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ABSTRACT
Personal assistants need to allow the user to interact with
the system in a flexible and adaptive way such as through
spoken language dialogue. In this research we focus on an
application in which the user can use a variety of devices to
interact with a collection of personal assistants each special-
izing in a task domain such as email or calendar manage-
ment, information seeking, etc. We propose an agent-based
approach for developing the dialogue manager that acts as
the central point maintaining continuous user-system inter-
action and coordinating the activities of the assistants. In
addition, this approach enables development of multi-modal
interfaces. We describe our initial implementation which
contains an email management agent that the user can in-
teract with through a spoken dialogue and an interface on
PDAs. The dialogue manager was implemented by extend-
ing a BDI agent architecture.

Categories and Subject Descriptors: I.2 [Artificial In-
telligence]: Natural Language Processing, Distributed Arti-
ficial Intelligence

General Terms: Human Factors.

Keywords: Dialogue Modelling, Personal Assistant, BDI
Agent Architecture.

1. INTRODUCTION
In recent years, considerable research effort has been put

into the area of dialogue modelling for computer-based ap-
plications. The goal is to allow high-level, human-like user-
system interaction such as through spoken language inter-
faces, which become feasible in domains that are sufficiently
constrained to overcome the limitations of speech recogni-
tion over large vocabularies. To ensure flexible, adaptive
and continuous interaction, dialogue management for such
interfaces is of particular importance. The main functions
of a dialogue manager are to maintain the conversational
context and model strategies for controlling the dialogue
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structure. Our intended application is a “Smart Personal
Assistant” (SPA), which is a suite of personal assistants,
each specializing in a particular application domain such
as email or calendar management. For example, the user
should be able to do email tasks such as searching, deleting,
archiving, replying to emails and requesting for notification
of important email arrivals. This integrated collection of as-
sistants can be accessible via a range of devices (e.g. PDAs,
phones, desktops) and the communication is through spo-
ken or typed-text dialogue and GUI. The application must
provide a single point of contact so that the user can easily
switch back and forth between different personal assistants.
The user may also change physical context by using differ-
ent devices, although it is unlikely that more than one de-
vice would be used at the same time. The dialogue manger
should be the central component for maintaining a coherent
dialogue with the user and also coordinating the activities
of the personal assistants. The research in this paper aims
to model the natural language dialogue needed for such ap-
plications.

Most existing spoken dialogue systems focus on simple
and constrained tasks. Some examples are the telephone-
based flight and travel-package booking systems by Pellom
et al. [18], by Seneff and Polifroni [23], and by Xu and Rud-
nicky [28]. Earlier systems are the Philips train information
system [2] or the MIMIC system for querying movie show
times [6]. Dialogue structures in these systems are repre-
sented by some prescriptive grammar. This grammar can
be a finite state machine/graph consisting of conversation
states. Other approaches use pre-defined sets of ordered
rules to constrain the possible sequences of user utterances,
or a hierarchy of conversation topics each represented as a
frame with several slots for related pieces of information,
such as in the YPA directory enquiry system [8]. Managing
the dialogue in this frame-based approach can then be cast
as a slot-filling problem. A disadvantage of these approaches
is that maintenance of the system’s topic hierarchy and/or
rule set requires significant effort. Another approach, used
in the TRINDI project [15], is based on the concepts of in-
formation state and dialogue move. The information state
represents the relevant aspects of information in the dia-
logue and is updated in every dialogue move. The updates
are governed by a set of update rules.

Those approaches are not suitable for applications such
as the SPA. They are fairly simple and cannot provide the
desired level of sophistication required for complex domains
such as remote email management, in which several inter-



actions may be required to complete a single task. The
dialogue model in the SPA must be user-independent (so
that the system can be deployed for different users) but it
must also adapt to the user’s device, environment and pref-
erences. For example, the system must decide not to use
spoken dialogue in environments such as seminars since it
would be socially inappropriate. More interesting is the po-
tential for the character of the dialogue to change during a
course of interaction. The user may change physical con-
text by moving around and/or being connected to new de-
vices. While full information can be shown on large-screen
devices (e.g. desktops), only important information should
be displayed on small devices such as PDAs. Moreover, the
dialogue model should be robust enough to be able to re-
cover from poor quality speech recognition. In the case of
a recognition error, the system can open a sub-dialogue for
clarification.

