code, but specifies its own patterns for triggering the
move, and defines attachment patterns and appropriate
generation messages. In general, the depth of inheritance
is unbounded: e.g. we could define a sub-move of the
play command move that is applicable in very specific
contexts.
One type of move for which this is particularly useful is
information-query moves across devices. Questions
about music in an MP3 database or restaurants in a city
information guide are often structurally similar: i.e.
query-construction itself is (relatively) domain-indepen-
dent. Each type of query can be handled by a different
dialogue move (corresponding to different devices or
knowledge sources), but each set of Inputs is inherited
from a single Query dialogue move.
Other operations that can be applied at abstract levels of
dialogue move include rewrite rules: these are used to
transform input forms before they are matched against
dialogue move Input templates, e.g., transforming indi-
rect commands into direct imperatives, or replacing a
temporal marker (e.g. “now”) with an appropriate se-
mantic feature. Rewrite rules are attached to domain-
specific dialogue move scripts, or to generic scripts, as
appropriate.

3.2 Selecting dialogue move via semantic template

The Input section of a dialogue move script contains the
list of input items that would trigger this particular dia-
logue move. These templates are matched against the
output of the parser (in the case of the example in Figure
3, a statistical parser trained on a corpus collected from
Wizard of Oz experiments of users interacting with an
MP3 player (Cheng et al 2004)). Parsed forms may be
normalized or processed in any way (e.g., using an on-

tology, or via rewrite rules) before being matched
against Input templates. Input templates can be attached
to domain-specific dialogue moves or to generic moves
(and inherited).
The specific formalism of the Input templates in Figure
3 is not important: the formalism is specific to the output
of a particular statistical parser, but the templates can be
viewed as feature structures, and the matching operation
is effectively one-way unification. The special symbols
are interpreted as follows: “#” indicates a lexical item,
with part-of-speech tag following the “/” symbol; “|” in-
dicates alternatives; “?” indicates an optional argument;
“_” indicates a variable matching one from the Activity
Model; and “*” matches anything. Hence, the dialogue
move in Figure 3 matches “play X”, “start X”, or an in-
direct command involving “play X” or “hear X”;3 the
object to be played is marked as optional---i.e., the tem-
plate matches even when this argument is missing.
The CDM is representation neutral, in that the form of
the templates and the corresponding matching algorithm
can be replaced without affecting the rest of the CDM
infrastructure. This enables easy replacement of parser
or NLG component to one using different representa-
tions. For example, we could substitute a more standard
feature-structure representation and feature-unification
algorithm, with no other changes to the Dialogue Man-
ager code required.
When an input form matches an entry in a dialogue
move’s Input section, this may cause variables to be
bound; in particular, a variable that corresponds to one
from the Activity Model. For example, if an input
matching the dialogue move in Figure 3 contains a well-
formed arg argument, then this supplies a value for
_playable-object; if no arg is present, then this variable
is left unfilled (in which case the Command dialogue
move generates a request for information).
In general, multiple matches are possible, since there are
generally multiple scripted dialogue moves and multiple
entries in each move’s Input section. Our current strate-
gy is to score each possible match using generic criteria
(e.g. applicability to current context; minimizing unre-
solved information). Current work inolves investigating
probabilistic approaches to incorporating evidence from
multiple criteria to select appropriate dialogue move, in-
cluding prosodic information and shallow topic-catego-
rization.

3.3 Specifying attachment rules

The dialogue scripting language provides a mechanism
for specifying attachment rules: i.e. which types of dia-
logue moves can attach to an existing active node in the
DMT. For example, Figure 3 shows that (amongst oth-
ers) a disambiguating WhQuesion or a WhQuestion for
filling a missing argument can attach to a Command

3 For convenience, indirect commands have their embed-
ded sentence extracted using a generic rewrite rule.

node.4 Dialogue move information can be scripted “in
place” inside one of these specifications (as done for the
WhQuestion:fill:play move).
The scripts also encode which adjacent moves close a
dialogue move (i.e. inactivate it so no other move can
attach to it), in the CloseOn field. Closing a node for at-
tachment effectively closes the corresponding thread of
conversation.5 Nodes are also automatically closed after
a specified period.

