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Abstract. Among the cognitive abilities a robot companion must be endowed
with, human perception and speech understanding are both fundamental in the
context of multimodal human-robot interaction. In order to provide a mobile ro-
bot with the visual perception of its user and means to handle verbal and multi-
modal communication, we have developed and integrated two components. In this
paper we will focus on an interactively distributed multiple object tracker dedi-
cated to two-handed gestures and head location in 3D. Its relevance is highlighted
by in- and off- line evaluations from data acquired by the robot. Implementa-
tion and preliminary experiments on a household robot companion, including
speech recognition and understanding as well as basic fusion with gesture, are
then demonstrated. The latter illustrate how vision can assist speech by specify-
ing location references, object/person IDs in verbal statements in order to inter-
pret natural deictic commands given by human beings. Extensions of our work
are finally discussed.

Keywords: particle filtering, multiple object tracking, speech understanding,
multimodal interaction, personal robotics.

1 Introduction and Framework

The development of socially interactive robots is a motivating challenge, so that a
considerable number of mature robotic systems have been developed during the last
decade [3]. Moving such robots out of laboratories, i.e. in private homes, to become
robot companions is a deeper challenge because robots must be endowed with cogni-
tive abilities to perform a unconstrained and natural interaction with non-expert users.
Besides the verbal information, gestures and reactive body motions stemmed from au-
dio and video stream analysis must also be considered to achieve a successful intuitive
communication/interaction with a household autonomous platform. This also raises is-
sues related to efficiency and versatility. Because of the concurrent execution of other
embedded functions, only a small percentage of the robot’s computational power can
be allocated to the interactive system. Meanwhile, as the on-board sensors are mov-
ing instead of being static, the interactive system is faced with noisy and cluttered
environments.
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On one hand, fusing the interpretation of auditive and visual features improves the
system robustness to such environments. On the other hand, their combination, per-
mits to specify parameters related to person/object IDs or location references in ver-
bal statements, typically “give him a glass”, “give this object to me”, “put it there”.
Many interactive robotic systems make use of single-hand gesture [7,8,10] and/or ob-
ject recognition [7,10] to complete the message conveyed by the verbal communication
channel. Considering at once the identification of a person’s face and pose, as well as
two-handed gestures, must clearly disambiguates verbal utterances and so enriches any
H/R interaction mechanism. An essential issue that we want to address in this context
concerns the design of body and gesture trackers which must be endowed with both
properties: visual data fusion (in the vein of [8]) and automatic re-initialization. All this
makes our trackers work under a wide range of viewing conditions and aid recovery
from transient tracking failure, which are due for instance to out-field of sight when the
user is performing gestures.

The paper is organized as follows. Section 2 presents our particle filtering framework
for the binocular tracking of multiple targets, namely the user’s head and two-handed
gestures. Section 3 presents preliminary robotic experiments involving involving this
component and the one that is in charge of verbal and multimodal communication.
Last, section 4 summarizes our contributions and discuss future extensions.

2 Visual Perception of the Robot User

2.1 3D Tracking of Heads and Hands

Our system dedicated to the visual perception of the robot user includes 3D face and
two-hand tracking. Particle filters (PF) constitute one of the most powerful framework
for view-based multi-tracking purpose [12]. In the robotics context, their popularity
stems from their simplicity, modeling flexibility, and ease of fusion of diverse kinds of
measurements. Two main classes of multiple object tracking (MOT) can be considered.
While the former, widely accepted in the Vision community, exploits a single joint state
representation which concatenates all of the targets’ states together [6], the latter uses
distributed filters, namely one filter per target. The main drawback of the centralized
approach remains the number of required particles which increases exponentially with
the state-space dimensionality. The distributed approach, which is the one we have cho-
sen, suffers from the well-known “error merge” and “labeling” problems when targets
undergo partial or complete occlusion. In the vein of [12], we develop a interactively
distributed MOT (IDMOT) framework which is depicted in Table 1. Recall that Parti-
cle filters aim to recursively approximate the posterior probability density function (pdf)
p(xi

t|z1:t) of the state vector xi
t for body part i at time t given the set of measurements

z1:t. A linear point-mass combination

p(xi
t|z1:t) �

N�
n=1

ωi,n
t δ(xi
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proximation of the conditional expectation of any function of xi
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t], then follows.
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In our framework, when two particles xi,n
t and xj,n

t for target i and j do not interact
one with the other, i.e. their relative Euclidian distance exceeds a predefined threshold
(annoted dTH in Table 1), the approach performs like multiple independent trackers.
When they are in close proximity, magnetic repulsion and inertia likelihoods are added
in each filter to handle the aforementioned problems. Following [12], the repulsion
“weight” ϕ1(.) follows

