
Machine Vision as the Primary Sensory Input

for Mobile, Autonomous Robots

by

Nathan Lovell
B.E. (Software) (Hons), University of Newcastle, 2001

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

School of Computers and Information Technology
Griffith University
Nathan QLD 4111

Australia

January 2006

i

Abstract

Image analysis, and its application to sensory input (computer vision) is a fairly
mature field, so it is surprising that its techniques are not extensively used in
robotic applications. The reason for this is that, traditionally, robots have been
used in controlled environments where sophisticated computer vision was not
necessary, for example in car manufacturing. As the field of robotics has moved
toward providing general purpose robots that must function in the real world, it
has become necessary that the robots be provided with robust sensors capable
of understanding the complex world around them. However, when researchers
apply techniques previously studied in image analysis literature to the field of
robotics, several difficult problems emerge.

In this thesis we examine four reasons why it is difficult to apply work in im-
age analysis directly to real-time, general purpose computer vision applications.
These are: improvement in the computational complexity of image analysis al-
gorithms, robustness to dynamic and unpredictable visual conditions, indepen-
dence from domain specific knowledge in object recognition and the development
of debugging facilities.

This thesis examines each of these areas making several innovative contribu-
tions in each area. We argue that, although each area is distinct, improvement
must be made in all four areas before vision will be utilised as the primary
sensory input for mobile, autonomous robotic applications.

In the first area, the computational complexity of image analysis algorithms,
we note the dependence of a large number of high-level processing routines on a
small number of low-level algorithms. Therefore, improvement to a small set of
highly utilised algorithms will yield benefits in a large number of applications.
In this thesis we examine the common tasks of image segmentation, edge and
straight line detection and vectorisation.

In the second area, robustness to dynamic and unpredictable conditions, we
examine how vision systems can be made more tolerant to changes of illumination
in the visual scene. We examine the classical image segmentation task and
present a method for illumination independence that builds on our work from
the first area.

The third area is the reliance on domain-specific knowledge in object recog-
nition. Many current systems depend on a large amount of hard-coded domain-
specific knowledge to understand the world around them. This makes the system
hard to modify, even for slight changes in the environment, and very difficult to
apply in a different context entirely. We present an XML-based language, the
XML Object Definition (XOD) language, as a solution to this problem. The lan-
guage is largely descriptive instead of imperative so, instead of describing how to
locate objects within each image, the developer simply describes the properties
of the objects.

ii

The final area is the development of support tools. Vision system program-
ming is extremely difficult because large amounts of data are handled at a very
fast rate. If the system is running on an embedded device (such as a robot)
then locating defects in the code is a time consuming and frustrating task.
Many development-support applications are available for specific applications.
We present a general purpose development-support tool for embedded, real-time
vision systems.

The primary case study for this research is that of Robotic soccer, in the
international RoboCup Four-Legged league. We utilise all of the research of this
thesis to provide the first illumination-independent object recognition system for
RoboCup. Furthermore we illustrate the flexibility of our system by applying
it to several other tasks and to marked changes in the visual environment for
RoboCup itself.

iii

Certificate of Originality

I hereby certify that the work embodied in this thesis is the result of original
research and has not been submitted for a higher degree at any other University
or Institution.

(Signed)
Nathan Lovell

iv

c© Copyright 2006
Nathan Lovell

v

Approval

Name: Nathan Lovell
Degree: Doctor of Philosophy
Thesis Title: Machine Vision as the Primary Sensory Input for

Mobile, Autonomous Robots
Submission Date: 19 January, 2006

Supervisor: Prof. Vladimir Estivill-Castro
Griffith University
Australia

Co-supervisor: Prof. Manuella Veloso
Carnegie Mellon University
U.S.A.

External examiners: Prof. Robyn Owens
University of Western Australia
Australia

Dr. Thomas Röfer
Univerity of Bremen
Germany

vi

Acknowledgements

I would like to sincerely thank my supervisor, Prof. Vladimir Estivill-Castro.
His assistance, encouragement and support has been exemplary and tireless for
many years now.

Thanks are also due to my colleagues in the Machine Intelligence and Pat-
tern Analysis lab at Griffith University for their helpful suggestions on many
occasions. Particular thanks to Joel Fenwick for his regular assistance with
mathematics and for his valuable contributions to my work on linear-time line
analysis.

Finally, I wish to thank those who have supported my wife and me throughout
this thesis: our families and our second family at St. John’s Anglican Church,
Wishart.

vii

To the God who invented vision, whose algorithms we

try to imitate.

And to my wife who loves and encourages me.

viii

List of Outcomes Arising from this Thesis

Papers in International Conferences

• V. Estivill-Castro and N. Lovell. Improved object recognition — the
RoboCup 4-legged league. In Proceedings of the 4th International Con-
ference on Intelligent Data Engineering and Automated Learning, pages
1123-1130. Springer-Verlag, 2003, ISBN: 3-5404-0550-X.

• N. Lovell and V. Estivill-Castro. A descriptive language for flexible and
robust object recognition. In Proceedings of RoboCup 2004 — Robot Soccer
World Cup VIII, Lisbon, Portugal, pages 540-547. Springer-Verlag, 2004,
ISBN: 3-5402-5046-8.

• N. Lovell. Real-time embedded vision system development using AIBO
Vision Workshop 2. In Proceedings of the 5th Mexican International Con-
ference on Computer Science, pages 268-274. IEEE Computer Society,
2004, ISBN: 0-7695-2160-6.

• N. Lovell and J. Fenwick. Linear time construction of vectorial object
boundaries. In Proceedings of the 6th IASTED International Conference
on Signals and Image Processing, pages 914-919. ACTA Press, 2004, ISBN:
0-8898-6434-9/0-8898-6442-X.

• N. Lovell. Illumination independent object recognition. In Proceedings of
RoboCup 2005 — Robot Soccer World Cup IX, Osaka, Japan. Springer-
Verlag, 2006, To appear.

• N. Lovell. Fast posture and object recognition using symmetries. In Pro-
ceedings of the 2005 Australasian Conference on Robotics and Automation,
CD-Rom Proceedings, 2005, ISBN: 0-9587-5837-9.

Results from the International RoboCup Competition

• Second place in the open challenge, 2005, (as assessed by peers) for work
on a real-time posture recognition system for the AIBO.

• Team places 5th overall in the technical challenges, 2005, and prequalifies
for 2006. Our solutions to two of the three challenges were based on my vi-
sion system: the open challenge (posture recognition) and the illumination
challenge (illumination independent object recognition).

• Participation in competition in RoboCup 2005, Osaka, Japan.

• Participation in competition in RoboCup 2004, Lisbon, Portugal.

ix

• Participation in competition in RoboCup 2003, Padua, Italy.

• Participation in competition in RoboCup 2002, Fukuoka, Japan. The team
places 3rd overall in the soccer competition1.

1At this time I was a member of the team from Newcastle University, Australia.

Contents

1 Introduction 1

1.1 Computer Vision and Mobile, Autonomous Robotics 1

1.1.1 Computational Complexity of Image Analysis Algorithms . 2

1.1.2 Vision for Dynamic and Unpredictable Conditions 4

1.1.3 Reliance on Domain-Specific Knowledge in Object Recog-
nition . 5

1.1.4 Development and Debugging Facilities 6

1.2 Vision Pipelines for Robotic Vision 7

1.3 Aims and Contributions . 10

2 Our Development Platform 14

2.1 The ERS-210/A . 14

2.2 ERS-7 . 16

2.3 Development Environment . 17

2.4 RoboCup Four-legged League . 18

2.5 Rationale . 21

I Computational Complexity of Image-Analysis Algo-
rithms 24

3 Basic Concepts and Related Work 25

3.1 Image Segmentation . 26

3.2 Edge Detection . 29

3.3 Vectorisation . 31

3.4 Our Contribution . 34

4 Fast and Accurate Image Segmentation 36

4.1 Our Colour Classifier . 36

4.2 Classifier Calibration . 40

4.2.1 Supervised Learning of a Calibration 43

x

CONTENTS xi

5 Inexpensive Edge Detection 46
5.1 Optimised Edge Detection . 46
5.2 Late Edge Detection . 51

5.2.1 Partial Late Edge Detection 52
5.2.2 Complete Late Edge Detection 56

6 Linear Time Vectorisation 59
6.1 Definitions . 60
6.2 Classifying Line Segments . 63

6.2.1 An Alternative (Faster) Classifier 67
6.3 Proof . 67

6.3.1 Proof of Proposition 1 . 67
6.3.2 Proof of Proposition 2 . 70
6.3.3 Proof of Proposition 3 . 72
6.3.4 Special Cases . 77

6.4 Runtime Performance . 78

II Vision for Dynamic and Unpredictable Conditions 80

7 Basic Concepts and Related Work 81
7.1 Variable Illumination Conditions 82

7.1.1 Light Conditions . 82
7.1.2 Related Work . 87
7.1.3 Our Contribution . 89

7.2 Versatile Posture Recognition . 89
7.2.1 Posture Recognition by Symmetry 91
7.2.2 Our Contribution . 92

8 Illumination-Independent Object Recognition 94
8.1 The Basis of Illumination Independence 95

8.1.1 Training a Sparse Classifier for Illumination Independence 96
8.1.2 Combining Edge Detection with Sparse Classification . . . 96

8.2 Detecting Simple Object Boundaries 100
8.2.1 Runtime Performance of Simple Object Detection 101

8.3 Detecting Complex Object Boundaries 103
8.3.1 Runtime Performance of Heterogeneous Object Detection . 105

8.4 Accuracy of our Method . 107

9 Versatile Posture Recognition 109
9.1 Object Symmetries . 110

9.1.1 Symmetries in the Medial Axis 112
9.2 Application to Robot Soccer . 115

xii CONTENTS

9.2.1 Accuracy of Our Method to Robot Soccer 117

9.3 Gesture Recognition of a Hand 118

9.4 Maritime Signal Flags . 119

III Reliance on Domain-Specific Knowledge in Object
Recognition 122

10 Basic Concepts and Related Work 123

10.1 Generic Object Recognition . 123

10.2 Utilising Machine Vision Techniques 125

10.3 Our Contribution . 125

11 Versatile Object Definitions 127

11.1 Primitives . 127

11.2 Declarative Elements . 128

11.3 Imperative Elements . 130

11.4 XOD Illustrations . 131

11.4.1 Black and White Ball . 131

11.4.2 Flag Instead of Beacon . 132

11.4.3 Identifying an Air-Hockey Puck 132

11.5 Implementation . 135

11.5.1 Optimisation . 137

11.5.2 XOD Implementation Example 138

11.5.3 Assumed Objects . 142

11.6 XOD Language Specification . 142

IV Development and Debugging Facilities 144

12 AIBO Vision Workshop 2 145

12.1 Basic Concepts and Related Work 145

12.2 AIBO Vision Workshop 2 . 147

12.2.1 AVW2 Customisation . 148

12.3 Features of AVW2 . 154

12.3.1 AVW2 as a Testing, Debugging and Validation Tool 154

12.3.2 AVW2 as a Rapid Development Tool 157

12.3.3 AVW2 as a Profiler and Performance Monitor 158

12.4 Discussion . 159

CONTENTS xiii

V Putting it all Together 160

13 Conclusions and Future Work 161
13.1 Our Advanced Vision Pipeline . 162

13.1.1 Summary . 165
13.2 Future Work . 166

13.2.1 Computational Complexity of Image-Analysis Algorithms . 167
13.2.2 Vision for Dynamic and Unpredictable Conditions 168
13.2.3 Reliance on Domain-Specific Knowledge in Object Recog-

nition . 168

VI Appendix 170

List of Figures

1.1 The Bruce et al. image processing pipeline. 8

2.1 The Sony AIBO. 15
2.2 The RoboCup playing field. 20

3.1 Image segmentation. 28
3.2 Edge detection. 29
3.3 Blur: the effect of camera instability on image processing. 31
3.4 The Hough transform for straight-line vectorisation. 33

4.1 Orange pixels in the colour space. 37
4.2 The same pixel value, two different colours. 38
4.3 Calibration by examination of Y, U and V components. 42
4.4 Approximating colour classification by linear discrimination. . . . 44

5.1 Visual comparison of our edge detection with Sobel’s. 50
5.2 Vectorisation of a circle. 51
5.3 Full and partial late edge detection. 52
5.4 Partial edge detection on a non-convex shape. 53
5.5 Edge detection on blurry images. 54
5.6 Our edge detection algorithm on blurry images. 55
5.7 Complete late edge detection. 57
5.8 Direction definition for border following. 58

6.1 A comparison of our algorithm with Douglas-Peucker. 61
6.2 Edges are composed of blocks and diagonals. 62
6.3 Shortest paths in 8-connected space. 62
6.4 Classifying a straight line in constant time. 63
6.5 Counter-case for the alternate straight-edge classifier. 68
6.6 Rasterisation. 69
6.7 Deriving an expression for the length of a block. 70
6.8 The repeating pattern of blocks in rasterisation. 71
6.9 Too many long blocks. 73
6.10 The last pixel of a long block. 73

xiv

LIST OF FIGURES xv

6.11 Too many short blocks. 76

7.1 The sun as a variable illumination source. 84
7.2 Specular reflection as a weak light source. 85
7.3 The medial axis. 91
7.4 Finding the medial axis. 92

8.1 Edge detection in varying illumination conditions. 95
8.2 The effect of varying illumination conditions on the colour space. . 97
8.3 Basic illumination-independent object recognition. 99
8.4 Problems with a border tracing algorithm. 104