There has been other work on modelling dialogue for com-
plex task domains. In the TRAINS system [1] and its suc-
cessor, TRIPS [4], Allen and others view dialogue as a col-
laborative process in which the user and the system work
together for some problem solving task (e.g. an emergency
vehicle dispatch scenario). Approaches such as in these sys-
tems would be unnecessarily complicated for the SPA. The
SPA application domain involves less problem solving but
more continuous interactions than in those systems. Thus
the dialogue manager should be light enough for this prob-
lem, and focus more on the user’s interaction rather than on
problem solving.

The dialogue in the case of the SPA is mainly user-driven.
Nevertheless, system initiative is also essential for clarify-
ing user requests or notifying the user of important events.
Hence the dialogue management requires some degree of pro-
activeness as for error recovery but also reactiveness in or-
der to fulfil the user’s requests. We therefore believe it is
advantageous to design the dialogue manager as an agent.
The dialogue management agent will maintain coherent in-
teraction with the user as well as being a coordinator that
directs the actions of the specialist agents such as email and
calendar agents. For example, the agent may have a num-
ber of plans each specifying the agent’s actions for achieving
a goal such as for utterance interpretation, identifying the
user’s intention, response generation, etc. (more details are
given in Section 2.1). The agent looks through its plans
to find those that are relevant to its goal and applicable to
the situation and executes them. Learning can also be inte-
grated into the agent by incorporating meta-plans as inter-
mediate steps for plan selection. An agent-based approach
is also beneficial in other respects. The issue of semantic
interoperability is solvable by formulating declarative rep-
resentations of the capabilities of individual agents and of
the SPA as a whole, which will enable back-end integration
with existing personal assistants. Agents embody the char-
acteristic of modularity. Adapting an agent-based dialogue
model for integration of more specialist agents becomes eas-
ier with this approach, requiring the addition to the agent of
domain-related plans and internal knowledge. Hence, mod-
ularity can be achieved at the level of agent plans. Another
important aspect is tracking the conversational context to
allow the system to conduct coherent dialogue with the user.

The idea of employing an agent paradigm is also moti-
vated by existing research on intelligent user interfaces. Ini-
tially, there were arguments over which of the two interac-

tion metaphors would be better for user interface develop-
ment: the tool metaphor or the agent metaphor. In one
view, the system interface is viewed as a tool that allows
the user’s direct manipulation of available options in order
to perform some task, whilst researchers of the interface-as-
agent view suggest that intelligent interfaces should better
be structured as agents. This view is strengthened by Chin’s
argument in [5] that an intelligent interface must exhibit to
some degree autonomous and intelligent behaviour such as
taking the initiative to correct user misconceptions or sug-
gest alternative actions. A more recent proposal by Horvitz
[12] was to improve user-system interaction by combining
the tool and agent metaphors into a single framework. In
the case of the SPA, it is essential to provide this sort of
mixed-initiative interface (e.g. through natural language di-
alogue) in addition to the conventional GUI due to the lim-
itations (e.g. small keyboard, stylus for input, small screen
for output) of mobile devices such as phones and PDAs.

In this paper, we discuss our work in extending an agent
architecture for the implementation of the SPA dialogue
manager. The current system works for typed-text dia-
logue. We have also done experiments with the IBM Vi-
aVoice speech recognition software. Although the dialogue
manager was able to recover from some recognition errors,
our experience was that ViaVoice is inconsistently unreli-
able, thus not adequate for our application. Currently we
are testing a version of Dragon NaturallySpeaking. Initial
testing suggests that the speech recognition errors will be
more predictable. Our application does not require speech
recognition of 100% accuracy. However, certain common
keywords (e.g. “mail”, “from”) need to be reliably recog-
nized. Otherwise, recognition errors (e.g. for proper names)
need to be consistent to enable correction by the dialogue
manager. The structure of the paper is as follows. In Section
2, we discuss how an agent architecture can be extended for
dialogue modelling. Section 3 illustrates the dialogue pro-
cessing in more detail which includes an overview of the SPA
system. The current development status is given in Section
4. Section 5 studies the related work and finally, the con-
clusion and future work is in Section 6.