3.4 Specification of system responses

Much of the system output is automatically generated,
e.g. encoded in very general-purpose dialogue moves.
However, applications often call for domain- and de-
vice-specific outputs. These can also be encoded in the
dialogue move scripts; since these will be system re-
sponses, these are encoded inside System dialogue
moves. Any representation is permitted, so long as it
matches the representation used by the specific NLG
system with which the CDM is interfaced for the given
application. This is another way in which the CDM is
representation neutral: including a different NLG com-
ponent, using a different representation, in the dialogue
system may require modification of the scripts, but re-
quires no modification to the core of the CDM.

4 Multi-Device Plug-and-Play Dialogue
Management

Plug-and-play capability is an important feature of sys-
tems that can have their functionality extended without
going off-line. Plug-and-play typically involves adding
new components that provide enhanced functionality
without disrupting the existing framework. Implement-
ing a plug-and-play environment requires at minimum a
specification language for components to advertise their
capabilities, as well as a clean encapsulation of the im-
plementation of the component. In our framework, the
first of these is provided as part of the dialogue-move
scripting; we discuss other aspects of device-encapsula-
tion here.

4.1 Device encapsulation

New devices that register with the dialogue manager
must encapsulate all information required for managing
dialogue with these new devices. This information in-
cludes:
1. dialogue-move scripts, as described above;
2. Activity Model describing any device functionality

accessible by dialogue;
3. device-specific ontology and knowledge base (KB);

4 Such attachment rules are often specified at more ab-
stract levels, not at the level of specific commands.

5 Revisions may reopen a Command or Query node.

4. rules for device-specific NP-resolution (Section
4.3).

Device-specific implementations of dialogue manage-
ment processes can also be added, or overwrite generic
ones, by the device encapsulation including appropriate
new Java classes. For example, a dialogue-move that
handles a new form of interaction introduced by a new
device could be added. In general, however, the four
components above contain all device-specific informa-
tion required, and allow for dynamic plug-and-play of
dialogue-enabled devices.

4.2 Multi-device dialogue management

We have extended the Dialogue Move Tree (DMT) in-
frastructure so that it allows new devices to be plugged
in dynamically. New dialogue-enabled devices register
themselves with a Device Manager. Nodes in the DMT
are associated with specific devices where appropriate;
“current device” becomes part of the information-state
and interpreting incoming utterances is performed in this
context.
Device-selection---i.e., determining which device an ut-
terance is associated with---is a further complication in
this setting. The current decision process involves lexi-
cal and semantic information, dialogue move classifica-
tion, discourse structure, as well as bias towards the
“current device”. Relating NPs to the appropriate device
ontology is a specific strategy: e.g. reference to a “song”
will match a category in the ontology associated with an
MP3 device, but potentially with no other devices. This
strategy does not necessarily resolve all device-ambigui-
ties however: e.g. an address-book may be used by both
a phone-device (“get John on the phone”) as well as a
navigation service (“how do I get to John's house?”). In
general, the processes of device-selection and NP-reso-
lution are co-dependent: information about the resolu-
tion of NPs provides important clues about the device
being referred to; however, NP-resolution may actually
be quite device-specific (as discussed in Section 4.3).
Our approach is to perform a shallow NP analysis, e.g.
matching nouns and proper names against ontology cate-
gories and KB items associated with a specific device in
order to identify device, and then using the device-spe-
cific NP-resolution rules (see Section 4.3) to fully re-
solve the NPs.
We plan to use other features (e.g., shallow topic-cate-
gorization techniques) and develop probabilistic meth-
ods for this classification task. We are currently collect-
ing a corpus of multi-device dialogues and also hope to
be able to automatically learn this task.