9.1 Skeletal symmetry and the medial axis. 110
9.2 The results of our posture technique. 111
9.3 Mirrored symmetry . 113
9.4 Determining the posture of an AIBO. 115
9.5 Detecting the kick of an AIBO. 116
9.6 Hand gesture recognition. 118
9.7 Classification of maritime signal flags. 121

11.1 XOD for a pink on yellow RoboCup beacon. 129
11.2 XOD for a close, orange ball that is on the field. 130
11.3 XOD for a far orange ball. 131
11.4 XOD for black and white balls compared to orange balls. 133
11.5 XOD runtime performance. 133
11.6 XOD to turn a beacon sideways (flag). 134
11.7 XOD for an air-hockey puck. 135
11.8 Implementation of XOD. 136
11.9 XOD for a black and white ball. 138
11.10 Pixel clustering to form blobs. 139
11.11 Partial edge detection of a circle to find the ball. 141
11.12 XOD for the posture of an AIBO. 142

12.1 AVW2’s pipeline architecture. 149
12.2 Keys in AVW2. 150
12.3 AVW2’s filter architecture. 151
12.4 The architecture of a filter. 152
12.5 Variations to the pipeline architecture. 153
12.6 Multiple outputs increase flexibility. 155

13.1 Our advanced vision pipeline. 163
13.2 Some XOD could require a programmer to write an extension. . . 164

List of Tables

3.1 Common low-level image processing algorithms. 26

4.1 Comparison of our classifier with other methods. 40

5.1 Performance of our edge detection compared to Sobel. 49

6.1 Performance of our vectorisation algorithm. 78

8.1 Performance of basic illumination-independent object recognition. 100
8.2 Performance of object recognition for simple objects. 103
8.3 Performance of object recognition with heterogeneous objects. . . 106
8.4 Accuracy of our object recognition. 108

9.1 Accuracy of posture recognition in robotic soccer. 117
9.2 Effect of noisy data on posture recognition. 118

11.1 An XOD reference. 143

13.1 Performance of our improved pipeline. 166
13.2 Summary of features. 166

xvi

List of Algorithms

4.1 Decision List classification. 39
5.1 Complete late edge detection. 56
5.2 Border following. 58
6.1 The Douglas-Peucker algorithm for vectorisation. 60
8.1 Basic illumination-independent object recognition. 98
8.2 An efficient rectangle parameterisation algorithm. 102
11.1 Pseudocode for a C++ implementation. 140

xvii

xviii

Chapter 1

Introduction

1.1 Computer Vision and Mobile, Autonomous

Robotics

Image analysis, and its application to sensory input (computer vision) is a fairly

mature field, so it is surprising that its techniques are not extensively used in

robotic applications. On the surface it seems that mobile, autonomous robotics

is an ideal platform for the application of computer vision techniques. Mobile

robots are required to operate in the same dynamic real-world environment where

vision is the primary sensory input for humans. In fact, so much do humans rely

on vision that we often recruit seeing-eye-dogs or the like to do it for people who

are visually impaired. Nevertheless, when we apply the algorithms developed for

computer vision to robotic applications, several very difficult problems emerge.

Traditionally robots have been used for manufacturing or other repetitive

tasks. In this environment, machine vision has rarely been used as a primary

sensory input because, where applicable, other sensors are far easier to use. For

example, the combination of pressure sensors and joint position sensors is enough

to manufacture a car. The robot does not need to use vision to execute a script of

motions if it has knowledge of its joint positions with sufficient accuracy and its

environment is carefully controlled. Where image analysis has been used, such

as verification in circuit design, the camera is generally stationary, in a known

lighting condition and with no temporal performance restrictions.

In contrast to this, an autonomous, mobile robot is expected to operate in

unknown conditions. These robots must carry everything that they need to

1

2 1. Introduction

perform their task with them — including the camera. This means that the

camera will not be fixed; the image stream will suffer from jolts of motion as

the robot moves around. Furthermore, not everything that the robot needs to

see will be in the viewing range of the camera at all times. The robot will need

to decide what to look at. If it has the equivalent of a head, then the decision

of where to point the camera is a strategic decision that is independent of the

direction of motion of the robot. Furthermore, mobile autonomous robots need

to interact with the real world in a way similar to humans. Not everything in the

environment will be controlled. This imposes a temporal restriction on image

processing. Whatever algorithms are used, they must keep up with the pace of

change in the environment1 or the robots’ actions will lag significantly behind

the external stimuli that caused them. These conditions make the application

of image processing algorithms a challenging task.

Many researchers expected that solutions to these problems would become

evident as the hardware used in the robots became faster and, to a certain extent,

this may be true. However, experience has shown that even though hardware

is now relatively inexpensive, applications of image analysis for machine vision

in mobile robotics are still very limited [72]. It is increasingly apparent that

no matter how much faster computers become, robots will never be able to use

vision exclusively as a primary sensory input (that is, see like a human) until

more groundwork is done in the fundamentals of computer vision to overcome the

unique problems associated with mobile, autonomous robotics. There are four

distinct problem areas that must be addressed by the computer vision community

if visual sensory input for robotics is realised. We detail these areas now.

1.1.1 Computational Complexity of Image Analysis Al-

gorithms

The first problem area is that of algorithmic complexity. The emphasis in image

analysis literature has been primarily on code robustness and secondly on effi-

ciency. The reason for this is apparent: an image processing algorithm needs to

be extremely robust to noisy conditions. However, this means that there have

been many fine algorithms developed for sub-problems within the field of im-

age analysis that are almost useless when applied to the field of mobile robotics

1This will usually mean keeping up with the frame rate of the camera.

1. Introduction 3

due to their run-time cost. For example, basic analysis techniques such as edge

detection, shape and texture analysis and other feature detection routines are

computationally expensive.

The requirement of real-time vision is that the image analysis system be

able to process (usually) at least 25 full images per second. Add to this the

requirement that there be enough left-over processing cycles to operate the other

elements of the robot, and the real-time restriction is quite rigid. It is infeasible to

run an edge-detection or texture analysis routine that takes over a second if you

are required to completely finish image analysis with time to spare for other tasks

in less than 1
30

of a second. Neither is it sufficient to argue that Moore’s law will

solve the problem eventually. Digital cameras have also increased in resolution in

proportion to Moore’s law because the same technology that facilitates the extra

transistors on computer hardware also facilitates the extra resolution of digital

cameras. At the time of writing mid-range digital cameras permit resolution

of around 2 Mega-Pixels (that is, 2 million pixels). Even a modern processor

that is capable of 2 G Hz (2 billion cycles per second) will fail to process 30

such images in a second. As the processing speed of computers has increased, so

has the image resolution. For each linear increase in processing power we would

expect at least an equivalent increase in memory capacity, thus there will be a

quadratic increase in the number of pixels. Therefore the CPU power will never

catch up with the number of pixels. The hope is that there will one day be a

resolution sufficiently large for the environment.

A good illustration of this phenomenon is in the Sony AIBO platform. The

early model, the ERS-210A, contained a camera that was capable of a resolution

of 176 x 144 (25344) pixels (3 bytes per pixel) with a frame rate of 25 fps. This

meant that the vision system was required to handle 3∗176∗144∗25 = 1900800

bytes, or 1.81 Mb per second. The ERS210-A was equipped with a 600 MHz

processor for this task. By contrast, the new model (the ERS-7) has a camera

capable of 208 x 160 pixels (again, 3 bytes per pixel) with a frame rate of 30 fps.

This requires the processor, which is 1 G Hz in this model, to handle 2.83 Mb

per second. This is a 64% increase in data with only a 60% increase in processor

speed.

If vision is to become a useful sensory input for mobile, autonomous robotics,

beyond applications in simple environments, then algorithms must be developed

that run with realistic efficiency — say linear order on the number of pixels that

4 1. Introduction

are examined. Algorithms for most vision-processing tasks are currently non-

linear. For example, the Hough transform is commonly used to detect straight

lines and other shapes within images. The Hough transform is O(n2) on the

number of pixels2 to detect straight edges, and increases as the detection task

becomes more complex. It is O(n3) to detect circles or rectilinear parabolas and

O(n5) to detect an arbitrary conic-section at an arbitrary orientation. Another

example is the common task of edge and corner detection. Edge detection algo-

rithms are linear on the number of pixels but with an extremely high constant

factor that depends on the size of the window used in the algorithm (usually

around 9). Such a constant, when operating on all of the pixels in an image,

makes an edge detection algorithm extremely slow. For example, to run an O(n)

algorithm with a constant of 9 on the ERS-7 means that the processor must

handle 25.47 Mb per second as opposed to 2.83 Mb for an O(n) algorithm with

a constant of 1.

1.1.2 Vision for Dynamic and Unpredictable Conditions

The second problem area is that of robust adaption to varying conditions. Image

analysis is a difficult and processor intensive task when the conditions are known

a priori but the tasks are more difficult when faced with unknown conditions —

especially unknown lighting conditions. Most of the image analysis literature

overcomes this problem by calibration, which is a method poorly suited to mobile

robotics. For that reason, one of the most discussed topics in the literature for

robotic vision at the moment is that of robustness to varying lighting conditions.

Take, for example, the common image processing task of colour segmentation

which is used as the basis of many object recognition systems. This task seeks to

assign each pixel in the image to one of a discrete set of a priori colour classes —

to label all the pixels in the image that look (for example) blue as belonging to the

colour class blue. Colour classifiers are usually learned by supervised training

from a set of sample images. This works well when the lighting conditions are

relatively static. A problem arises when the robot must operate in a new lighting

condition that is significantly different to the one in which the classifier was

trained. The appearance of colour changes dramatically and in a way that has

been shown to be very difficult to model, depending on the reflective properties

2Refer to the Glossary for a definition of Big-O notation on Page 181.

1. Introduction 5

of the surface and the temperature, colour and intensity of the light that it is

exposed to [83]. Thus, if a classifier is suited to one particular condition, and

extra lights are turned on or off or a shadow passes by, then the classifier will

cease to function well. If the lighting condition changes dramatically, then it

will cease to function at all and consequently the object-recognition system will

yield incorrect results.

Again, if vision is to become a useful sensory input for mobile robotics then

techniques must be developed for use in real-world lighting environments. In fact

both outdoor and indoor environments have dynamic lighting conditions in the

real world. It is only dedicated venues that have controlled illumination. Even

in simple applications we expect to be able to operate our robots at different

venues. This is infeasible if the calibration process for each venue is a time

consuming task. Many current calibration systems require time in the order of

hours where a human operator supervises the learning process. This kind of

calibration is impossible when the robot must cope with sudden and unexpected

variations in lighting conditions while it is in operation.

1.1.3 Reliance on Domain-Specific Knowledge in Object

Recognition

The third problem area is that there is a high reliance on domain-specific know-

ledge in most image-processing applications. Many software systems work well

for their particular domain but adapt poorly when a new environment is encoun-

tered. This is undesirable for a mobile robot that must operate in a variety of

conditions — some of which will surely be outside the parameters imagined by

the original software designer.

In simple applications there will be a discrete and fixed set of objects in the

environment of the robot. The task of the object recognition system is to locate

and identify these objects within each incoming image. Feature extraction for

this task is well studied and there are almost as many different techniques as there

are objects. This is part of the problem. In a real-world environment, the robot

must have some way of learning the properties of unexpected and previously

un-encountered objects. This is not an easy task and there are many unsolved

problems. For example, what internal representation will the robot store for

encountered objects so that it will recognise them if it ever sees them again?

6 1. Introduction

How will the robot deduce the properties of the object that it is observing? How

will robots classify objects into semantically-related groups to determine their

function?

In the field of autonomous robotics it is not adequate to rely on a vision rou-

tine that contains large amounts of domain knowledge about all the objects we

expect our robot to encounter. Many currently existing applications utilise this

domain-dependent style of object recognition, and therefore become unsuitable

for use in a general purpose robot. Even if the task of autonomously learn-

ing object properties of new objects seems distant, steps toward this goal are

very feasible. For example, object recognition systems can be developed using

a generic description language that is capable of describing objects in the en-

vironment in such a way as to enable the vision system to identify them if it

ever comes across them. Information about the utility and functionality of the

object may also be written into the description. This task requires a descriptive

language and not an imperative one such as most programming languages. The

descriptions should be based on some form of logic language. Even though unsu-

pervised learning of such descriptions remains a difficult task, at least robots may

be easily configured for use in different environments while such problems are

solved. Moreover, a descriptive language will be preferable for humans as they

code and verify their programs, because they will be relieved of the orthogonal

task of describing object properties in the code.

1.1.4 Development and Debugging Facilities

There are yet other reasons why the body of knowledge in computer vision is

often not directly applicable to the task of autonomous robotics. Some of these

reasons are practical rather than theoretical, because autonomous robots differ

from computers in several important aspects.

Firstly, development for most mobile robots is a very difficult task. Compiled

code is often not native to the development machine, that is, code is often cross-

compiled3 on an external computer such as a PC and uploaded to the robot.

This means that debugging facilities that are normally available to developers

such as Just In Time (JIT) debugging4, code stepping and variable inspection,

may not be available for code developed for the robot.

3Refer to the Glossary on cross-compiled code on Page 182.
4Refer to the Glossary on JIT debugging on Page 183.