2. AGENTS FOR DIALOGUE MODELLING

2.1 BDI Agent Architectures
There is a lack of consensus in the agent community about

what exactly constitutes an agent. According to Wooldridge
and Jennings [27], an agent should have at least one informa-

tional attitude (e.g. knowledge or belief) to maintain infor-
mation about the environment and one pro-attitude (e.g. de-
sires, goals or intentions) to guide the agent’s actions. Many
agent architectures in the literature follow the well-known
BDI model, in which an agent has three primary mental
attitudes of Belief, Desire and Intention. These attitudes
respectively represent the informational, motivational and
deliberative states of the agent, Rao and Georgeff [19].

One instance of BDI agent architectures, the PRS (Pro-
cedural Reasoning System) architecture, was developed by
Georgeff and Lansky [9]. The PRS abstract architecture is
presented in Figure 1. The inputs to the agent are events
from the environment and the outputs are the agent’s ac-
tions. The interpreter loops and generates an action in each
cycle. External and internal events are always added to an
event queue. The agent’s beliefs are adjusted according to



those events. At the beginning of a cycle, plans are chosen
from the plan library which specify courses of action that
may be undertaken in order to achieve the agent’s goals.
Next, the deliberator, a component of the interpreter, se-
lects a subset of these plans to be adopted and adds them
to the intention structure. The agent then executes one ac-
tion from one plan in the intention structure. The intention
and goal structures are modified by dropping successful goals
and satisfied intentions, as well as impossible goals and un-
realizable intentions. Hence, due to new external events, the
agent can reactively choose to drop intended plans and/or
adopt others.

AGENT

Events

Beliefs

Goals

Interpreter

Plan
Library

Actions

ENVIRONMENT

Intention

Figure 1: PRS Architecture

PRS has been shown to operate very effectively in con-
tinuously changing environments such as military scenarios.
In such environments, the agent must respond appropriately
in reacting to the situation as well as be deliberative in ful-
filling its prior goals. The situation in our SPA system is
probably less dynamic. However, the dialogue management
must similarly balance the requirements of being reactive
and pro-active, as has been discussed earlier in Section 1.

Therefore we chose a PRS-style agent platform, JACK
Intelligent AgentsTM [13], for developing the dialogue man-
ager agent. JACK is a Java implementation derived from
the PRS architecture which also includes mechanisms for
agent communication by exchanging messages. In the cur-
rent SPA implementation, the dialogue manager is a BDI
agent that has a set of plans for:

- Identifying conversational acts
- Identifying the user’s intentions
- Performing tasks by contacting appropriate PAs
(e.g. email, calendar agent)

- Generating system responses

The BDI agent architecture in JACK provides a general
framework for implementing the dialogue manager. In ad-
dition, this framework has also been extended for including
the dialogue data structure to maintain the conversational
context. Next, we describe in detail those extensions.

2.2 Dialogue Data Structure as Agent Beliefs
Dialogue is a kind of discourse where each participant pe-

riodically takes turns to be speaker and hearer. Discourse
research has been closely related to a question of what infor-
mation is being conveyed in a coherent discourse, in addition
to the literal meanings of the individual utterances. There
are two major lines of approaches which are referred to as in-

formational and intentional. Informational approaches con-
sider the coherence of discourse to derive from semantic re-
lationships between the information expressed by successive
utterances. On the other hand, according to intentional ap-
proaches, the coherence of discourse comes from the inten-

tions of the speaker, and understanding depends on recog-
nition of those intentions.

We follow the intentional approaches, which are consis-
tent with early work on speech act theory by Austin [3] and
Searle [22]. Briefly, the speaker in a dialogue, by making
an utterance, intends to perform some action known as an
illocutionary act (generally termed speech acts). All speech
acts can be classified into five major classes: assertives, di-
rectives, commissives, expressives and declarations. The in-
tention of the speaker can be recognized from the speech
acts being performed.

Computational work in discourse by Grosz [10] has identi-
fied three components of discourse structure: the linguistic
structure (the sequence of utterances), the intentional struc-
ture and the state of focus of attention. Utterances in a
discourse naturally form a hierarchy of discourse segments.
Each discourse segment has a discourse segment purpose
(or discourse segment intention). Discourse intentions dif-
fer from other kinds of intentions that they are intended to
be recognized. The attentional state has an important part
which contains the salient entities that have been mentioned
earlier in the discourse.