ϕ(xi,n
t , zi

t, z
j
t ) ∝ 1 − 1

β1
exp

�
−D2

i,n

σ2
1

�
, (1)

with β1 and σ1 two normalization terms being determined a priori. Di,n terms the
Euclidian distance between particle xi,n

t and temporary particle xj
t,k. The principle can

be extended to 3-clique {zi}i=1,2,3. The inertia “weight” ϕ2(.) considers the target’s
motion vector −→v1 from the states in previous two frames in order to predict its motion
vector −→v2 for the current. The function then follows

ϕ(xi,n
t ,xi,n
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with β2 a normalization term. θi,n represents the angle between the above vectors while
σ21 and σ22 characterize the variance of motion vector direction and speed.

Our IDMOT particle filter follows this principle but is extended in three
ways. First, the conventional CONDENSATION [4] strategy is replaced by the
ICONDENSATION [5] one whose importance function q(.) in step 3 of Table 1 per-
mits automatic (re)-initialization when the targeted human body parts appear or re-
appear in the scene. The principle consists in sampling the particle according to visual
detectors π(.), dynamics p(xt|xt−1), and the prior p0 so that, with α ∈ [0; 1]

q(xi,n
t |xi,n

t−1, z
i
t) = απ(xi,n

t |zi
t) + (1 − α)p(xi

t|xi,n
t−1). (3)

Secondly, the IDMOT particle filter, devoted initially to the image-based tracking of
multiple objects or people, is here extended to estimate the 3D pose of multiple de-
formable body parts of a single person. The third line of investigation concerns data
fusion, as our observation model is based on a robust and probabilistically motivated
integration of multiple cues. Fusing 3D and 2D (image-based) information from the
video stream of a stereo head - with cameras mounted on a mobile robot - enables to
benefit both from reconstruction-based and appearance-based approaches. The aim of
our IDMOT approach, named IIDMOT, is to fit the projections all along the video
stream of a sphere and two deformable ellipsoids (resp. for the head and the two
hands), through the estimation of the 3D location X = (X, Y, Z)

′
, the orientation

Θ = (θx, θy, θz)
′
, and the axis length 1 Σ = (σx, σy, σz)

′
for ellipsoids. All these para-

meters are accounted for in the state vector xi
t related to target i for the t-th frame. With

regard to the dynamics model p(xi
t|xi

t−1), the 3D motions of observed gestures are dif-
ficult to characterize over time. This weak knowledge is formalized by defining the state
vector as xi

t = [Xt, Θt, Σt]
′

for each hand and assuming that its entries evolve accord-
ing to mutually independent random walk models, viz. p(xi

t|xi
t−1) = N (xi

t|xi
t−1, Λ),

where N (.|μ, Λ) is a Gaussian distribution in 3D with mean μ and covariance Λ being

1 To take into account the hand orientation in 3D.
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Table 1. Our IIDMOT algorithm

1: IF t = 0, THEN Draw xi,1
0 , . . . , ‘xi,j

0 , . . . , xi,N
0 i.i.d. according to p(xi

0), and set wi,n
0 = 1

N END IF
2: IF t ≥ 1 THEN {—[{xi,n

t−1, wi,n
t−1}]

N

n=1
being a particle description of p(xi

t−1|zi
1:t−1)—}

3: “Propagate” the particle {xi,n
t−1}N

n=1 by independently sampling xi,n
t ∼ q(xi

t|xi,n
t−1, zi

t)

4: Update the weight {wi,n
t }N

n=1 associated to {xi,n
t }N

n=1 according to the formula w
i,n
t ∝ w

i,n
t−1

p(zi
t|xi,n

t )p(xi,n
t |xi,n

t−1)

q(xi,n
t |xi,n
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,

prior to a normalization step so that
P

n wi,n
t = 1

5: Compute the conditional mean of any function of x̂i
t, e.g. the MMSE estimate E

p(xi
t|zi

1:t)
[xi

t], from the approxi-

mation
PN

n=1 wi,n
t δ(xi

t − xi,n
t ) of the posterior p(xi

t|zi
1:t)