1. Introduction 7

In fact, mobile autonomous robots remain generally one of the hardest sys-

tems to develop for. They operate in dynamic and unknown environments, which

minimises the utility of domain specific knowledge and makes the task of predict-

ing what sensory input will be encountered very difficult. They are non-accessible

when they are operating, and this, combined with the non-deterministic nature

of the environment, makes understanding the runtime execution path of the code

extremely difficult. Often they must operate in a team situation, adding to the

complexity of a real-time environment with the difficulties of multi-agent sys-

tems. Sometimes this is even an adversarial environment where the robot must

compete or fight against other agents while cooperating with its own team. For

these reasons there has been an enormous investment in software simulators.

Another problem that is detrimental to the development of vision systems

is that there are very few robots equipped with a facility such as a computer

monitor that is suitable for viewing the incoming frames from the camera. It is

extremely difficult to develop an algorithm to process a stream of images if it is

difficult to visualise the entire stream. Even when robots are equipped with a

network device as a means to send images to a PC, the limitations of bandwidth

make streaming every image impossible. Interactive text based I/O to and from

the robot is desperately inadequate for this kind of problem. Even wireless links,

which are the usual communication channel of choice between a robot and PC,

currently possess inadequate bandwidth for visual data.

Finally, given that real-time processing is so important for this task, code

profilers and code analysis tools become all the more critical. These kinds of

facilities are commonplace for general-purpose development environments but

are usually lacking in the environment that exists for a custom-built robot. This

makes the task of developing useful debugging tools essential. Again, these tools

should not need to be built on a per-application basis (as is often the case). A

little forethought and planning will produce a vision development system that is

useful across a wide variety of domains and applications.

1.2 Vision Pipelines for Robotic Vision

A vision pipeline is a sequence of techniques and algorithms applied in a pipeline

architecture [115], where each step in the pipeline manipulates or analyses image

data. There are certainly many varied methodologies for image-processing solu-

8 1. Introduction

Figure 1.1: The Bruce et al. image processing pipeline first segments the im-
age (a) by colour (b), then forms connected regions (blobs) (c) and uses this
information to do object recognition (d).

tions and it is also true that robotic vision systems reflect this variety depending

on the specific application context of the system. However, we have noticed

across a variety of problem domains within mobile autonomous robotics, that a

similar pipeline is emerging as a standard. This pipeline was first described in

2000 by Bruce, Balch and Veloso [16] in the context of the RoboCup competition

(see Section 2.4) and is shown in Figure 1.1.

The first stage in the pipeline is image segmentation (b). In this stage each

pixel in the image is labelled as one of a set of colour classes. Pixels that look,

for example, blue are labelled as belonging to the class blue. After the image is

segmented, it is passed to a blob-former (c). Blobs are groupings of connected

pixels that all belong to the same colour class. Each blob can then be analysed to

determine its properties or relation to other blobs. This is the object-recognition

stage (d).

The Bruce et al. pipeline is certainly not the only pipeline used by mobile,

autonomous robots. Indeed, even within the RoboCup competition we have

seen many interesting and significant variations in recent years, such as the

one in the German team code [107]. However, the Bruce et al. pipeline does

possess certain advantages that make it an extremely popular choice, especially

for teams that do not emphasise vision research. Firstly, it is very efficient —

it requires only one pass over the raw data and one pass over colour segmented

data in order to complete the object recognition task. It is relatively easy to

implement and there are third-party libraries available that implement some of

its functionality5. Another advantage is that it is also relatively easy to calibrate

5See CMVision - http://www.cs.cmu.edu/ jbruce/cmvision/.

1. Introduction 9

and to use in various different conditions6. So significant are these advantages

that even some competitive teams do not deviate far from the pipeline, despite

its age [25, 26].

Because of these advantages we have seen this pipeline emerge not only as

a standard in RoboCup [96, 130, 25, 26], but also in other robotics applica-

tions [54, 72]. It is generally useful when the objects that we expect our robot to

encounter are distinguishable by colour and when we know the lighting conditions

in which our robot operates. We believe that this accounts for its widespread

use. Operation in dynamic lighting conditions or with objects that contain more

than one simple colour are regarded as difficult problems. So, as we have seen in

RoboCup, researchers have tended to simplify the environment in order to main-

tain progress in other areas of robotics that are dependent on a working vision

system. It has been expected that after initial progress has been made, the re-

search will address the more difficult and general problem of complex objects in

dynamic and unpredictable lighting conditions. We believe that the Bruce et al.

pipeline has therefore found popularity in many different, simplified application

domains.

However, for this reason we also believe it is becoming increasingly less useful.

A large proportion of the machine vision literature of recent times, both in

RoboCup and elsewhere [51, 117, 72]7, has attempted to address the problem of

dynamic illumination conditions — a situation in which the Bruce et al. pipeline

will not work. Indeed, we present a viable solution in this thesis, provided that

the conditions are not too widely variable (see Chapter 8). One thing is clear:

the old way of doing machine vision for mobile autonomous robotics will not

work in more realistic environments. Something new is required.

Of course, the Bruce et al. pipeline is not a general solution to machine vision

for mobile, autonomous robotics. In some applications the robot could never use

colour as a means of object recognition. For example, robots that must perform

SLAM8 cannot use colour to map their environment unless the environment is

very artificial. We make two observations about these types of robots. Firstly,

they are not often bound by a real-time restriction. It is perfectly acceptable

for a SLAM robot to stay in one place long enough to run whatever image

6Note: it is not useful in dynamic conditions, but it is easy to use in many different
conditions if calibration is permitted prior to use.

7See Chapter 8 for a more detailed discussion on this literature.
8Refer to the Glossary on SLAM on Page 183.

10 1. Introduction

analysis algorithms one desires because the environment will not change around

it. Secondly, vision is not usually employed as the primary sensor on these kinds

of robots. For example, SLAM robots usually employ laser range finders or the

like.

In the context of real-time autonomous robotic vision, colour is one of the

only object features that is sufficiently easy to distinguish in order to make the

image processing fast enough to keep up with the frame rate of the camera. A

pipeline similar to Bruce et al. can even be used in military hardware in order

for missiles to detect targets via the infra-red spectrum [113]. In general, where

colour segmentation and blob forming has not been useful for the task of object

recognition, either different sensing hardware has been employed or the real-time

response requirement has been relaxed.

1.3 Aims and Contributions

The contribution of this thesis is to advance the state of the art in vision systems

for mobile, autonomous robotics. We have argued that there are four distinct,

but overlapping problem areas that must be addressed in order to do so. It is

extremely difficult to advance in the field without contribution in all four areas.

For example, there is no way that any high-level processing algorithm will run

efficiently enough to be useful if there are no suitable low-level algorithms on

which to build. Yet there is no point in improving the low-level algorithms if

the high-level algorithms still will not be useful in the dynamic visual conditions

present in robotic domains. Furthermore, if development of these systems re-

mains a difficult (sometimes impossible), time-consuming and arduous task, who

will implement the solutions?

We therefore divide this thesis into four sections. Each section addresses

the state of the art and our research and achievements in one of the problem

areas identified in Section 1.1. We have done this for organisational purposes,

however, we continue to recognise the inter-relationship that exists among all

problem areas.

1. It is necessary to reduce the computational complexity of many common

low-level image-processing algorithms. As mentioned previously, most al-

gorithms are far too expensive to use in a real-time environment. Although

the number of image processing algorithms is enormous, the number of

1. Introduction 11

available low-level techniques is actually fairly small. Thus most high-level

algorithms are built on a small set of low-level techniques. We therefore

argue that improvements in the low-level algorithms will yield a great im-

provement in the runtime of many different image processing algorithms

and therefore some algorithms that have previously been too expensive to

use may now become feasible. Our contributions in this area are detailed

in Part I of the thesis.

One of the most studied techniques in computer vision is that of image

segmentation and there are several very efficient and fast techniques for

segmentation in the literature. Nevertheless, we have made several im-

portant contributions to this algorithm, both in classification speed and

calibration efficiency. The memory required to store our calibrations is

also an order of magnitude smaller than that of comparable systems, mak-

ing it extremely useful in systems where memory capacity is limited. We

discuss our technique in Chapter 4.

Edge detection has seen only limited use in machine vision literature. The

reason for this is that it is generally regarded as an extremely expensive

process. Although it runs in linear time on the number of pixels in the

image, each pixel must be examined more than once. This is undesirable

given the large number of pixels in most images. Another important reason

why edge detection is sometimes disregarded in machine vision pipelines

is because it does not cope well with blur in the image. In the context

of machine vision the camera is mounted on a non-stationary platform

(the robot) and therefore blur will probably be encountered. We have

performed several optimisations on standard edge detection techniques in

order to overcome these two problems. Not only is our edge detection fast,

but we also have the ability to compensate for blur without a complex

and expensive pre-processing phase. Our improvements are detailed in

Chapter 5.

Another commonly used and studied low-level algorithm is that of straight-

edge detection. Possibly the best known algorithm in this category is the

Hough transform which runs in quadratic time on the number of pixels in

the image. Its memory requirements are also O(n2) on the number of pix-

els. There are some slight improvements on this algorithm in the literature

12 1. Introduction

as well as some faster heuristics. One such faster algorithm is commonly

found in the computational-geometry literature: the Douglass-Perker algo-

rithm [140]. This algorithm runs in O(n log n) complexity on the number

of pixels in the boundary of the region to be vectorised. We have improved

this algorithm to improve the complexity of the overall vectorisation to

O(n) on the number of pixels. Experimental evidence suggests that this is

a substantial improvement in the context of image processing because n is

generally large. We detail our method in Chapter 6.

2. The task of adaptation to dynamic conditions remains a challenging prob-

lem for mobile autonomous robotics. As we have argued, most robotic

vision systems are built on the basis of colour segmentation which works

well only in known lighting for which the robot has been calibrated. Our

contributions in this area are detailed in Part II of the thesis.

We present a technique that significantly overcomes many of the problems

associated with vision in dynamic and variable lighting environments. We

show experimentally that our technique allows for robust object recognition

even when lighting, temperature and intensity vary dramatically, as well

as in the presence of dynamic shadows in natural lighting conditions. We

detail our method in Chapter 8.

We also present a technique for posture and gesture recognition that over-

comes some of the problems associated with unknown viewing distances

and angles. Our technique is based on the property of symmetry so it

is useful in a wide variety of situations. It runs in linear time based on

the number of pixels in the boundary of the object so it is extremely fast.

Furthermore it is useful in a wide variety of problem domains. We present

our technique in Chapter 9.

3. There is a large reliance on domain-specific knowledge in image processing

systems. For every object we wish our robot to identify, we must tell it

what features to look for in each image. Our contributions in this area are

detailed in Part III of the thesis.

Before it will be possible for a robot to autonomously learn to recognise and

respond appropriately to previously un-encountered objects, it will first

be necessary to develop some generic internal representation of objects.

1. Introduction 13

We present a declarative XML-based language (XML Object Description:

XOD) capable of robustly describing not only the properties of objects,

but the techniques required to detect such an object within an image. In

this way it is possible to serialise object definitions to files and therefore

the object recognition system will be able to recognise any object for which

there exists a valid file. Therefore no code will need to be changed should

the object recognition system be required to operate the robot in a dif-

ferent context. We detail our language and an implementation for it in

Chapter 11.

4. The final problem area is that of development and debugging facilities for

machine vision on mobile autonomous robotics. We have argued that even

with modern compilers and debugging utilities, development for mobile

robots, especially in the area of vision, remains an extremely difficult task.

Our contributions to this area are outlined in Part IV of the thesis.

We present a tool to support the entire software development life-cycle for

generic embedded vision systems. Our tool provides a flexible, modifiable,

off-line immersive environment where the code that is running on the robot

can be tested natively on the PC. It does this both through support for

C/C++9 add-in modules (DLLs10) and C/C++ scripted files. The code

that runs on the robot may be directly tested, debugged and profiled on

a PC. The results of running each segment of the code on each image

can be presented visually to the developer in a pipeline architecture. Our

tool supports direct streaming of images from a robot via any network

connection as well as saving, loading and modifying image files and streams.

The format of images is flexible so that our tool can be used for many

different image formats from many different cameras. We present this

work in Chapter 12.

9Refer to the Glossary on C/C++ on Page 181.
10Refer to the Glossary on DLLs on Page 182.

Chapter 2

Our Development Platform

Our primary development test platform is the Sony AIBO in the context of the

RoboCup Four-Legged League. Where it is relevant to our work we have used

other platforms and environments besides those described in this chapter, but

we leave descriptions of those environments to the corresponding chapter. There

are several models of the AIBO, of which we use two, the ERS-210/A and the

ERS-7.

2.1 The ERS-210/A

The ERS-210/A is the earlier of the two models. The only difference between

the 210 and the 210A is the processor speed. The ERS-210 has 20 degrees of

freedom:

• Three per leg: rotators, abductors, and knees.

• Two in the tail: tilt and pan.

• Two in the head: pan and roll.

• One at the base of the neck: tilt.

• One in the mouth: open/shut.

• One per ear: up/down.

As well as these, there are several other actuators:

14

2. Our Development Platform 15

Figure 2.1: The Sony AIBO ERS-7.

16 2. Our Development Platform

• Seven lights in the display panel of the head.

• One light on the chest (on/off).

• One speaker in the mouth capable of playing 8-bit wave files.

The sensors on the model are:

• A colour camera (176 x 144 pixels, 3 bytes per pixel (YUV colour format),

operating at 25 frames per second, in the nose.

• Push button (on/off) on the chest.

• One touch sensor on the pad of each foot.

• One touch sensor underneath the chin.

• One touch sensor on the head.