4.3 Multi-device NP-resolution

Much of the NP-resolution process can be seen as fairly
domain-independent (e.g. anaphora resolution). Howev-
er, aspects of NP-resolution are both domain- and de-
vice-dependent. For example, interpreting “What's this”

is handled differently in the context of music playing
over an MP3 player than when using a touch-screen
multimodal interface.
We address this problem in a manner analogous to our
approach to customizing dialogue moves: the core NP-
resolution capabilities implemented in the CDM can be
custom-adapted for a specific domain/device via an NP-
resolution scripting language. NP-resolution scripts are
effectively context-free grammars that allow the user to
define how NP objects are mapped to knowledge-base
queries for a specific device, in the context of the cur-
rent dialogue information state and input semantic form.
In particular, for the MP3 device, “this” in the context of
“What's this” would be mapped to a query that returns
the name of the currently playing song.
NPs are translated into Java objects implementing con-
straint-based KB-queries. Rules specify how to translate
NPs specified in the input semantic form into such ob-
jects. The dialogue manager contains a number of gener-
ic constraint objects and associated transformations, but
further objects may be included as part of the device en-
capsulation to provide any novel processing specific to
that device. For example, an MP3 device will need to
handle qualifiers such as “by artist”, and know to trans-
late this construct into an appropriate constraint on the
artist field of the KB.

The way in which information is extracted from an NP
representation depends, of course, on the specific format
of the input as well as the structure of the KB associated
with a device. We use a rule-based language for specify-
ing how an NP (in whatever format is used) maps to
constraint-based query objects, making use of generic or
device-specific frame-construction operations. Such
rules are used for handling synonyms (i.e. by mapping
multiple nouns into the same query-type) as well as
specifying the construction of complex query objects
from complex NPs.
The simple examples in Figure 5, taken from the NP-
resoltion script for an MP3 device, illustrate some of the
features of our approach. The left-hand side of each rule
matches a construct from the output of the statistical
parser used in this particular application: the symbol ‘#’
indicates that the corresponding word has been marked
as a head word; the token following ‘/’ is the POS of the
matched item; entries in upper-case designate variables.
The right-hand side of each rule specifies how to con-
struct a query or constraint for the KB: the first item sig-
nifies what type of constraint this is (which determines
which construction process to use); the rest of the RHS
specifies the specific KB fields to test.

Figure 4: Sample NP-query object for “the song Vertigo by U2”

1. #song --> Simple system:hasCategory : music:Song
”What songs do you have?”

2. #this/dt --> MP3Specific this music:Song
”What’s this?”

3. ncomp(#by/in,sbj:FRAME) --> Frame music:songHasArtist|music:albumHasArtist
”Do you have anything by X?”

4. s(predicate(#called|#named),arglist(obj(#:WORD))) --> Simple system:hasName
”Do you have a song called/named X?”

5. ncomp(#on/in|#in/in|#from/in,sbj:FRAME) --> Frame music:hasSongList
”Play something from an album by X”

Figure 5: Example NP-resolution rules

In the figure, (1) constructs a simple query for objects of
type “Song”; (2) utilizes an MP3-specific constraint-
construction processes to match a “Song” labeled as
“this” (which is mapped to the currently playing song);6

6 Note that this only matches when “this” is used on its
own, not as a determiner in an NP, as in “this artist”---that
case is handled separately.

(3) maps a “by X” complement onto a constraint on
“Artist” (for either a song or an album)---the FRAME
variable indicates that the embedded NP may be com-
plex and should be itself analyzed; (4) handles an em-
bedded sentence of the form “named X”; and (5) han-
dles other complements that may qualify a query for a
song.

KbFrame: Device: MP3
Simple Constraint: Type = Song
Simple Constraint: Name = Vertigo
Frame Constraint: Artist = KbFrame: Device: MP3

Simple Constraint: Name = U2

The interesting issue here is not so much the particular
syntax or format of our rules but the fact that such con-
structions can be easily specified for a given new device
and encapsulated with the device. As with dialogue-
move scripts, generic constructs can be inherited or
overwritten in a device-specific script, while device-spe-
cific NP-interpretation rules can be encapsulated with
the given device. This is an important aspect of the plug-
and-play device specification.