With the level of complexity in our task domain, we make
an assumption that although there may be multiple speech
acts being performed in any given utterance, only one of
them is important in determining the user intention. We
call this act a conversational act. Moreover, the intention
of every highest-level discourse segment is to fulfil a domain
task. Thus we separate domain-independent conversational
acts from domain-dependent task goals. The defined con-
versational acts are shown in Table 1. In carrying out the
domain tasks, the dialogue manager (DM) can also inter-
act with other personal assistants (PAs). The interactions
between the DM and PAs are also modelled as performing
conversational acts with associated intentions/domain tasks.

Conversational Act Act Description

Request ask the addressee to perform

a domain task

Respond describe the task result to the hearer

Clarify ask the addressee to clarify ambiguities

Greet express the speaker’s greetings

and/or feelings

Confirm clarify ambiguities by expressing

agreement or disagreement

Ack express the acknowledgement

Table 1: Conversational Act Descriptions

The DM internal belief state contains specific domain
knowledge for help in interpreting user utterances such as
a domain-specific term dictionary. Additionally, there is a
discourse history and a focus stack developed to maintain
the discourse context.

2.2.1 Discourse History
The discourse history keeps all the interactions as a stack

of conversational acts. They include the DM-user as well as
the DM-PAs interactions. The discourse history also keeps
track of the user intention being carried out in the current
discourse segment. In many cases, the user intention cannot
be recognized in the first utterance but it is required that
discourse subsegments to be opened for more information



or clarification. The discourse history is also used in de-
termining which acts the user has performed and what the
underlying intentions are. Table 2 illustrates an example of
the discourse history stack.

Greet ID=122,Sender=User,Receiver=DM,Subj="..."

Request ID=123,IsReplacedBy=126,Sender="User",Receiver="DM",

Task=SEARCH,Object=EMAIL,Condition={From="John"}

Clarify ...,Subj=(From="John Lloyd"||"John McAfee")

Confirm InResponseTo=124,...,Subj=(From="John Lloyd")

Request ID=126,AsReplaceFor=123,...,Task=SEARCH,

Object=EMAIL,Condition={From="John Lloyd"}

Request ...,Sender=DM,Receiver=Emailer,...

Respond Sender=Emailer,Receiver=DM,MailId={...}

... .........

Table 2: Sample Discourse History Stack Entries

2.2.2 Focus Stack
The focus stack is a data structure for tracking objects

that have been mentioned during the course of conversation.
Information in the focus stack is used to resolve references,
that is when certain words are used in current utterance
to refer back to other referring expressions in the previous
utterances. It also helps in generating context-sensitive nat-
ural language responses. In the email management domain,
the objects to be kept in the focus stack include mail items,
folders, names (of contacts) and key phrases. In the SPA
application, the user interacts with the system through di-
alogues as well as the graphical interface on mobile devices.
Hence objects involved in the interaction on the device are
also put onto the focus stack. The details of how the fo-
cus stack evolve will be explained later as we go through
examples in Section 3. There are separate stacks for each
individual object type.

It is important to note that dialogue (spoken and written)
differs from other kinds of discourse in some characteristics
such as turn-taking, grounding, etc. With the proposed dia-
logue model, the user and the DM alternately take turns in
the conversation. The user takes turn when requesting tasks
or confirming information while the DM takes turn when re-
questing clarification or giving back the task results.

Grounding in the literature is commonly understood as a
process through which the speaker and the hearer constantly
establish common ground which are things that they both
mutually believe, Clark [7]. This is done by the hearer ac-
knowledging the speaker’s utterances or specifying any prob-
lems arising in reaching the common ground. In our model,
the Ack, Clarify and Confirm conversational acts are used
for grounding; Ack and Confirm are for acknowledgement
while Clarify is for resolving ambiguities.

3. DIALOGUE PROCESSING

3.1 SPA System Overview
The dialogue model is integrated within the SPA system.

Currently the SPA has one personal assistant for email man-
agement but a calendar agent will be integrated in the near
future. The system components are as illustrated in Fig-
ure 2, which include a PDA interface, a speech engine, a
partial parser, the Dialogue Manager agent and the Email

agent. The agents interact with each other using the JACK
communication mechanism.