• One touch sensor on the back.

• Three internal gyro-meters (tilt, pitch and roll).

• One infra-red distance sensor in the nose.

• One microphone in each ear.

• One internal temperature sensor.

• All joints report their load and position.

The model comes equipped with 802.11B wireless Ethernet capabilities. Its

processor is either a 384MHz (ERS-210) or 576MHz (ERS-210A) MIPS processor

and it is equipped with 32Mb of RAM.

2.2 ERS-7

The ERS-7 has some minor variations from the ERS-210 design beyond the

obvious external differences:

• There is no roll of the head. Instead there is an extra tilt at the top of the

neck as well as the one that was already at the bottom.

2. Our Development Platform 17

• There is a much more sophisticated facial display containing 83 lights of

variable colour.

• There are mode-lights behind the ears capable of three colours each.

• There are three touch sensors on the back, each with a corresponding light.

• There are three (instead of one) infra-red distance sensors: one long range

and one short range in the chest, and one long range in the nose.

• The camera captures at a resolution of 208 x 160 pixels, 3 bytes per pixel

(YUV colour format), 30 frames per second.

This model still comes equipped with 802.11B wireless Ethernet support. Its

processor is a 64-bit RISC processor and it is equipped with 64Mb of RAM.

2.3 Development Environment

The operating system for the AIBOs is called Aperios1 and is distributed free

of charge by Sony along with a development platform which is called Open-R1.

Code for the AIBO is developed in the C++ programming language on a PC2

and cross-compiled for Aperios.

On boot, the AIBO reads the operating system as well as any programs and

configuration files from a Memory Stick2 that is inserted into its undercarriage.

Memory sticks come in varying sizes (8, 16, 32, 64Mb) and so they currently

impose only a theoretical restriction to the size of the program — not many

executables reach 8Mb in size. Nevertheless, the lack of a hard-drive in the

AIBO means that the memory stick size limitation can be exceeded if the AIBO

is writing data (such as images or debugging information) to the stick at runtime.

Each program that runs on the AIBO is considered an object by the operating

system. In traditional object-oriented terminology3, an object has state and a set

of messages that can be called to communicate with it and this is true of Open-

R objects as well. The only difference is that an Open-R object represents an

entire processing thread. Complete documentation on Open-R may be obtained

1“Aperios”, “Open-R” and “Memory Stick” are trademarks of Sony Corporation.
2See the Glossary on PC’s on Page 183.
3Refer to the Glossary on Object-Oriented Programming Paradigms on Page 183.

18 2. Our Development Platform

at Sony’s website4. The code is event driven and messages are sent to objects

whenever one of the following events occurs:

• A new image is obtained by the camera.

• New sensor information (for all sensors other than the camera) has been

collected.

• The motors/actuators are ready to receive a new instruction.

If the code that was called on one event has not completely finished by the

time the same event is triggered again, then the call will be ignored until the

code is ready.

This interrupt-driven code model presents a problem to the vision system

developer of the AIBO platform. The image data interrupt is triggered at 30 Hz

and there is one new image per interrupt. The sensor information is triggered at

125 Hz and there are 4 frames of data for each sensor per interrupt. This means

that even though there is sensor data for each of the 30 images per second, there

is no way to precisely match an image with the sensor data that was recorded

at the same time, though a rough correlation is possible. Experimental evidence

suggests that the head may move up to 8o even within the time it takes to process

a single image.

2.4 RoboCup Four-legged League

While there are several applications for the AIBO, our main test-bed has been

in the domain of the RoboCup Four-legged League. RoboCup is a collaborative

effort by a large international group of universities and other research institutions

to produce useful research in the field of robotics. There are several endeavours

within RoboCup including competitive robotic soccer, robotic rescue in disaster

areas and RoboCup Junior which encourages participation in technological fields

from an early age. The Four-Legged league is one of the divisions of the soccer

competition where the hardware is restricted to Sony AIBOs. Therefore the

difference in quality of play between teams is completely determined by the

quality of the software that is written for the task.

4http://openr.aibo.com/

2. Our Development Platform 19

Although the specific rules vary somewhat from year to year, in the 2005

competition each soccer team is composed of four AIBOs that play on an ap-

proximately 6m x 4m field. There is one player that is designated goal keeper

who can go anywhere on the field. The other three players are free to go any-

where except in the defending goalie box. The robots on each team are allowed

to communicate with each other via wireless Ethernet, but no external commu-

nication (either to a PC or a human controller) is allowed. The robots play

autonomously. The winner is the side with the most goals after two 10 minute

halves.

To assist in play the field is largely colour coded. Refer to Figure 2.2. Teams

wear red and blue uniforms, the ball is orange and the field is green with white

lines. One end is designated the blue end and has a blue goal and blue and pink

field beacons. The other end is designated the yellow end and has a yellow goal

and yellow and pink field beacons. The lighting, for the moment, is fixed at a

uniform 1000 Lux at 3000o Kelvin over the field. There has been a push in recent

years toward using natural illumination conditions, but sufficiently good object

recognition has eluded the league. This illustrates the difficulty of the problem.

There are several other important aspects of this league in relation to com-

puter vision. Firstly, the camera is located in the head of the AIBO which may

be pointing in a direction independent of the rest of the body. Although vague

readings can be obtained from sensors and accelerometers, it is very difficult to

accurately determine the view plane of the camera relative to the ground. This

makes image processing a very difficult task. For example, we must usually lo-

cate the horizon within each image from features of the image itself if we require

accuracy. It is possible to estimate the horizon from the known positions of the

joints and accelerometer readings, but the results will be quite inaccurate if the

AIBO is walking. Therefore image processing techniques must be used to refine

it. The horizon is such an important feature to detect because, although colours

and lights are controlled below the horizon, above the horizon there may be any

combination of lighting effects and colour. Someone in the crowd wearing a yel-

low T-shirt can easily be mistaken for the yellow goal. The capacity of the head

of the AIBO to pan and tilt through different axes makes it possible (and com-

mon) that the “top” of the image will not be the pixels with the lowest y-value

in the image. This precludes any standard top-to-bottom processing technique

unless the horizon can be accurately determined.

20 2. Our Development Platform

Figure 2.2: The 2005 RoboCup Four-Legged League playing field, showing the
typical “kick-off” configuration of the robots.

2. Our Development Platform 21

Another challenge that is unique to this league is that the camera has no

capacity for omni-view, making the choice of where to orient the head a strategic

decision. If the head is raised the ball may be missed but beacons are more likely

to be seen. In a game of soccer, is is better to know where you are or where the

ball is? Even if you know where the ball is, you still need to know where to kick

it.

The robots of this league are also legged which means that as they move

around, kick and walk they change shape. This presents two problems to the

vision system. Firstly, as the robot moves around, the camera moves with it,

making the image shake in unpredictable ways (as opposed to robots that are

on wheels where the camera is relatively stable). The other problem is that

there is no easy way to identify other agents with any degree of accuracy. The

colour of the uniforms makes them relatively easy to detect within an image,

but the many possible morphologies of an opponent means that details such as

orientation, posture and even proximity are difficult to determine. The league is

yet to develop a usable recognition system for opponent AIBOs.

More information about the Four-Legged League can be found at the league

web site: http://www.tzi.de/4legged/bin/view/Website/WebHome, or at the of-

ficial RoboCup web site: http://www.robocup.org.

2.5 Rationale

We have selected the Sony AIBO and, in particular, the RoboCup Four-Legged

League as our primary development and testing application for several reasons.

Firstly, the AIBO is a fairly typical example of an autonomous, mobile robot.

While it is certainly true that there are many different varieties of robots —

perhaps as many as there are applications — there are some features that are

common.

Mobile autonomous robots are expensive items. Therefore, to minimise the

cost where appropriate, they are usually fitted with the minimal hardware to

perform the task required. This means that the processor on a robot is likely

to be several generations behind the current hardware technology in computing.

This is certainly true of the AIBO which has neither a fast (by modern standards)

processor, nor a high quality camera.

Secondly, development for autonomous robots fits into the category of em-

22 2. Our Development Platform

bedded systems. Robots usually do not come with all the facilities of a PC —

a screen, keyboard and other HCI5 devices. Code must be cross-compiled and

uploaded to the robot. The AIBO is certainly typical in this regard. The only

native debugging facility available is a text stream over wireless Ethernet. This

makes run-time debugging of vision processing code extremely difficult, though

not more difficult than in many other robotic applications.

Although general purpose robots come in all shapes and sizes, there is a push

in certain areas of the industry to make them appear more like a human. This

means that as robotics progresses we will increasingly see legged robots with

independent control of the direction of vision. The legged nature of the AIBO

adds many problems to vision processing because it is difficult to determine

precisely the view-plane of the camera. We expect this problem to be increasingly

common as legged robots replace wheeled ones. The independent control of the

head also adds strategic difficulty to the vision system which must now decide

where to point the camera and what to look at.

Therefore the AIBO is fairly typical not only of the current state of robotics,

but of the future direction as well. The AIBO is also less expensive than many

custom-built robots so this adds to the attractiveness of the platform for many

general-purpose robotics researchers.

If RoboCup is to achieve its stated goal of developing a robotic team of

humanoid soccer players that can beat the current world champion team by the

year 2050, then vision will certainly play a critical role. The current standard of

vision in the league and in the RoboCup community is fairly elementary. Objects

are identified primarily by colour and systems are used that are in no way tolerant

to changing lighting conditions. Nevertheless, RoboCup is state of the art in its

general purpose vision. There have been vision solutions developed for specific

tasks (such as driving) that work well but do not attempt a general purpose

solution. If RoboCup achieves its goal then a robot will be able to play soccer

under human conditions — that is with natural lighting, in variable weather, in

a field surrounded by advertising and a crowd. If a vision system is developed

that will work under these conditions then it will work in any conditions for any

task.

RoboCup also provides a valuable context in which to compare techniques

against other research. There is a great deal of valuable theoretical work done

5Refer to the Glossary on Human-Computer Interaction on Page 183.

2. Our Development Platform 23

in machine vision that is nevertheless very difficult to use in robotic applica-

tions. The reason for this is that the work is published in academic papers. If

I desire to test the work of another researcher against mine then I must first

redevelop their code for my context: it has to run on my robots and in my test-

ing environment. Researchers do not have time to do this for a large number of

alternative algorithms. RoboCup removes some of these limitations by providing

a common robot and a common testing context. It is relatively easy to see which

vision system (or which component thereof) performs better simply by running

the two pieces of code side-by-side. This feature of RoboCup has accounted for

much of its success in general as it is true not only for vision but other areas

of robotics as well. Many researchers find the direct comparison of algorithmic

quality valuable. The competition merely provides added incentive.

Part I

Computational Complexity of

Image-Analysis Algorithms

24

Chapter 3

Basic Concepts and Related

Work

We divide the image analysis literature into two overlapping areas. Firstly we

classify some algorithms and techniques as low-level. In this category we place

algorithms such as noise elimination and filtering, edge and corner detection,

image segmentation, texture analysis and shape recognition. These techniques

are fundamental to high-level analysis routines that attempt to find features for

a specific analysis problem (for example, finding the eyes in a face recognition

problem). The low-level analysis routines are fundamental in that they are used

across a wide variety of different problems, and are combined in different ways

by the high-level routines. We therefore expect that the greatest impact on

runtime performance, in a general way across the image-processing literature,

will occur when we examine these low-level routines for the purpose of improving

the computational complexity.

The set of low-level image processing tasks is actually fairly small. It is

true that there is a vast number of algorithms in the literature for each separate

task — but the tasks themselves seem to be fairly common. This further justifies

our hypothesis that an improvement in the computational cost of the low-level

tasks will reap a large reward across a wide variety of high-level image-processing

applications.

In Table 3.1 we list each of the low-level tasks along with a brief description

and the computational complexity that is generally associated with the task. The

exact computational complexity, of course, will vary with different algorithms

and we will examine the relevant variations in detail.

25

26 3. Basic Concepts and Related Work

Low-Level Task Example Runtime Cost

Image filtering Noise filtering O(n)
White balancing O(n)

Histogram equalisation O(n)
Image segmentation Colour classification O(n)

Connected region O(n log n)
Edge detection O(n)
Vectorisation Straight line detection O(n log n)

Corner detection O(n log n)
Shape recognition Depends on shape — O(n5)

for general conic section
Texture analysis Connected region Depends on number

Feature analysis of known textures

Table 3.1: The most common low-level image processing algorithms and their
associated runtime costs.

In this thesis we focus our attention on three of these low-level tasks: image

segmentation, edge detection and vectorisation. We propose that low-level algo-

rithms should be robust enough that no pre-processing (image filtering) step is

required before the algorithm is executed. Each pre-processing filter effectively

doubles the amount of data that the processor must cope with on each incoming

image. Due to the limited nature of available processing power in mobile robotics

it would seem wiser to develop algorithms that do not require a pre-processing

step. This has been part of our design philosophy.

Furthermore we note that the analysis of textures is not a common problem

for robotic vision tasks. While we recognise there could be some valuable appli-

cations for texture analysis in robotic vision (for example, visual inspection of

uneven, realistic terrain) we leave this task to future work. At the present time

there does not seem to be a great need for these algorithms in general purpose

robotics.