6: FOR j = 1 : i, DO
7: IF dij(x̂i

t,k, x̂j
t,k) < dT H THEN

8: Save link(i,j)
9: FOR k=1:K iterations, DO
10: Compute ϕ1, ϕ2

11: Reweight wi,n
t = wi,n

t .ϕ1.ϕ2

12: Normalization step for {wi,n
t }N

n=1
13: Compute the MMSE estimate x̂i

t

14: Compute ϕ1, ϕ2

15: Reweight wj,n
t = wj,n

t .ϕ1.ϕ2

16: Normalization step for {wj,n
t }N

n=1

17: Compute the MMSE estimate x̂j
t

18: END FOR
19: END IF
20: END FOR
21: At any time or depending on an “efficiency” criterion, resample the description [{xi,n

t , wi,n
t }]N

n=1 of p(xi
t|zi

1:t)

into the equivalent evenly weighted particles set [{x(si,n)
t , 1

N }]
N

n=1, by sampling in {1, . . . , N} the indexes

si,1, . . . , si,N according to P (si,n = j) = wi,j
t ; set xi,n

t and wi,n
t with x(si,n)

t and 1
N

22: END IF

determined a priori. Our importance function q(.) followed by our multiple cues based
measurement function p(zi

t|xi
t) are depicted below. Recall that α percent of the particles

are sampled from detector π(.) (equation (3)). These are also drawn from Gaussian dis-
tribution for head or hand configuration but deduced from skin color blob segmentation
in the stereo video stream. The centroids and associated covariances of the matched re-
gions are finally triangulated using the parameters of the calibrated stereo setup. For the
weight updating step, each ellipsoid defined by its configuration xi

t is then projected in

one of the two image planes. Given Q =
[

A b

b
′
c

]
the associated 4×4 symmetric matrix,

the set of image points x that belongs to the projection contours verify the following
expression: x

′
.(bb

′ − cA).x = 0.
The measurement function fuses skin color information but also motion and shape

cues. For each ellipsoid projection, the pixels in the image are partitioned into a set of
target pixels O, and a set of background pixels B. Assuming pixel-wise independence,
the skin color-based likelihood is factored as

p(zi,c
t |xi

t) =
�
o∈O

ps(o|xi
t)
�
b∈B

[1 − ps(b|xi
t)], (4)

where ps(j|xi
t) is the skin color probability at pixel location j given xi

t. Using only
color cue for the model-to-image fitting is not sufficiently discriminant in our robotics
context. We also consider a likelihood p(zi,s

t |xi
t) which combines motion and shape

cues. In some H/R situations, it is highly possible that the targeted limbs be moving, at
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least intermittently. We thus favor the moving edges (if any) of the target in this likeli-
hood so that

p(zi,s
t |xi

t) ∝ exp
�
−D2/2σ2

s

�
, D =

Np�
j=1

|x(j) − z(j)| + ργ(z(j)), (5)

which depends on the sum of the squared distances between Np points uniformly dis-
tributed along the ellipsoid contours x and their nearest image edges z. σs is a standard
deviation being determined a priori. Given

−→
f (zt(j)) the optical flow vector at pixel

z(j), γ(z(j)) = 0 (resp. 1) if
−→
f (z(j)) �= 0 (resp. if

−→
f (z(j)) = 0) and ρ > 0 terms

a penalty. Finally, assuming the cues to be mutually independent, the unified measure-
ment function in step 4 (Table 1) is formulated as

p(zi,c
t , zi,s

t |xi
t) = p(zi,c

t |xi
t).p(zi,s

t |xi
t). (6)

2.2 Experimental Results

Prior to their integration on our mobile robot, experiments on a database of 10 sequences
(1214 stereo-images) acquired from the robot are performed off-line in order to: (i) de-
termine the optimal parameter values of our strategy, (ii) characterize its performances.
This sequence set involves variable viewing conditions, namely illumination changes,
clutter, occlusions or out-field of sight. Figure 1 shows snapshots of a typical run for
IIDMOT involving sporadic disappearances of some body parts. For each frame, the
template depicts the projection of the MMSE estimate for each ellipsoid. The IIDMOT
strategy, by drawing some particles according to the detector output, permits automatic
re-initialization and aids recovery after loss of observability.