Email
Server

Email
Agent

Dialogue
ManagerPartial

Parser
Speech

Recognizer
Text−to−Speech

Engine

Interface
Graphical

User Device
e.g. PDAs

Text

Speech

Calendar
Agent

Server
Calendar

Figure 2: The SPA System Architecture

The Email agent is an agent wrapper built around the
existing EMMA email management software enabling the
Dialogue Manager to request the EMMA system to perform
tasks such as searching, deleting and archiving emails, and
notifying the user on the arrival of some important messages.
In addition, EMMA can perform classification of mail in the
Inbox into sorting folders and prioritization based on the de-
gree of importance, urgency, etc. This information is given
to the user and also used in processing email tasks. For ex-
ample, the user may ask “Do I have any new messages about

meetings?” and there exists a meeting virtual folder. Hence,
the classification results of this virtual folder can be used,
which is more appropriate than searching for emails contain-
ing the word “meeting”. The meaning of “about meetings”

varies between users but should be consistent with their pre-
defined classification rules. Details of the EMMA system can
be found in Ho, Wobcke and Compton [11].

The speech engine handles speech recognition and text-to-
speech synthesis. In the current implementation we use IBM
ViaVoice software in dictation mode. The user is required
to spend time training the voice model. However, the design
of the system architecture is independent of the particular
speech recognition engine used. The speech recognition en-
gine together with the partial parser are built on top of the
InCA architecture developed by Kadous and Sammut [14].

3.1.1 Partial Parser
The first stage in processing the dialogue is to parse the

user utterances into some shallow syntactic structure. Full
parsing for this application domain is inappropriate for the
following reasons. Existing speech software can only provide
a level of quality which is far less than perfect. In addi-
tion, many English speakers regularly use shortened forms
of expression (abbreviated commands). Thus, it would be
inefficient or even impossible to fully parse the user’s utter-
ances. Another reason for not using full parsing is that the
language vocabulary (e.g. proper names, objects) in the ap-
plication is unconstrained. Hence, building the dictionary
for a full parser would be difficult. For example, consider
the request “Are there any new messages about . . . ?”. The
missing phrase could be anything. However, because the
task domains are known, a domain-specific dictionary can
be constructed with a reasonable amount of effort. User ut-
terances and sentences are partially parsed into a pre-defined
shallow syntactic frame which has six components as follows:

- type: utterance type as one of : yes/no-question,
wh-question, declaration, imperative, greeting.



- subject : the syntactic subject of the sentence.
- predicate: the main verb of the utterance as obtained
from a domain-specific dictionary, e.g. delete, reply.

- direct object : main object of the predicate which can
be email-related such as email, folder, or noun phrases.

- indirect object : possible second object which can also
be email-related such as email, folder, or noun phrases.

- complement phrase: information e.g. time or location.

The partial parser is implemented using the ProBot1 script-
ing language of Sammut [21].

3.2 Dialogue Manager
Dialogue processing for the email management domain is

illustrated in Figure 3. The user input can be actions on
the PDA graphical interface (such as selecting a message or
folder) and/or spoken utterances or typed sentences. The
user utterance is sent to speech recognition engine before
its recognized text is passed to the partial parser. Next the
Dialogue Manager agent receives output from the partial
parser for further processing.

AGENT
EMAIL

Actions
Graphical Sentences Utterances Sentences Utterances Graphical

Actions

Speech
Recognizer

TTS
Engine

Partial
Parser

Classification

CAD group

RG group
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Knowledge
Domain

II group

Identification
Intention

Email TaskDomain Task

&
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DIALOGUE MANAGER AGENT

INPUT OUTPUT

Email Task

Generation
Response

Processing
Email Task

Figure 3: Dialogue Processing Overview

The Dialogue Manager agent has a number of plans which
can be divided into four groups: conversational act determi-
nation and domain task classification (CAD group), inten-
tion identification (II group), task processing (TP group)
and response generation (RG group). The input (graphical
actions and parsed text) from the user is handled first by
the plans in CAD group to determine the conversational act
and identify the task domain. The user’s specific intention
is then identified by the plans in the II group. If intention
identification succeeds, the requested task is handled by the
plans in the TP group, which likely involves further requests
to the Email agent. Otherwise, clarification is produced by
the RG group. In the case of successful task processing, the
plans in the RG group generate natural language text and
instructions for displaying the results on the PDA. If the
required reply mode has been speech then the system reply

1
ProBot is a rule-based system embedded in a Prolog interpreter.

Following is a simple example of scripting rule.

mail subject::<noun-phrase> * ==> [#assert(subject(^1))

#goto(mail predicate,^2) ]

It indicates if a noun phrase is found when looking for the subject

then assert this noun phrase to be the subject. The remainder of the

utterance is passed on for determining other components.

in text is sent to the Text-to-Speech (TTS) engine to gener-
ate an audio response. At the same time, other information
is displayed on the interface accordingly. Thus the system
supports limited multi-modal input and output.