3.1 Image Segmentation

The task of image segmentation has formed the backbone of many robotic vi-

sion algorithms. This has certainly been the case in RoboCup where teams

have followed closely the same paradigm since 2000 when Bruce, Balch and

3. Basic Concepts and Related Work 27

Veloso defined it [16]. Image segmentation has been widely studied in the ma-

chine vision community in general. Many novel methods have been applied

there [127, 125, 84, 129, 86] and it is easy to understand why. If the colours of

known or interesting objects in the environment are distinct, then the colour can

be easily used for the task of object-recognition. This is a very inexpensive ob-

ject recognition process that does not require a high resolution camera or a fast

processor. For this reason robotic developers often stipulate colours even when

this imposes an artificial limitation on the user or the robots environment. For

example, the Workpartner [54], developed by the Helsinki University of Technol-

ogy is a gardening assistant robot that will follow its owner around the common

household garden. It is calibrated to follow a red item — the designers obviously

felt that red would be an uncommon colour in a garden environment — so the

owner of the robot must wear a red shirt or jumper every time they wish to use

it.

The shortcomings of an image segmentation approach to computer vision

are substantial. Image segmentation performs poorly in conditions where the

lighting condition is unknown or dynamic, but we will leave this discussion to

the appropriate part of the thesis.

An image segmentation algorithm labels each pixel within an image as one

of a predefined set of colours. For example, in RoboCup, the important colours

are orange, green, white, yellow, pink, blue and red. In this context an image

segmentation algorithm should assign one of these colour labels to each of the

pixels in the image. Refer to Figure 3.1 for an example.

This task is not as simple as it first appears. Most colour spaces are large1.

For example, in the YUV colour space2 each pixel is made of three components:

Y (intensity), U (chromatism 1: red-green) and V (chromatism 2: blue-yellow).

Each of these components is represented by 1 byte (a value between 0 and 255)

so the total number of colours that can be represented is 2563 = 16, 777, 216.

The simplest possible solution to this classification problem is a lookup table

that maps each of these possible values to one of the classified colours. Such a

table would be 16 Mb in size assuming that there are no more than 255 colour

classes. A table of this size is unrealistic not only to store but also to build when

1Refer to the Glossary for a fuller discussion on colour spaces on Page 181.
2We will use the YUV colour space throughout this thesis as it is the one used by the

camera on the AIBO.

28 3. Basic Concepts and Related Work

Figure 3.1: Image segmentation assigns a colour class to each of the possible
colours in the original image. Objects in the environment that appear yellow,
for example, are labelled as belonging to the class yellow.

you consider the arduous calibration task of assigning a colour class to each of

the 16 million colour values.

Consequently, there is a large body of research on the best way to train and

store a classifier that can do this task well. Research has explored machine

learning and statistical discrimination techniques like linear discriminates [19],

decision trees [27], artificial neural networks [132] and instance-based classifiers

(k-nearest neighbours and other non-parametric statistics). At the time of writ-

ing, support vector machines are extensively used by the community [104, 105].

There is definitely a trade-off in building a good classifier. If you are willing

to store large amounts of data and take a great deal of time to train the classifier,

then a fast and accurate runtime solution can be found. In this respect a lookup-

table of characteristic vectors [16] remains the best solution. However, the job

of training such a classifier is a major undertaking requiring many hundreds of

images and many hours of laborious human-supervised work. This is obviously

undesirable. The trade-off then is to sacrifice runtime speed and accuracy for a

smaller representation that is easier to train.

3. Basic Concepts and Related Work 29

Figure 3.2: The process of detecting edges within an image involves sliding
a window over every pixel. The pixels within each window are examined to
determine if the centre pixel is an edge. Different edge detection algorithms vary
on this examination step.

3.2 Edge Detection

An edge detection algorithm may be expressed as a function f with input image

I and resultant image I ′:

f(I) = I ′

The result I ′ will be a binary raster image where each pixel (x, y) is either

“on” if (x, y) represents an edge in the source image or “off” if it does not. While

the specific mechanics of different edge detection techniques vary, basically they

all operate on a similar idea. A “window” (of width and height w) is slid over

the pixels in I. Each window is examined to determine if the centre pixel is

an edge. Different algorithms have different methods of examination. Refer to

Figure 3.2.

Edge detection routines have a reputation for being very slow. It is easy

to understand why when you consider that with a window size of w, and n

pixels in the image, the entire runtime of the algorithm is O(wn). Obviously w

is constant, but in the context of image processing this constant is significant.

Typically w will be small — say three or five — but this does not alleviate the

problem. An edge detection algorithm with a window of size three will need to

examine 2.3 Mb of data if the image is 1024x768 pixels.

Even though edge detection is considered a fundamental step by the image

30 3. Basic Concepts and Related Work

processing community [50], it has been largely ignored by the robotic vision

community due to these performance restrictions. There are some applications

which require edge detection (such as simultaneous localisation and mapping

in unknown environments [35, 93]). However where possible the technique is

avoided [52]. Even when it seems unavoidable in the desired application people

have used alternative (non-vision based) sensors such as laser range finders [53]

or ladar3 [42].

In the image analysis community, which cares less about runtime perfor-

mance, the edge detection problem is well studied [57]. The most common edge

detection routines are well known. The Canny edge detection algorithm [22] is

considered a standard method and is often used in benchmarks of other algo-

rithms. The Canny method applies a Gaussian blur to a grey-scale image4 and

then computes the directional derivatives for each row and column in the win-

dow. The derivatives are compared to a user-supplied threshold to determine

edge pixels. This is quite an expensive computational process. We describe this

edge detector more fully in Chapter 5.

There are other well known methods. Sobel [119] and the Roberts Cross [50]

are also quite common methods that are less computationally expensive than

Canny but more susceptible to noise. There are also statistical methods [62],

genetic algorithms [15] and neural network approaches [121]. A large body of

literature also exists on the best way to compare the effectiveness of different

edge detection algorithms [57, 1]. In all of this literature, however, we see concern

for the algorithmic robustness of the various techniques, but very little for the

runtime efficiency. This is simply because the literature has been developed

primarily by the image analysis community which does not have the rigid runtime

restriction imposed by autonomous robotics.

Another reason that edge detection is difficult to use in a robotic environment

is that edge detectors generally do not cope well with blurry images. In a robot

with a directional camera (especially a legged robot), the speed at which the

camera is moving can cause a significant amount of blur which obscures the

edge information. This can be seen in Figure 3.3 where the orange ball does

not even look vaguely circular and there exists no clear edge information in the

3See the Glossary on Ladar on Page 183.
4The grey-scale image corresponds to the Y channel in YUV images, but other colour spaces

such as RGB and HSI would have to be converted to grey-scale before edge detection could be
applied.

3. Basic Concepts and Related Work 31

Figure 3.3: The effect of camera instability on image processing can be quite
marked. In the above image the boundary between the ball and the field is
almost indistinguishable in the Y-channel. This would make edge detection very
difficult.

black/white (Y-channel) image between the ball and field. Some research has

been done on restoring edge information in blurry images [102], but this kind of

analysis is extremely computationally expensive. The edge detection methods

we present in Chapter 5 are the first fast edge detection routines that cope well

in the context of blurry images (under certain conditions) while maintaining a

speed that is usable in the context of real-time image processing. We do this by

including the colour information in our approach.

3.3 Vectorisation

The task of vectorisation is usually the next step after edge detection. The edge

detection algorithm results in a binary image which, generally speaking, is not

useful in itself for image processing tasks. It is much more useful to know that

the image contains a line from point p1 to p2 than to have a list of pixels in raster

form. It is therefore the job of vectorisation to convert the raster image (usually

the binary edge image) into vectorised form. When we speak of vectors in this

context we do not refer to the same concept that we find in linear algebra. A

vector image is a list of parameterised shapes — each shape being stored in its

32 3. Basic Concepts and Related Work

most succinct form. For example we may represent circles by their centre and

radius, we may closely represent the generalised polynomial curve by a Bézier

description [45] and we may represent a line segment by its start and end points.

It is more work for a graphics engine to render such an image, but it is also much

more useful for image analysis purposes.

Although many methods exist for the task of vectorisation of boundaries

([23, 47, 43, 67] for example), without a doubt the most commonly used technique

is the Hough transform [65]. The transform will, in fact, locate any shape within

an image, provided there is a suitable parameterisation for that particular shape.

The parameterisation may be multi-dimensional but the important thing is that

every possible occurrence of the shape in the image can be represented in a finite

parameter space. For example, to search for an arbitrary straight line within an

image we may represent the complete set of possible straight lines by two finite

intervals on the parameters r and θ where θ is the angle of the line and r is

the perpendicular distance of the line from the image origin. The parameter θ is

bound between 0 and π, and r is bound by the size of the image. The edge points

in the raster representation are processed and each possible r and θ to which the

edge point could contribute is incremented in a two dimensional accumulator.

The peaks in the accumulator space then represent the actual edges within the

image. Refer to Figure 3.4.

The same is possible for any shape for which a finite parameter space can be

found [8]. Of course, as the shape becomes more complex the parameter space

will also expand. For example the Hough transform can be used to locate an arbi-

trary size circle in an image but must use a three dimensional parameter space —

radius and centre (x and y). The general conic section can be found in a five

dimensional parameter space — eccentricity, focus (x and y) and directrix (as

a line). As the parameter space increases, so does the computational complexity

associated with the operation. The entire n-dimensions must be accumulated

for each edge pixel within the image, and then after the image is processed the

entire parameter space must be searched for local maxima.

There have been various attempts to optimise the Hough transform for var-

ious shapes using the particular properties of the shape in question, and these

have met with some success [68, 118]. For example, it is possible to use the

properties of the geometry of a circle to reduce the Hough transform for the

general circle to O(n2) [69]. It is also possible to generate heuristics so that only

3. Basic Concepts and Related Work 33

Figure 3.4: The Hough transform is one technique for straight line vectorisation.
Each pixel (x, y) identified as an edge in the source image contributes to the
accumulator for every possible straight line that can pass through (x, y). The
accumulator space is then searched for local maxima.

34 3. Basic Concepts and Related Work

a fraction of the pixels require examination [109, 85].

The Hough transform is popular because it works extremely well. It is very

robust to noisy images and highly accurate. The problem, of course, for robotic

vision applications is the runtime complexity. The computational complexity of

the transform arises because it has a large multi-dimensional space to accumulate

and then search. An approach that simply sub-samples pixels will not reduce

the size of this space.

If we restrict ourselves to a straight-line vectorisation of the edges then there

are other algorithms that are a great deal faster. The Douglas-Peucker algo-

rithm [140] is commonly used in the geographical information systems literature

for this task. It accepts as input an ordered list of pixels, E, between any two

points: the origin pixel o = (ox, oy) and the target pixel t = (tx, ty). Usually

this list of pixels will represent the boundary of the shape we wish to vectorise.

The list is searched for the pixel p that is furthest from the line ~ot. If this pixel

is further than a threshold then the algorithm recursively searches ~op and ~pt,

otherwise the straight edge ~ot has been found. The poly-line formed by the

recursion represents the vectorisation of E.

The Douglas-Peucker algorithm, in the form we have stated it above, is also

O(n2) on the number of pixels in E. This has been improved to O(n log n) by

using a binary search heuristic instead of iterating over the entire list E at every

level of recursion [61, 60]. This represents a substantial improvement over the

O(n2) complexity of the Hough transform. There are other algorithms that work

along similar principles and also run in O(n log n) time [111]. We have managed

to improve the Douglas-Peucker algorithm further to run in linear time and will

present this work in Chapter 6.

3.4 Our Contribution

Most high-level image processing routines are built by using a combination of

lower-level processing techniques. If we are to reduce the runtime cost of many

high-level routines (to the point where it is feasible to use them in a mobile, au-

tonomous robotics environment) then the best place to start is with the low-level

routines. We believe that a small contribution in any one of these routines is very

valuable as there is only a small subset of low-level image processing techniques

from which most higher level techniques are assembled. Consequently we exam-

3. Basic Concepts and Related Work 35

ine several low-level routines in the following chapters with the view of increasing

performance and, where possible, reducing the computational complexity.

Of course, sometimes it will be necessary to trade accuracy for the perfor-

mance we require. We note, however, that this is not as significant a trade as it

first appears. The image analysis literature has primarily focused on accuracy

over performance because this made sense in the context of the tasks for which

it was being used. If you are analysing a CAD drawing, for example, then you

would obviously be happy for the algorithm to take a little longer and do a good

job. However, in the context of real-time vision, one small mistake in a particular

frame will quickly be corrected by the next incoming image less than one second

later. When viewed in this light the trade-off is reasonable.

Nevertheless we cannot afford to sacrifice too much accuracy. If vision is to

be a useful sensory input then it needs to compete with much more specialised

sensors such as laser range finders, and our image processing algorithms will still

need to be accurate.

Chapter 4

Fast and Accurate Image

Segmentation

We present in this chapter a colour classifier that is suitable for the task of

image segmentation. Our classifier is equivalent in speed to a lookup table but is

considerably more compact than any other classifier available. Also, in contrast

to other classifiers, its stored representation is intuitive and easy to understand.

4.1 Our Colour Classifier

We may represent a colour classifier as a function colour class : Y × U × V →
Colour that given a triplet (y, u, v) produces a colour class where Colour is

a member of a discreet set of colour classifications, colours. This function

may be easily represented as a single characteristic function for each member of

colours. For example, let class orange : Y × U × V → {true, false} return

true when the pixel (y, u, v) belongs in the class orange.

We note that the set of all pixels in the colour space that we would like

to classify orange cannot be accurately described by any linear discriminator

(refer to Figure 4.1). This is because the orange area is not rectangular. This

makes the individual characteristic functions difficult to define.