5 Related Work

Multi-domain dialogue management typically involves
taking a powerful generic dialogue management engine
(e.g. (Allen et al 2000)) and customizing it for a new do-
main by providing domain-specific information such as
language grammars and knowledge-bases. Extending
such systems to be multi-device applications usually in-
volves extending domain-specific components and pro-
cesses so as to cover the new application domains.
Dzikovska et al (2003) describe a novel way of using
two ontologies---one associated with a broad-coverage
parser, and a second associated with a task-domain---to
reuse as much generic linguistic capabilities when cus-
tomizing their dialogue system to new domains. Such
approaches are consistent with the approach we have
taken: they provide a canonical semantic form for input
to the CDM, with the dialogue-move scripting approach
being used to deal with any missing coverage.
Dynamic plug and play architectures for devices and
services are becoming widespread in industry, e.g. via
interface standards for Web services and the service-
oriented computing paradigm (Singh and Huhns 2005).
Dynamic management of intelligent devices has also
long been an important topic of multi-agent systems re-
search (e.g. the Open Agent Architecture (Cheyer and
Martin 2001)).
For dialogue systems, (Rayner et al 2001) supplement
device plug-and-play with device-specific speech and
language processing capabilities. In particular, adding a
new device to the system can extend the generic unifica-
tion grammar for speech and language processing, by
adding one or more of: new lexical entries, new gram-
mar rules, or new feature values. Rayner et al’s tech-
niques are specifically designed to allow grammars to be
built by incremental addition while using existing and
newly introduced features to constrain rule application,
to ensure maximally tight speech-recognition language
models. Semantic interpretation rules can also be includ-
ed with a device. However, task descriptions and other
dialogue phenomena are not the main focus of their
work and these representation processes are simple.
Rayner et al’s work is set in the context of an intelligent
home, where new dialogue-enabled devices are dynami-
cally added to the system.

The problem of device-resolution within this same appli-
cation area is addressed in (Quesada and Amores 2002).
Device-properties (e.g. location, device-type) are hierar-
chically-structured, allowing appropriate device in a re-
ferring expression to be resolved by lookup (e.g. for
“outdoor lights”, location=outdoors and device-type=
light). Dynamic addition of devices involves categoriz-
ing such new devices appropriately in the device KB.
However, this work does not address how other dialogue
processes are dynamically extended on adding a device.
The approach to plug-and-play dialogue management
taken by Pakucs (2002, 2003) has similarities to that
taken here. In particular, Packucs’ SesaME system asso-
ciates a Dialogue Description Collection (DDC) with
the dialogue engine; these are associated with services
or devices and are updated on changes to these. DDCs
contain simple dialogue scripts, written in a formalism
based on VoiceXML, and contain task- and domain-spe-
cific dialogue scripting, as well as any application-inde-
pendent scripting for error-handling and meta-dialogues
(e.g. for providing information about available services).
In essence this is similar to the general approach we
have taken, although within a much lsimpler dialogue-
management framework.
Many dialogue-management systems support interaction
with multiple devices, and may use a device-manager
component to support dynamic integration of new de-
vices. Such approaches typically involve extending data
and processes to be broader-coverage so as to cover ex-
tended domains introduced by these new devices, as op-
posed to encapsulating the extensions to the dialogue
manager with the dialogue-enabled device.
Our approach also contrasts with other implementations
based on the TrindiKit (Larsson and Traum 2000), such
as DIPPER (Bos et al 2003), which provides a rich col-
lection of primitive constructs for building a dialogue
manager. Rather, we provide a powerful practical imple-
mentation of a core system, customizable via scripting to
new domains and applications, paying particular atten-
tion to encapsulating device information so as to enable
a plug-and-play dialogue management system.

6 Discussion

We have presented an extension to the CSLI Dialogue
Manager that enhances extensibility, customization, and
reuse, as well as forming the basis of a multi-device
plug-and-play dialogue system. Our approach contrasts
with other implementations based on the TrindiKit
(Larsson and Traum 2000), such as DIPPER (Bos et al
2003), which provides a rich collection of primitive con-
structs for building a dialogue manager. Rather, we pro-
vide a powerful practical implementation of a core sys-
tem, customizable via scripting to new domains and ap-
plications, paying particular attention to encapsulating
device information so as to enable a plug-and-play dia-
logue management system.

The CDM and the plug-and-play architecture is part of a
system for dialogue control of in-car electronic compo-
nents, such as entertainment systems, navigation system,
and telematic devices.7 The vision is a framework
whereby new devices, or dialogue-capability for existing
devices, can be added easily and without disruption to
the existing infrastructure.
The device-encapsulation approach, and in particular the
dialogue move scripting language and NP-resolution
rules described here, has been applied to an initial do-
main---controlling an MP3 music player and accessing a
music database. Evaluation of a multi-device system, in-
volving the MP3 player and a restaurant recommenda-
tion capable of also providing navigational directions, is
scheduled for July 2005; evaluation results will be avail-
able for presentation at the workshop.