3.2.1 Intention Identification
The intention of the user is considered a discourse segment

purpose. In our application, a user intention corresponds to
a domain task. Determining the task may require more than
one user utterance, as in cases where there are ambiguities.
Hence the intention is maintained in the discourse history
and marked as being partially processed until it is identified
successfully, i.e. when the requested task has been fully rec-
ognized. This process requires knowledge of discourse his-
tory, information in the recognized conversational act and
heuristic rules. For example, suppose the user’s last inten-
tion was to request a search for emails about some topic and
five messages were found. If the current conversational act
is another request with keyword show, it is likely to be a
request to show one of those messages.

Discourse
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Focus
Stack

Email
Domain

Knowledge

Conversational Act
Email Task

Graphical
Action

Interpretation
Email

Interpretation Interpretation
Folder People

Interpretation

Reference
Resolution

Clarification
Generation

Task Intention
Recognised Email

Intention
Identification

Figure 4: Intention Identification Plans

In order to identify the user’s intention, there is one In-
tentionIdentification plan with a number of sub-plans. This
plan can activate any of its sub-plans, namely, EmailInter-
pretation, FolderInterpretation, PeopleInterpretation, Ref-
erenceResolution and GraphicalActionInterpretation. It is
possible that the sub-plans can send messages to other per-
sonal assistants seeking required information for the inter-
pretation. For example in identifying a person name, the
PeopleInterpretation plan can request address book entries
from the Email agent. Figure 4 shows the diagram of the
plan and sub-plans. The arrows indicate the possible control
flows. An example of a plan for performing email interpre-
tation is shown in Figure 5.

CA is Respond
if

update(I, EmailAttribute)
EmailAttribute = getAttr(CA,LA)

update(I, EmailAttribute)
EmailAttribute = getAttr(CA)

if
exists refs

LA is Clarify
if

about Email

I = getCurrI();
LA = getLastA();
CA = getCurrA();

Fail

yes

yes

no
no

Reference
Resolution

yes

pass

End

no

fail

Start

Figure 5: Example EmailInterpretation Plan



The goal of the EmailInterpretation plan is to determine
attributes of the emails mentioned by the user. In the plan
diagram, there are three special points: Start, End and Fail
indicating the beginning, end and failure of plan execution.
When the plan fails, it triggers the execution of Clarification-
Generation plan. Diamonds in the diagram denote decision
making points. Rectangles indicate calls to procedures for
data manipulation. The curved rectangles are sub-plans.

The ReferenceResolution plan is designed to handle the
interpretation of anaphora, i.e. the co-reference of one ex-
pression with its antecedent. More specifically, a pronoun or
a definite noun phrase can be used to refer back to an entity
that has been previously introduced. The GraphicalAction-
Interpretation plan is used to interpret user actions on the
interface. The other four are to extract information about
task attributes. Consider an example where the user high-
lights some phrase on the interface; it is likely that the user
will soon refer back to the phrase. Hence, the Dialogue Man-
ager updates its belief state by pushing the phrase onto the
corresponding focus stack.

The focus stacks are maintained as follows. If an inten-
tion is successfully identified, all objects mentioned in this
intention are pushed onto focus stacks. For the email man-
agement domain, object types are email, folder, person name
and key phrase. If there is more than one object of the same
type, they are pushed onto the focus stack as a set. A partic-
ular focus stack is searched when there is reference to some
object of that type. According to the relation between the
currently identified intention and the last intention, either
some objects will be chosen from the set at the top of the
stack or it must be popped off and the search continues. For
example, consider the following conversation:

User Do I have new mail about a meeting?
SPA You have three messages about meetings,

from Paul Compton, Supriya Singh and John Lloyd.
User Show me the one from Paul.
SPA <Displays message from Paul>

User Show me the next one.
SPA <Displays message from Supriya>

In the above conversation, after showing the mail from
Paul to the user, this mail is at the top of email focus stack.
Just below it is the set of three mails about meetings. In
interpreting user’s next utterance, “Show me the next one”,
the mail from Paul Compton must be popped off the stack
and “the next one” refers to an email in the set of three
messages about meeting. As the interpretation goes on, that
noun phrase must refer to the mail after the one from Paul
Compton, thus it is the one from Supriya Singh.