It is clear from this that the only way for a classifier to exactly represent

each colour class is by a comprehensive lookup table. We certainly lose accuracy

whenever we attempt to define the class orange by any linear discriminator.

We are, however, quite unconcerned with this loss of accuracy. The reason why

such accuracy is unimportant is illustrated in Figure 4.2. The two highlighted

36

4. Fast and Accurate Image Segmentation 37

Figure 4.1: This Figure shows all of the (orange) ball pixels in Figure 4.2 mapped
to the RGB colour space (left) and the YUV colour space (right). Notice that
the area of space defined as orange is not rectangular.

pixels in the image on the left have exactly the same (y, u, v) tuple even though

our eye clearly perceives one as red and one as orange due to the context of the

image. Should that pixel be classified as orange or red? Clearly the human eye,

to some extent, defines colour by what it expects to see given the surrounding

context of the image. An ideal classifier would therefore classify a pixel as class

orange only when the predominant colour of the surrounding shape is orange.

The problem, of course, is that image segmentation is usually the first step in

object recognition. The image analysis algorithm does not yet know the context

of the object in which the pixel lies. For this reason even a comprehensive lookup

table will classify pixels incorrectly.

For this reason we are content with a classifier that recognises the core of

each colour class1. Thus a linear description will be a suitable representation.

The characteristic function of each colour class can therefore be represented by

the projection functions on each of the dimensions Y , U and V . For example, the

three projections Y orange, U orange and V orange can be used to approximate

class orange in the following way:

1For reasons that we will examine in Chapter 8 we would ideally like to ignore pixels that
could fall into more than one class depending on surrounding context.

38 4. Fast and Accurate Image Segmentation

Figure 4.2: The highlighted pixels both classify to orange because they have the
same component (YUV) values. Despite this, the human eye clearly percieves
one as red and the other as orange because of the context of the image.

class orange(y, u, v) ≈ Y orange(y) ∧ U orange(u) ∧ V orange(v). (4.1)

Each of the characteristic projection functions has a domain of 256 values and

thus can be feasibly stored in a lookup array that stores 1 if Y orange is true

and 0 otherwise. Thus there is a lookup table of 256 values for each of Y orange,

U orange and V orange which we store in 3 arrays. We can store the lookup

for up to 32 characteristic functions in these arrays if they are of correct width2.

We do this by putting the lookup for the first characteristic function in the first

bit of the value, the second function lookup in the second bit, and so on. If more

characteristic functions are required then we simply increase the size of the data

type.

The final colour class function is then essentially represented by a C++

bitwise AND-operation:

colour class(y, u, v) = Y [y]&U [u]&V [v]. (4.2)

232 bits is a convenient width because it represents an int data type on a modern (32 bit)
processor.

4. Fast and Accurate Image Segmentation 39

The final step is to compute the log2 of the result to determine the ID of

the colour class. This entire method of classification is shown in Algorithm 4.1,

which is what the Machine Learning or Data Mining community would refer to

as a Decision List.

Algorithm 4.1 Decision List classification.

Input: Arrays Y[255], U[255] and V[255] where the first bit in Y[n], U[n] and

V[n] is the lookup of the characteristic function for the nth colour class. The

colour tuple to classify is (y,u,v).

Output: The colour class of (y,u,v).

1: val = Y[y] & U[u] & V[v]

2: count = 0

3: while ¬(val & 0x01) ∧ (count < 32) do

4: val = val >> 1

5: count++

6: end while

7: return count

This implementation of our algorithm is similar to that presented by Bruce

et al. [16]. The innovation of our approach is that each colour class may be

represented in the array more than once because Algorithm 4.1 retrieves an

index to the class, not the class itself. There are two advantages to this system

over Bruce et al. The first is that our algorithm allows us to discriminate non-

rectangular regions in the colour space using a decision list format. The second

is that the representation of the calibration file is very easy to understand and

edit (even by hand). Both of these advantages are discussed fully in the following

section (Section 4.2, see especially Figure 4.4). The Bruce et al. algorithm does

not permit more than one linear discriminant for each colour class, and therefore

does not permit non-rectangular colour regions. This makes the Bruce et al.

algorithm unsuitable for use in both of the calibration techniques (robust and

sparse) that we present in Section 4.2.

Our entire classifier is at most 3060 bytes in memory and runs very quickly.

Table 4.1 compares our method with some of the other classifiers that are being

used in the RoboCup competition. It is easy to understand why our technique

is so much faster than the others. If classification is treated as a spacial prob-

lem (k-Nearest Neighbours) then the classifier is required to compute Euclidean

40 4. Fast and Accurate Image Segmentation

Algorithm Avg time on AIBO Amount of memory
per frame (ms) consumed (bytes)

Our method 1.71 3060
Complete lookup table 1.41 16777216 (16Mb)
k-Nearest neighbours Depends on k but Depends on k but

very slow fairly small
(1ms / k) (4 bytes / k)

Support vector machines 1.93 262144 (256Kb compressed)

Table 4.1: Comparison of our Decision List classifier with other methods that
are available.

distances that involve a square root operation. If it is treated as a decision tree

then it may process up to 20 levels of conditional statements before a decision is

reached. Our method has a runtime cost only marginally larger than the fastest

possible solution of the lookup table.

4.2 Classifier Calibration

In general, calibration for classification is a supervised learning task; given a set

of sample pixels with known colour class, derive a classifier to assign a colour class

to future pixel values. It is important to recognise that we may not encounter

every possible (y, u, v) tuple in the training set, so the classifier must generalise.

There are two types of calibrations possible for the task of classification: robust

and sparse.

Let P be a training set of n images and Orangei be the set of pixels that we

wish to classify as orange (for example) within the ith image. Then an ideal

robust classification for the class orange is:

class orange(y, u, v) = true ⇐⇒ (y, u, v) ∈
n⋃

i=0

Orangei. (4.3)

That is, if a pixel with values (y, u, v) is recognised as orange in any of

the images in the training set, then the classifier should label this pixel as class

orange for any future images. Of course, an ideal robust classifier may not

be possible. For example, as we have discussed, the same (y, u, v) tuple may be

assigned to two different classes in the training set (even within the context of

the same image). An ideal classifier may also suffer from over-fitting [138]. In

practice, we weaken the condition by asserting that the classifier should label a

4. Fast and Accurate Image Segmentation 41

pixel as class orange if it is recognised as orange more often than any other

colour class.

By contrast, an ideal sparse classification for the class orange is:

class orange(y, u, v) = true ⇐⇒ (y, u, v) ∈
n⋂

i=0

Orangei. (4.4)

That is, we wish to label a pixel (y, u, v) as orange only if it is recognised as

orange in all of the images in the training set. Again, sometimes it is necessary to

weaken this condition. In practice we label a pixel as orange if it is recognised

as orange in most of the images in the training set.

There are both benefits and drawbacks to each of these two calibration meth-

ods. We argue for a sparse classification in Chapter 8, while the majority of

existing systems use a robust classifier. For the purposes of this chapter it does

not matter which type of calibration we wish to use — the calibration method

will have only a very minor alteration from one to the other.

Each of our characteristic projection functions, as described above, is capa-

ble of storing any pattern of 255 bits. However, for the task of calibration we

restrict this to a continuous block of 1’s anywhere within the domain of the

function. We label the lowest positive bit for a particular projection (y, u or v)

and class (colour) as Minproj,COLOUR. Similarly we label the highest positive

bit Maxproj,COLOUR. This means that each characteristic projection function is

essentially testing the clause

(Minprojection,COLOUR ≤ x) ∧ (x ≤ Maxproj,COLOUR). (4.5)

Therefore each characteristic function may be written

class COLOUR(y, u, v) = (Miny,COLOUR ≤ y) ∧ (y ≤ Maxy,COLOUR)

∧(Minu,COLOUR ≤ u) ∧ (u ≤ Maxu,COLOUR)

∧(Minv,COLOUR ≤ v) ∧ (v ≤ Maxv,COLOUR). (4.6)

It is therefore this representation, in the form of a decision list [139], that we

expose to the user. A typical calibration file has the following format:

42 4. Fast and Accurate Image Segmentation

Figure 4.3: We may calibrate for each colour by separately examining the Y, U
and V components and finding the projections for each characteristic function.
This image shows our manual calibration tool allowing the user to select the Y
(greyscale in the image), U (yellowscale in the image) and V (bluescale in the
image) projections for the class orange separately.

Colour_ID_1 Min_Y Max_Y Min_U Max_U Min_V Max_V

Colour_ID_2 Min_Y Max_Y Min_U Max_U Min_V Max_V

...

Of course, we are limited in the number of characteristic functions we can

apply by the size of the selected data type, as explained above. In our case we

are limited to 32 characteristic functions which, of course, may be increased if a

larger data type is used. The results of applying one such characteristic function

can be seen in the screenshot in Figure 4.3. Here the Y , U and V channels are

calibrated separately to produce the overall characteristic function.

Although the rule format restricts us to linear discrimination within the

colour space, significant flexibility is achieved by the decision list format as

4. Fast and Accurate Image Segmentation 43

Figure 4.4 illustrates. Image (a) represents the class orange that we want

our classifier to learn. In Image (b) the bounding rectilinear area minimally

surrounds the class orange. This is the optimal linear discriminator that com-

pletely contains the class, but it does not give a very good solution. There is a

large area that our classifier will label orange that is not orange. By using a

decision list format we can do much better. We first find a characteristic function

for the two shaded areas in Image (c), and label these pixels not orange or

unknown. The while loop in Algorithm 4.1 will only continue evaluation until

a characteristic function returns true. Therefore if the shaded areas in (c) are

tested before the rule in (b), then pixels within them will not be classified as

orange even though the linear discriminator in (b) would have classified them

so. In this way it is possible to obtain relatively good classifications of colours.

Of course, if we are training a sparse classifier instead of a robust one, we will

not be interested in a box that completely surrounds the colour class. Instead

we will want a discriminator that contains the core of each class. In this case

linear discriminators are more than adequate. Of course we may require more

than one characteristic function to adequately describe the core of each colour

class (Image (d) in Figure 4.4).

4.2.1 Supervised Learning of a Calibration

It is very difficult to calibrate a robust classifier by hand although a sparse clas-

sifier is certainly possible if the right tools are used. Nevertheless the preferred

method is to use a supervised learning algorithm. Even this can be quite time

consuming and labour intensive. Our general approach is not significantly differ-

ent to others although it has obviously been adapted to our particular classifier

and calibration. Nevertheless we describe it here for completeness.

The basic approach is to build a sufficiently large training set and use covering

algorithms to learn the decision list. Generally, given the training set T of n

labelled instances (y, u, v,colour), the supervised learning technique attempts

to find the best characteristic function for some colour class and adds it to

the decision list. All instances in T covered by the recently produced rule are

removed from T and the algorithm repeats. Of course, there can be significant

variation depending on what method is used to assess the value of a characteristic

function.

We experimented with three algorithms of this class. The first is PRISM [24].

44 4. Fast and Accurate Image Segmentation

(a) (b)

(c) (d)

Figure 4.4: Colour classes cannot be described by orthonormal rectangular re-
gions in the colour space (a). Therefore classification by linear discrimination is
typically bad because it labels many pixels that are not in the class (b). We may
use linear discrimination in combination with decision lists to do a better job
(c). If the shaded regions are labelled not in the class, and are higher in the list,
pixels within them will not be labelled as belonging to the class. More than one
characteristic function can be used for each colour class (d). This is particularly
useful for sparse classification where only the core of each colour is required.

4. Fast and Accurate Image Segmentation 45

This algorithm evaluates rules by their accuracy: that is, by the simple ratio p/t

where p is the number of instances correctly classified by the rule and t is the

total number of instances covered by the rule. A variant on this is to evaluate

rules by their information gain, namely, p[log2(p/t) − log2(P/n)] where P is

the total number of examples of the class in T . Our experiments showed that

classifiers trained with these algorithms are inaccurate for this application.

At this point we make two observations. Firstly, we are not restricted to one

characteristic function per colour class and, secondly, the rules can be ordered

any way that is convenient for us. Clearly our classifier will execute more quickly

if the correct characteristic function for a particular pixel is high in the decision

list because of the while loop in Algorithm 4.1. We notice then that it makes

sense to select the more frequent characteristic functions and place them at the

beginning of the list. This required a statistical approach for which we used

PART as implemented by Weka [139].

Chapter 5

Inexpensive Edge Detection

Edge detection is a critical aspect of many image processing applications. Never-

theless, as we have argued, it is often ignored in computer vision applications due

to the high runtime cost associated with sliding a processing window over an en-

tire image. In this chapter we present two of our edge detection algorithms. The

first of these algorithms is an optimisation on gradient edge detection methods

such as Canny and Sobel.

While our optimisation considerably improves the performance of the Sobel

algorithm, and is an order of magnitude faster than Canny, it is still compu-

tationally expensive. With this in mind we present a second alternative that

enables us to delay edge detection until it is required (late edge detection). By

delaying the edge detection phase we have found it possible to use edge detection

as a fundamental tool in our image processing pipeline because only the areas

of the image where edge detection is required will be examined for edges.

Comparing the results of edge detection in an objective manner is a difficult

problem because ground truth is subjective, depending on the image and the

observer [57]. Consequently we will compare our edge detectors with other algo-

rithms only in terms of computational cost, and not in terms of quality. At the

same time we assert, in a subjective way, that the algorithms we present here

seem to work very well, and we present several images for comparison.