Fig. 1. Tracking scenario involving occlusion and out-field of sight with IIDMOT

Quantitative performance evaluation have been carried out on the sequence set. Since
the main concern of tracking is the correctness of the tracker results, location as well as
label, we compare the tracking performance quantitatively by defining the false position
rate (FRp) and the false label rate (FRl). As we have no ground truth, failure situations
must be defined. No tracker associated with one of the target in (at least) one image
plane will correspond to a position failure while a tracker associated with the wrong
target will correspond to a label failure. Table 2 presents the performance using multiple
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Table 2. Quantitative performance and speed comparisons

Method MIPF IDMOT IIDMOT
FRp 29% 18% 4%
FRl 9% 1% 1%

Speed (fps) 15 12 10

independent particle filters (MIPF) [4], conventional IDMOT [12] strategy, and our
IIDMOT strategy with data fusion.

Our IIDMOT strategy is shown to outperform the conventional approaches for a
slight additional time consumption. The MIPF strategy suffers especially from “la-
beling” problem due to lacking modeling of interaction between trackers while the
IDMOT strategy doesn’t recover the target after transient loss. These results have been
obtained for the “optimal” tracker parameter values listed in Table 3.

Table 3. Parameter values used in our IIDMOT tracker

Symbol Meaning Value
N number of particles per filter 100
α coeff. in the importance function (3) 0.4
K number of iterations in PF algorithm 4

dTH Euclidian distance between particles in PF algorithm 0.5
- image resolution 256 × 192
- colorspace for skin-color segmentation CIE Lab

Np number of points along the ellipsoid contours 20
σs standard in likelihood (5) 36
ρ penalty in equation (5) 0.12

(σ1, β1) coeff. in the repulsion “weight” (1) (0.12, 1.33)
(σ21, σ22, β2) coeff. in the inertia “weight” (2) (1.57, 0.2, 2.0)

Λ standard deviation in random walk models

	

 0.07 0.07 0.07

0.03 0.03 0.03
0.17 0.17 0.17

�
�

3 Multimodal System Setup Embedded on the Robot Companion

This section gives some considerations about the integration of the above components
in the architecture of our robot, depicts the execution of a target scenario in order to
highlight the relevance and the complementarity of this visual component with the one
dedicated to verbal and multimodal communication.

3.1 Characteristics of the Robot

Our robot is especially equipped with a 6-DOF arm, a pan-tilt stereo system on a mast, a
microphone (hold by the user and cable wire connected to the robot for this first exper-
iment), two laser scanners (figure 2-left-). From these sensors and actuators, the robot
has been endowed with a set of basic functions that allows us to carry out scenarios
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Fig. 2. The robot Jido and its layered software architecture

based on a multimodal interaction between a person and a robot, as the scenario pre-
sented in this section. Thanks to these functions, the robot is able to navigate in its envi-
ronment and to recognize objects. Preliminary developments related to its vision-based
functions have concerned face identification implemented through the ICU2 module
(see [11] for more details). Then, a module for gesture tracking, called GEST, has been
added. It is based on the method we have described in section 2. The verbal commu-
nication mode, that deals with recognition and understanding of the user utterances, is
handled by means of a dedicated module called RECO and is briefly presented below.
These modules have been integrated on the robot software architecture that relies on sets
of communicating modules running under the control of the platform supervisor [2].

3.2 Enabling Verbal and Multimodal Communication and Multimodal
Communication

Natural communication between a person and a robot companion requires to recognize
speech once uttered by the user and then to understand its meaning in relation to the
current context represented by a specific task, a place, an object, an action, a set of
objects or some other people involved and in some case a complementary gesture. This
is the role of the RECO module integrated on the platform. Only outline and examples
of results related to the type of scenarios we want to carry out are presented here.