If at some point, the Dialogue Manager fails to interpret
the user utterance because of some ambiguity, the Clarifica-
tionGeneration plan will be executed and the user asked for
clarification. The Dialogue Manager can also take the initia-
tive to ask the user for more information. For example, the
user requests “Do I have any messages from John?” and in
the Inbox there are messages from two different John’s. The
system may seek clarification by asking “Did you mean John

Lloyd or John McAfee?”. Note how the reply is contextually
dependent on the current state of the Inbox.

3.2.2 Task Processing and Response Generation
Figure 6 shows the possible control flows between the Dia-

logue Manager’s plans for processing domain tasks and gen-
erating responses to the user, generated as the result of the
plan selection mechanism of the BDI agent interpreter.
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Figure 6: Task Processing and Response Generation

The Dialogue Manager can perform tasks immediately if
the necessary knowledge is available in its internal beliefs.
Otherwise, it requests information from the Email agent.
Some tasks require more than one request to be sent. This
is handled by the EmailTaskProcessing and EmailTaskDel-
egating plans. An example of a request message is shown
below. The message is in XML format. Its enclosed request
is a search for emails from John Lloyd.

<object type="RequestMessage">
<field name="sender">DM</field>

<field name="receiver">Emailer</field>
<field name="taskDomain">Email</field>

<field name="task">Search</field>
<field name="objects"><list>

<object type="PAObject">

<field name=type>Email</field>
<list><object type="Condition">

<field name="attName">From</field>
<field name="function">contains</field>
<field name="attValue">John Lloyd</field>

...

If the task is successfully processed, the resulting JACK
message is enclosed in an event to be handled by the re-
sponse generation plan set. This set includes different plans
for generating different types of response. Depending on
the task type and size of the result, the system can either
display text on the device screen or speak out or choose to
show either the full message content or just a brief descrip-
tion. There is a possibility for integrating a learning mech-
anism with the Dialogue Manager so that it can learn when
to generate what responses. This may require maintaining
the user’s preferences and information about the physical
context. In the case of inconsistency during task process-
ing, one of the ClarificationGeneration plans is activated,
generating an appropriate question for sending to the user.

There can be two-way information flow in the system. The
user can request to be notified when particular mails arrive.
Thus the Dialogue Manager registers that event with Email
agent. Upon receiving notification from the Email agent, the
EmailTaskResponseHandling plan processes the notification
and activates ResponseGeneration plans to notify the user.
The system may choose to immediately notify the user or
defer the notification. However, prompt notifications might
distract the user from the ongoing task. We have considered
various approaches to this problem, some rule-based and
some using machine learning techniques.
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Figure 7: PDA Displays for Sample Dialogue

4. CURRENT STATUS
Currently, dialogue can be used for searching, displaying

and archiving emails. Our first experiments with spoken di-
alogue used the IBM ViaVoice speech recognition software.
The SPA is able to recover from some speech recognition
errors, however our testing showed that ViaVoice is unpre-
dictably unreliable, hence not adequate for this task (on
some occasions working with high accuracy, on others with
low accuracy). We are now trying a version of Dragon Natu-
rallySpeaking, and initial testing suggests that speech recog-
nition will be more consistent and errors more predictable,
potentially enabling correction by the dialogue manager.

A working scenario is given below: these utterances can be
recognized by ViaVoice, though not consistently, using the
ordinary microphone on a Sharp Zaurus SL-5600. Speech
recognition is not required to be perfect but it is required to
reliably recognize keywords such as “mail” and obtain close
approximations for phrases such as proper names.

SPA <Displays initial PDA interface: Fig.7(a)>

User Do I have any mail from Paul?
SPA You have no messages from Paul.
User Are there any emails from John?

SPA You have two new messages from John Lloyd.
User Show me the first message.

SPA <Displays first message from John Lloyd: Fig.7(b)>
User Any mail about conferences?
SPA You have three new messages that contain conference.