5.1 Optimised Edge Detection

Let I be a grey-scale image and I(m,n) be the value of the pixel in the mth

row and nth column. Then the Canny edge detector can be described by the

46

5. Inexpensive Edge Detection 47

following 4 step process:

1. Use a Gaussian filter to reduce image noise and remove unwanted texture

and detail:

I ′(m,n) = G(m, n) ∗ I(m,n) (5.1)

where G is the Gaussian function

G(m, n, σ) =

(
1√

2πσ2

)n2−m2

2σ2

. (5.2)

2. Compute the magnitude R(m,n) and orientation θ(m, n) of the gradient

of I ′(m,n) via the x and y partial derivatives (P (m, n) and Q(m,n) re-

spectively). We show the calculation here using a 2x2 window, but it can

be extrapolated to whatever size window is desired:

P (m, n) ≈ (I ′(m, n + 1)− I ′(m,n) +

I ′(m + 1, n + 1)− I ′(m + 1, n))/2. (5.3)

Q(m, n) ≈ (I ′(m, n)− I ′(m + 1, n) +

I ′(m, n + 1)− I ′(m + 1, n + 1))/2. (5.4)

R(m, n) =
√

P (m,n)2 + Q(m, n)2. (5.5)

θ(m, n) = tan−1(Q(m, n)/P (m, n)). (5.6)

It should be noted that P (m, n) and Q(m, n) can be calculated using any

of the gradient operators (Roberts, Prewitt, Sobel [50]). We show here the

operator used by Canny in the original thesis.

3. Compare each R(m, n) with its two neighbours along direction θ(m, n).

If R(m, n) is greater than its two neighbours then I ′′(m, n) = M(m,n)

otherwise I ′′(m, n) = 0.

48 5. Inexpensive Edge Detection

4. Finally, threshold I ′′(m, n) to remove noise. I ′′(m,n) is the final edge

representation:

I ′′(m,n) =

{
I ′′(m, n) if I ′′(m, n) > T

0 otherwise.
(5.7)

While the Canny edge detector works extremely well and is very popular,

it is easy to see why it is unsuitable for our current needs. The entire process

must be repeated for every pixel in the image. We note that some of the simpler

methods such as Robert’s Cross and Sobel are content with performing Step 2,

computing R(m,n) and thresholding on this value without ever considering the

Gaussian blur in Step 1. However, the trade-off for this is either that the window

size must be larger (Sobel), or the edge detector becomes very sensitive to noise

(Robert’s Cross).

Our edge detection uses an idea similar to Sobel’s: that is, we also are con-

tent with Step 2 of the process outlined above and compensate by increasing the

window size to five. However, to minimise the time spent in each window we

only consider pixels in the same row and column as the centre (m, n). Thus the

window we use is not a square but a cross. Ours is still a gradient computation:

the difference in pixels at the centre of the window is computed and compared

to the average difference between other pixels in both the row and column re-

spectively. If the difference is much higher (compared to either the horizontal

difference or the vertical one), then this pixel lies on an edge. The determining

threshold value is the calibration for the edge-detector1.

Although both our routine and the traditional edge detection algorithms are

linear time, there is a big difference in the order of the hidden cost. In traditional

edge detection algorithms, each pixel in the window must be compared to each

of its neighbours. For a window size w, the constant in such algorithms is

2w(w−1) = O(w2) (thus, quadratic on w, and usually very large). For example,

a window size of five leads to 40 colour comparisons for each window evaluation

and therefore 40 colour comparisons per pixel in the image. Contrast this to

our technique where, with size w, the constant is 2w = O(w) (linear in w).

This means that in the above example, our algorithm will only do 10 colour

1A C++ implementation of the edge detection algorithms described in this chapter is
provided for reference in Appendix A.

5. Inexpensive Edge Detection 49

Min Max Avg
Runtime Runtime Runtime

(ms) (ms) (ms)

Sobel 75 129 84.2
Our Algorithm 14 21 20.9

Table 5.1: The runtime performance of our edge detection algorithm compared
to the very common Sobel algorithm on a set of 100 images with a window size
of 5.

comparisons per pixel and will therefore execute in a quarter of the time of a

traditional edge detection algorithm. There is a very minor trade-off in terms of

the algorithm quality. Table 5.1 compares the runtime cost of our algorithm with

that of a traditional algorithm (Sobel’s), a set of 100 images with a (reasonable)

window size of five.

Of course, as we have mentioned, comparison to ground truth is impossible as

edges within an image are somewhat subjective. We present in Figure 5.1 several

images showing the result of our method against Sobel for visual inspection.

Any choice of edge detection algorithm must be implemented carefully to

make it feasible to run in real-time. We emphasise an important optimisation

that must be performed to make even our improved algorithm suitable. As the

window slides over the image, we store and re-use colour differences that will

occur in comparisons more than once (in fact, proportional to the window size).

Consider the pixels at (10, 10) and (11, 10). The difference in colour between

these two pixels is calculated for the first time when the window (of size five) is

centred on (9, 10) and used in the average to contrast with the difference between

pixels at (9, 10) and (10, 10). As the window moves along the tenth row, this

difference must be used five times. In a standard edge detection algorithm this

difference would be computed on only the grey-scale image. However, we wish to

use the entire colour-space (as we will discuss in Section 5.2.1) so the cost of each

comparison is much higher. This expense arises because each comparison involves

a three dimensional distance calculation (with a square root). We minimise the

cost in two ways. Firstly, like Robert’s Cross, we substitute Manhattan distance

(which contains no floating point operations) for Euclidean distance. Secondly,

we minimise this cost by keeping a circular buffer of the calculated differences

between both the last five pixels and, looking ahead, the next five. Since we

50 5. Inexpensive Edge Detection

(a)

(b)

(c)

Figure 5.1: A visual comparison of the results of our edge detection (purple)
with the Sobel algorithm (grey).

5. Inexpensive Edge Detection 51

Figure 5.2: Vectorisation of a circle does not require all the edge points to be
known. Any three points on the boundary of the circle can be used to locate its
centre by the perpendicular bisectors method as shown in this figure.

iterate across rows first, and then columns, it is also necessary to maintain a

circular buffer for each column in the image, in addition to the one for the

current row. By using this technique we calculate the difference between each

two pixels only once per pixel.

5.2 Late Edge Detection

Even given the above optimisations, edge detection remains very slow. One way

that we can improve performance is to do edge detection only on sections of the

image where it is required. The obvious problem is how to identify interesting

sections of the image. Edge detection is usually an early step in the image

processing pipeline so it is unlikely that we will have a large amount of contextual

data on which to base such a decision. But, assuming that we can identify some

points within the boundary of interesting objects, it is then possible to use edge

detection to locate the edges of that object and use them for feature extraction.

We will discuss the identification of points within interesting objects in Chap-

ter 8. For now, we will simply assume that we have identified p = (x, y) as a

pixel that is contained within an object for which we need to find the edges. We

discuss here two techniques depending on the amount of edge information that

52 5. Inexpensive Edge Detection

(a) (b) (c)

Figure 5.3: Full edge detection of an image (a) results in a full list of pixels that
compose the edges in the image (b). Partial edge detection locates only a subset
of these points (c).

is required.

Complete edge detection is a technique we use when a complete description of

the edge of the object is required. This renders a traditional edge detection on a

relevant object within the image. However, it is not always necessary to find the

complete edge of each object as we will see in Chapter 8. For example, we are only

required to know three points on the edge to find the correct parameterisation

of a circle (see Figure 5.2). In this instance we use a partial edge detection that

can find n points on the boundary without actually tracing the entire boundary.

The difference in result between the two algorithms is illustrated in Figure 5.3.

We describe the partial edge detection first, because the complete one will build

on some of these techniques.

5.2.1 Partial Late Edge Detection

The idea of partial edge detection is that, given some seed point p = (x, y) that

we know to be within the boundary of an object, we wish to find a set E of n

pixels that lie on the boundary. To do this we cast n evenly spaced rays out from

p, examining each pixel on the ray as we come across it. Each pixel is compared

with its neighbours to check the gradient change in intensity. By examining the

5. Inexpensive Edge Detection 53

Figure 5.4: Partial edge detection on a convex shape (such as the ones in this
figure) may not produce enough points to correctly identify and parameterise
the shape. In this case further sample points may be used, or complete edge
detection may be required.

pixels along a ray in this way, we are essentially performing a Sobel gradient

comparison in the same way as we do when we use our cross shaped window.

Edges are therefore detected well when they are approximately orthogonal to

the ray — which is most of the time if the shape is convex.

Of course, if the shape is not convex then we may not be able to gather

enough information to parameterise it in this way (see Figure 5.4). In this case,

casting rays from a second point p2 (or more) may sometimes be sufficient for

parameterisation. More complex shapes will require a different method (which

we will again examine in Sections 5.2.2 and 8.3).

Edge Detection on Blurry Images

One very useful feature of this technique is that we can apply edge detection

to blurry images without the need for complex preprocessing (such as in Per-

ona [102]), by incorporating colour data. Refer to Figure 5.5. Although a ray

cast from p along the positive x axis will not contain sufficient data in the grey-

scale channel to detect the edge of the ball, there is sufficient data present in

the colour channels to compensate. As we progress along the ray, we compare

each pixel intensity with its neighbours in the usual manner. This will detect

any non-blurry edges. We also compare each pixel’s U and V channels2 with the

original source pixel p. With the right comparison function and threshold this

2Any channels that carry colour information will do. For example, this corresponds to H
and S in the HSI colour space.

54 5. Inexpensive Edge Detection

Figure 5.5: Edge detection is difficult on blurry images. This figure shows a
pixel-by-pixel analysis of the horizontal line indicated in blue. The first row
of pixels shows that there is significant variation along this edge (even though
it is blurry) in the colour data. This would be almost impossible to detect by
examination only of the Y channel shown in the second row of pixels.

will reveal any blurred edges because the colour information will change much

more dramatically along a blur than due to natural changes of colour informa-

tion within an object3. We have found a simple Manhattan distance function to

be sufficient for our purposes:

∆ = |U1 − U2|+ |V1 − V2|.

We present in Figure 5.6 several examples that illustrate the effectiveness of

our edge detection on blurry images. Again we compare with the popular Canny

algorithm.

3Of course, this presumes that our object is a single colour. In the general case this is a
fundamental limitation of our technique.

5. Inexpensive Edge Detection 55

(a)

(b)

Figure 5.6: Our edge detection algorithm (purple) remains effective even when
images are blurred due to instablility in the camera. Traditional algorithms
(such as Sobel, shown here in grey) have problems with blurry images.

56 5. Inexpensive Edge Detection

5.2.2 Complete Late Edge Detection

Sometimes it is not adequate to know only a sample of the boundary points. For

example, for vectorisation4 we require an entire list of spatialy connected edge

pixels that represent the boundary of an object. Although our method for this

complete late edge detection is slower than a partial edge detection, it is still

significantly faster than an early edge detection that must be performed on the

whole image.

Let B(p, I) → p′ be a standard border following algorithm that, given a pixel

p on the border of an object in a raster image with borders marked I, returns the

next pixel around the border of an object p′. Our late edge detection algorithm

is then defined by Algorithm 5.1.

Algorithm 5.1 Complete late edge detection.

Input: A source pixel p that is within the spatial boundary of an object to

identify in image (with no marked edges) I.

Output: The complete list of pixels E that make up the boundary of the object.

1: Trace any ray from p to find an edge as described in Section 5.2.1 and label

this pixel s.

2: Let the current pixel be c.

3: while c 6= s do

4: Apply any edge detection window to locate borders around c.

5: c = B(c)

6: end while

Of course in Line 4 we may use the window that we presented in Section 5.1.

We show some images in Figure 5.7 that illustrate the results of this algorithm.

The edge detection is complete in that a full list of pixels that compose the

border of a particular object are discovered, but the algorithm does not need to

examine any unnecessary pixels to do this. Irrelevant sections of the image are

never examined because the algorithm uses a border follower.

One of the problems associated with this technique arises if the edge detector

is unable to form closed contours. This issue can be somewhat avoided by a

sensitive calibration (that is, one that forms thick edges). However, occasionaly

we will be forced to abandon an attempt at identifying the edge of the object.

4See Chapter 6.

5. Inexpensive Edge Detection 57

Figure 5.7: A complete late edge detection on a single object within an image
reveals the boundary of that object, without examining any unrelated areas of
the image. In this figure we show a complete edge detection on the ball, starting
from the pixel indicated by green in the source image.

By bounding the pixels in the edge of each object we can abort unsuccessful

attempts. We will leave a discussion of the impact and frequency of this for our

chapter on object recognition (Section 8.4).

Border Following

There are many standard border following algorithms that we can apply to B

in Algorithm 5.1, all of which are extremely fast (Θ(n) on the number of pixels

in the border). We describe here one of the simplest for completeness. This is

a standard algorithm that operates in 8-connected space, but it can be easily

modified to work in 4-connected space.

Let D(p, d) be a function that returns the next pixel from p in direction d.

Let the directions be defined as in Figure 5.8.

58 5. Inexpensive Edge Detection

Figure 5.8: Direction definition for the border following method shown in Algo-
rithm 5.2.

Algorithm 5.2 A simple 8-connected border following algorithm.

Input: Initial pixel p that lies on the border of an object in image (with edges

marked) I. The direction returned from the previous call dir.

Output: The next pixel p′ in a counter-clockwise direction around the border.

The direction to use in the next call dir′.

1: Initialise dir = 7 on first call.