Acknowledgement. This work is supported in part by
the NIST Advanced Technology Program.

References
J. Bos, E. Klein, O. Lemon, T. Oka. 2003. Dipper: De-

scription and formalization of an information-state
update dialogue system architecture. 4th SIGdial
Workshop on Discourse and Dialogue, Sapporo.

H. Cheng, H. Bratt, R. Mishra, E. Shriberg, S. Upson, J.
Chen, F. Weng, S. Peters, L. Cavedon, J. Niekrasz.
2004. A Wizard of Oz framework for collecting spo-
ken human-computer dialogs. INTERSPEECH: 8th

International Conference on Spoken Language Pro-
cessing, Jeju Island, Korea.

A. Cheyer and D. Martin. 2001. The Open Agent Archi-
tecture. Journal of Autonomous Agents and Multi-
Agent Systems, 4(1).

B. J. Clark, Fry, M. Ginzton, S. Peters, H. Pon-Barry, Z.
Thomsen-Grey. 2001. Automated tutoring dialogues
for training in shipboard damage control. 2nd SIGdial
Workshop on Discourse and Dialogue, Aalborg.

J. Dowding, J. M. Gawron, D. Appelt, J. Bear, L.
Cherny, R. Moore, D. Moran. 1993. GEMINI: A nat-
ural language system for spoken-language under-
standing. 31st Meeting of the ACL, Columbus, OH.

M. O. Dzikovska. 2004. A Practical Semantic Repre-
sentation for Natural Language Parsing. Ph.D. The-
sis, University of Rochester.

M. O. Dzikovska, M. D. Swift, J. F. Allen. 2003. Inte-
grating linguistic and domain knowledge for spoken
dialogue systems in multiple domains. IJCAI-03
Workshop on Knowledge and Reasoning in Practical
Dialogue Systems, Acapulco, Mexico.

7Collaborating partners are Robert Bosch Corporation,
VW America, and SRI International.

S. Larsson and D. Traum. 2000. Information state and
dialogue management in the TRINDI dialogue move
engine toolkit. Natural Language Engineering, 6(3-
4).

O. Lemon and A. Gruenstein. 2004. Multi-threaded con-
tect for robust conversational interfaces: context-sen-
sitive speech-recognition and interpretation of correc-
tive fragments. Transactions on Computer-Human
Interaction (ACM TOCHI), 11(3).

O. Lemon, A. Gruenstein, S. Peters. 2002. Collaborative
activities and multi-tasking in dialogue systems.
Traitement Automatique des Langues (TAL), 43(2).

G. A. Miller. 1995. WordNet: A lexical database for En-
glish. Communications of the ACM 38.

B. Pakucs. 2002. VoiceXML-based dynamic plug and
play dialogue management for mobileenvironments.
ISCA T&R Workshop on Multi-Modal Dialogue in
Mobile Environments, Kloster Irsee, Germany.

B. Pakucs. 2003. Towards dynamic multi-domain dia-
logue processing. EUROSPEECH: 8th European
Conference on Speech Communication and Technol-
ogy, Geneva.

J. F. Quesada and J. G. Amores. 2002. Knowledge-
based reference resolution for dialogue management
in a home domain environment. EDILOG: 6th Work-
shop on the Semantics and Pragmatics of Dialogue,
Edinburgh.

M. Rayner, I. Lewin, G. Gorrell, J. Boyce. 2001. Plug
and play speech understanding. 2nd SIGdial Work-
shop on Discourse and Dialogue, Aalborg.

M. P. Singh and M. N. Huhns. 2005. Service-Oriented
Computing: Semantics, Processes, Agents. John Wi-
ley and Sons.

F. Weng, L. Cavedon, B. Raghunathan, D. Mirkovic, H.
Cheng, H. Schmidt, H, Bratt, R. Mishra, S. Peters, L.
Zhao, S. Upson, L. Shriberg, C. Bergmann. 2004. A
conversational dialogue system for cognitively over-
loaded users (poster). INTERSPEECH: 8th Interna-
tional Conference on Spoken Language Processing,
Jeju Island, Korea.