<Displays three message headers: from Byeong Ho
Kang about CRC, from Terry Pomerantz about Research

and from Supriya Singh about CRC: Fig.7(c)>
User I want to see the one from Terry please.

SPA <Displays message from Terry: Fig.7(d)>

5. RELATED WORK
There have been several research prototypes providing

spoken dialogue interfaces for remote email management.
In comparison to ours, most applications were designed to
deal with a single modality and support only one-way trans-
fer of information. Email Voice Interactive System (ELVIS)
by Walker et al. [25] supports remote access to email over
a fixed-line phone based on a state machine approach, in
which, different strategies (e.g. system initiative) lead to
different state transitions. The emphasis of this research
is on learning the strategy selection from a training corpus

of collected dialogues. The users can only interact with the
system in a simple question-answer fashion. Another pro-
totype developed at BT Laboratories in 1996, MailSec [26],
allows users to access email by making a telephone call. The
dialogue manager in MailSec implements a dialogue theory
of Games Structure in Conversation, i.e. a conversation can
be considered as a sequence of games and moves. It controls
the flow of information by sequentially passing the data to
and receiving the processed data from its modules. User ut-
terances are parsed and interpreted strictly into an extended
logic form. Hence we believe high quality speech recognition
must be used.

The TRIPS system [4], as mentioned in Section 1, is also
agent-based but distributed. That is, the system consists
of different agent-based components acting asynchronously
and communicating with each other by message passing.
Among its components are the Interpretation Manager and
the Generation Manager. An advantage of the approach is
enhancing modularity. However, although the authors have
taken into account the synchronization problem, there are
issues that have not been resolved, such as controlling the
concurrent actions of the Interpretation Manager and the
Generation Manager when a user barges in while the sys-
tem is talking. Hence for less complex domains, centralized
approaches are more suitable because modularity can be fa-
cilitated through the use of plans and synchronization is
manageable since agent execution is in controllable cycles.

Issues in supporting multi-modal interfaces have been ad-
dressed in work by McGlashan [16]. The proposed system
provides a combination of two forms of communicative in-
terfaces (graphical and speech modalities) in a consumer in-
formation service about microwave ovens. The user actions
are interpreted as providing parameters for the requested in-
formation service. Thus graphical objects are also included
for reference resolution. In case the system fails to interpret
the user’s request, menu-driven interaction style is adopted.
This error-recovery method does not provide natural inter-
action as if the system could ask the user a clarifying ques-
tion.

Research by Traum et al. [24] follows the framework of
the TRINDI project which aims to model multi-modal di-



alogue for multiple participant interaction. In this work,
the information state is divided into several layers dealing
with different coherent aspects of dialogue, e.g. the contact
layer provides information on the modalities that are ac-
cessible for communication. The interpretation processes at
the layers are independent. An additional negotiation layer
is introduced for handling multi-party dialogue, which is a
central aspect of this application.

VERBMOBIL [20] is a system for speech-to-speech trans-
lation, in which statistical language modelling methods are
employed for the prediction of the next dialogue act (by
computing the probability of a sequence of dialogue acts).
The dialogue grammar is trained from a corpus of 300 man-
ually tagged spoken dialogues. These statistical approaches
are not suitable for our application.

Finally, Paek and Horvitz [17] aim to build a probabilistic
model (using Bayesian networks) of possible uncertainties at
different levels of human-computer conversation. Thus the
system would be able to identify actions that maximize the
expected utility of achieving mutual understanding.

6. CONCLUSION
We have proposed an agent-based approach to dialogue

management in personal assistants. This approach is par-
ticularly useful for applications where a single point of con-
tact should be provided for users to interact with a collec-
tion of specialist assistants. The user can access to the sys-
tem by using mobile device, e.g. PDA, and through different
modalities, e.g. speech, text and/or graphical interface. The
dialogue manager is implemented using a BDI agent frame-
work with extensions for maintaining the conversational con-
text, thus enabling coherent user-system dialogue to be con-
ducted. Future work will be the integration of additional
personal assistants to demonstrate the system’s capability
of coordinating the activities of the multiple agents. Dif-
ferent speech software will be considered for replacing IBM
ViaVoice. In longer term, we aim to research on mechanisms
for handling speech recognition errors.
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