Speech recognition: To process French utterances, we use a grammar-based speech
engine, called Julian (version of the open source engine Julius developed by the Con-
tinuous Speech Recognition Consortium [1]). This engine requires essential linguistic
resources : a set of acoustic models for French phonetic units (39 models, a lexicon (246
words and 428 pronunciations corresponding to phoneme sequences) drawn up from the
French lexical database BDLEX [9], a set of grammars specifically designed to describe
sentences related to the subtasks taken into account in our multimodal interaction sce-
narios : user introducing him/herself, “Hi Jodo I’m Paul”, giving basic movement order,
“Turn left”, or guidance request “Take me to the hall”, using “Please come here” and
other request for object exchange “Give me this bottle”, ... They represent 2334 different
well-formed sentences, to enable communication with speech and gesture.

2 For the acronym of “I see you”.
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Speech interpretation: The second part of the RECO module is dedicated to the ex-
traction of the semantic units, directly from the recognizer output. A semantic lexicon
has been designed to give the appropritate meaning of relevant words. Some are related
to actions while others are related to objects or their own attributes like color or size as
well as location or robot configuration parameters (speed, rotation, distance). At last,
the global interpretation of the recognized utterance is transformed into a command. To
be considered as valid and sent to the robot supervisor in order to be executed this com-
mand must be compatible with one of our 31 interpretation models. From the lexicon
available at present, 328 interpretations can be possibly generated.

First results on the platform: Without any adaptation step, 77.6% of the 250 ut-
terances processed have been transformed in the right command. Though, recognition
and interpretation must be improved, the robot is now endowed with some abilities to
interpret the user’s verbal message given to him.

Fig. 3. From top-left to bottom-right : GEST (or ICU) module -left-, virtual 3D scene (yellow
cubes represent hands) -middle-, current H/R situation -right-
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Fusion with gesture: Deictic can be interpreted by our RECO module. If the object
or location designation is precise enough (“Put the bottle on the table”) the right para-
meters are extracted from the sentence ( what ? object = bottle ; where ? location = on
table) and the underlying command can be generated (put( object(bottle), location(on
table)) ). But in deictic case (“Put the bottle there”), the sentence analysis will mark
the interpretation as “must be completed by the gesture result” and a late and hierarchi-
cal fusion strategy will be applied (put(object(bottle), location(Gesture result)). In the
same manner, for other human-dependent commands such as (“come on my left-side”)
the same kind of strategie will be applied.

3.3 Target Robot Scenario and Preliminary Experiments

The target scenario focuses on the understanding of natural human peer-to-peer multi-
modal interaction in a household situation. It depends on the beforehand identification
of the robot interlocutor before this one be granted permission to interact with it.

Given both verbal and gesture commands, the identified interlocutor is allowed to
make the robot change its position in the environment and/or simply marks some objects
the robot must catch and carry,... Figure 3 illustrates a typical run of this scenario where
the robot user, after introducing himself or herself, sequences the following commands:
“go to the table”, “take this bottle”, “bring it to me”, “go over there”. For each step,
the left subfigure shows the tracking results while the right one depicts the current H/R
situation and the middle one represents the virtual H/R configuration in space (thanks to
the outcome of the GEST module). The entire video and more illustrations are available
at the URL www.laas.fr/∼bburger/.

4 Conclusion

This paper presents a fully automatic distributed approach for tracking two-handed ges-
tures and head tracking in 3D. Two lines of investigations have been pursued. First,
the conventional IDMOT strategy, extended to the 3D tracking of two-handed ges-
tures, is endowed with the nice properties of ICONDENSATION and data fusion.
The amended particle filtering strategy allows to recover automatically from transient
target loss while data fusion principle is shown to improve the tracker versatility and
robustness to clutter. The second contribution concerns the merge of the tracker with
a continuous speech interpretation process in order to specify parameters of location
references and object/person IDs in verbal statements. All the components have been
integrated on a mobile platform while a target robot scenario highlights the relevance
and the complementarity of verbal and non verbal communication for the detection and
interpretation of deictic actions during a natural peer-to-peer H/R interaction.

These preliminary robotic experiments are promising even if quantitative perfor-
mance evaluations still needs to be carried out. These evaluations are expected to high-
light the robot capacity to succeed in performing multimodal interaction. Further inves-
tigations will be also to estimate the head orientation as additional features in the gesture
characterization. Our robotic experiments report strongly evidence that person tend to
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look at pointing targets when performing such gestures. Finally, dedicated HMM-based
classifiers will be developed to filter more efficiently pointing gestures.
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