2: if dir%2 = 0 then

3: dir = (dir + 7)%8

4: else

5: dir = (dir + 6)%8

6: end if

7: while p is not on border do

8: p = D(p, dir)

9: dir = (dir + 1)%8

10: end while

11: dir′ = (dir − 1)%8

Chapter 6

Linear Time Vectorisation

The task of straight line vectorisation is that of converting a raster description

of the edges within an image to a list of straight lines represented in vector form

(~ot where o is the origin and t is the target of the line). Therefore vectorisation

algorithms pre-suppose an edge-detection step, which we examined in Chapter 5.

Algorithms for the task of vectorisation usually have the added complexity of

determining not only the best vector representation of the points in the boundary,

but also how many edges are present in the image and to which edge each point

in the pixel list belongs. By far the most common method for this is the Hough

Transform [65] which runs in Θ(n2) for this task. There are heuristics which

run more efficiently than this requiring O(nlog2(n)) time [140, 61, 60]. We have

discussed these methods in Chapter 3.

In this chapter we present an algorithm for the task of line vectorisation that

improves the O(nlog2(n)) runtime of Hershberger and Snoeyink [61] to O(n).

The basis for this improvement is a method that allows us to classify raster

representations of edges as either straight or non-straight in O(1) time rather

than O(n). Our algorithm for constructing the raster lists requires slightly more

memory though still runs in O(n) time.

Our procedure determines if a list of pixels is the raster representation of a

straight line in constant time. It is embedded in a common procedure to build

poly-line representations of boundaries. We first build ordered lists of pixels

which traverse the boundaries in an image. For each list we determine quickly

if it is a straight line or not and, if not, we divide the list in two. For each half

we then determine if it is a straight line (recursively) until we locate all straight

edges. This general algorithm is applied in many image processing tasks and

59

60 6. Linear Time Vectorisation

is commonly referred to as the Douglas-Peucker algorithm, especially in the

Geographical Information Systems literature [140]. Its pseudo-code is presented

as Algorithm 6.1.

Algorithm 6.1 The Douglas-Peucker straight-line vectorisation algorithm.

Input: Sequence E of pixels from pixel o = (ox, oy) to pixel t = (tx, ty).

Output: A vectorisation of the line represented by E.

1: if classifier says E is straight line then

2: return ~ot

3: else

4: return Douglas-Peucker(first half of E)
⋃

Douglas-Peucker(second half of

E)

5: end if

The Douglas-Peucker algorithm is commonly improved by locating the pixel

furthest from the straight edge connecting o and t while it iterates over the pixels,

and then splitting the edge at that point (Line 4). Obviously we do not wish to

interate over the entire list of pixels at each level of recursion so we will use the

form presented in Algorithm 6.1. There is a minor improvement in the speed

of the original Douglas-Peucker algorithm by using the more efficient form, but

it does not offset the improvement we have gained by reducing the algorithm

to O(n) complexity. As we are not concerned with how many straight-edge

segments we obtain in our vectorisation, there is no significant difference in the

quality of the result obtained (refer to Figure 6.1).

6.1 Definitions

Before we detail our method we must include some common definitions that we

will use. Some of these are standard notation and are placed here for complete-

ness, and some are new.

dxe The ceiling of x. That is, the smallest integer above x.

bxc The floor of x. That is, the largest integer below x.

[x] The rounding of x. That is, the closest integer to x.

6. Linear Time Vectorisation 61

(a) (b) (c)

Figure 6.1: A comparison of our algorithm (c) with the original Douglas-Peucker
algorithm (b) on the pixels that form the edge of part of an AIBO uniform (a).
We are not concerned that our vectorisation finds more straight-line segments,
so the final result is equivelant in quality, though not identical.

mCn The binomial coefficient m choose n. Some literature denotes this as either

(m
n) or Cm

n .

block A continuous row or column of pixels. Refer to Figure 6.2.

diagonal The crux of two pixels that are 8-connected but not 4-connected.

Refer to Figure 6.2.

Edge A list of 8-connected pixels from an origin point o to a target pixel t.

Edges are composed of blocks separated by diagonals.

Optimal edge An edge is optimal if it contains the minimum number of pixels

necessary to get from o to t. The number of pixels in an optimal edge will

be equal to the number of pixels along the long side of the optimal box

(see below).

Straight edge An edge is straight if it is the rasterisation1 of a straight line

from o to t. All straight edges are optimal, but not all optimal edges are

straight. There is only one straight edge between any pair of points.

Optimal box The parallelogram with corners at o and t containing all optimal

edges from o and t. Refer to Figure 6.3.

1Refer to the glossary on rasterisation on Page 183.

62 6. Linear Time Vectorisation

Figure 6.2: A block is a continuous row or column of pixels. A diagonal is the
crux of two pixels that are 8-connected but not 4-connected. Edges are composed
of blocks that are separated by diagonals.

Figure 6.3: There is more than one shortest path (optimal edge) between most
pairs of points (o and t) in 8-connected space. The lines shown here in blue
and yellow are two such examples. The optimal box (shown in green) is the
parallelogram that contains all such optimal edges.

6. Linear Time Vectorisation 63

Figure 6.4: If the origin, o, and destination, t, of a journey are known, as well as
the time taken, j (shown here as tick marks along E), then it is easy to determine
if we have travelled in a straight line. If the distance from o to t is less than j‖~v‖
then we must have travelled along a curved path.

6.2 Classifying Line Segments

The basis for our improvement is the ability to classify a given list E of pixels,

as either forming a straight line or a non-straight line in O(1) time.

The intuition behind our algorithm can be illustrated by the following anal-

ogy. Imagine that we are travelling at a constant velocity ~v from a starting point

o = (ox, oy) to a target point t = (tx, ty). If after j units of time we arrive at a

final position t and find that the distance from o to t is less than j‖~v‖, we cer-

tainly did not move in a straight line. Consider Figure 6.4 where the tick marks

along the curve from o to t represent evenly spaced points along that curve. If

we know the first point and the last point of our list E and the number, n, of

points in the list, then it is easy to tell whether the list represents the straight

edge. The point p in the figure represents the expected endpoint of the straight

edge with n units from o to t. Since the actual end point t falls far short of p,

we conclude that E does not represent the straight edge. In fact, we not only

determine whether the pixels in E form a straight line, but we have a measure,

or indication, of how close they are to a straight edge (the distance from o to t

approaches the distance from o to p as the pixels in E fall straighter).

Unfortunately the 8-connected space [32, 110] of pixelised images complicates

this algorithm because many Euclidean properties do not hold — in particular

the Pythagorean identity. In general there are many shortest paths that connect

two points in 8-connected space. Figure 6.3 illustrates this. Both the blue and

yellow lines are shortest paths from o to t and, in fact, any optimal edge is a

64 6. Linear Time Vectorisation

shortest path. The number of shortest paths in 8-connected space between o

and t therefore relies on the gradient (slope) of the straight line connecting o to

t. When this line is a horizontal or vertical line, or when it has a slope of 1 or

-1, there is exactly 1 shortest path and the optimal box collapses to that line of

pixels.

In general, there are lCs−1 shortest paths where l = max(|ox − tx|, |oy − ty|)
and s = min(|ox − tx|, |oy − ty|) + 1. This is because when travelling from o to t

along a shortest path we must never increase the distance remaining to t so there

are only two types of possible moves. Either we may step along the long axis of

the optimal box or we may step diagonally towards t and cover one pixel on the

short side of the optimal box at the same time as one on the long side. We must

make s diagonal steps (or we will not end at t) and we have l opportunities to

do it.

Although we cannot determine from this information whether a pixel list

represents a straight edge, we can certainly rule out some lists. Any list that

has more than the optimal number of pixels (l) does not represent a straight line

segment. We also know that as the gradient approaches 0, 1, -1 or ∞ we are

less likely to mis-classify using this heuristic (since there will be fewer possible

shortest paths).

We now focus on determining if an optimal edge, E, (that is, a shortest path

from o to t) is the straight edge (that is, the raster representation of the vector

from o to t). Let us call the unique straight edge from o to t our target edge,

T . That is, we wish to determine if a given edge E is equal to T . We are now

able to make certain statements about the nature of the target edge. We assert

the following propositions. Some of these are known properties of lines [36, 141],

while we leave proofs of the other propositions for Section 6.3.

Proposition 1. The target edge T that connects o to t in the optimal box must

have the following properties:

Claim 1: It will have l pixels where l = max(|ox − tx|, |oy − ty|) + 1

(the long side of the optimal box).

Claim 2: It will have s blocks where s = min(|ox − tx|, |oy − ty|) + 1

(the short side of the optimal box).

Claim 3: It must therefore have an average block length a = l/s.

6. Linear Time Vectorisation 65

Claim 4: There will be at most two block lengths in any rasterisation

of a line: q long blocks of length LL = Llongblock and p short blocks

of length LS = Lshortblock. There may, of course, be the degenerate

case where LL = LS.

Claim 5: If LS 6= LL then LL − LS = 1.

Proposition 2. Any rasterisation of a line follows a finite repeating pattern of

blocks.

Proposition 3. The task of rasterisation is equivalent to the task of finding p,

q, LL and LS (LL = LS or LL − LS = 1) and distributing these blocks evenly

between o and t.

From these propositions we can derive certain qualities of our target edge, T .

The average block length is a, and we know that long and short blocks must

be different in length by at most one. By this we can deduce that LS = bac
and similarly LL = dae. Let k = bac. Thus pk + q(k + 1) = l = sa and, since

there are s blocks in total (p + q = s) we can find p and q. Thus q = l − sk

and p = s − q. There will also be bp/qc lines of length LS for each line of

length LL and they must be evenly distributed. This set of properties, I =

{s, t, p, q, LL, LS, the distribution of blocks} rigidly defines our target edge T .

This solves the classification task of determining if E is the target edge (that

is, E is a raster representation of a straight line). However, computing I for

a list of pixels E requires Θ(n) time. If we need to do this in every recursive

call of the Douglas-Peucker algorithm we obtain Θ(n) cost per level of recursion

because there are two calls in each level operating on half the number of pixels

in E. The binary split gives log2(n) levels, so the total complexity would be

Θ(nlog2(n)) in the worst case.

To avoid this problem we need to keep some data for the next recursive calls to

be able to determine the set I in O(1) time after the first call. We know, when

we are building the edge, that if we encounter more than two different block

lengths then it is not a straight edge2. This means we can avoid presenting

our classifier3 with any line which does not conform to the restriction of having

2We may allow for noise in the data by permitting a small variation in block lengths.
3The classifier is the procedure that tests if we have a representation of a straight line

(Line 1 of Algorithm 6.1).

66 6. Linear Time Vectorisation

two block lengths where LL − LS = 1 or LL = LS
4. We now only need to

check that the blocks are distributed as we expect. We do this by comparing

the standard deviation in distance between blocks of length LL calculated for

the target list T to the actual value calculated on the list E when we built it.

We use a formula called the calculator formula for standard deviation[77] that

requires only
∑b

i=a vi and
∑b

i=a v2
i and n (where v is the distance between blocks

of length LL and the interval of the list is a to b with n points). The calculator

formula for standard deviation D is5:

D =

√
(
∑b

i=a v2
i −

(
∑b

i=a vi)2

n
)

n− 1
.

Constant time is achieved because the calculation requires only that we know∑b
i=a vi and

∑b
i=a v2

i and m. The sums
∑k

i=0 vi and
∑k

i=0 v2
i were calculated and

stored for each pixel k in the list when it was constructed. If a recursive call

operates on an arbitrary interval a to b then it requires
∑b

i=a for vi and v2
i . These

values can be evaluated with one subtraction operation:
∑b

i=a =
∑b

i=0−
∑a−1

i=0

for both vi and v2
i .

The complexity of the algorithm, including the recursive Douglas-Peucker, is

therefore Θ(n). The algorithm is Θ(n) at the top level of recursion but no more

than two operations at level 2, no more than four at level 3 and so on until there

is no more than 2log2(n)−1 at the deepest possible level. The sum
∑log2(n)

i=1 2i−1 is

less than 2n so the algorithm is Θ(n) time in the worst case.

Note that, although we have used a statistical formula, our method is deter-

ministic and not statistical in nature. The distribution of blocks in the target

edge will render a unique standard deviation. All other optimal edges will have

a different distribution of blocks and therefore a different standard deviation be-

tween them. We only use the standard deviation to compare the distribution of

blocks in a given edge, E, with that in the target edge, T . If the two distributions

are equal then E = T .

4Note: the fact that a pixel list has two block lengths that differ by one does not make it a
straight line. We can rearrange all the long blocks to one end of the line and all the short ones
to the other to make a curve. We must take into consideration the distribution of the blocks
in the line.

5We can increase or decrease tolerance on D to account for noise in the image.

6. Linear Time Vectorisation 67

6.2.1 An Alternative (Faster) Classifier

While Θ(n) time is impressive, it is in practice slowed down by the necessity of

computing the standard deviations which involve time consuming floating point

manipulations6. It is possible to improve this algorithm considerably (reduce

the constant under the O notation, not improve the bound) by using a different

measure to determine if the edge segment is straight when it falls inside the

optimal box. The technique for this speed-up relies on the integral of the edge,

as any straight edge from o to t divides the area of the optimal box exactly in

two. Since we are required only to track
∑k

i=0 yk for each pixel k to calculate

an integral between any two points in the list, this is a very fast and efficient

method7.

The drawback is that there exists a small number of edges that are not

straight edges but are of optimal length and also possess the correct values for p,

q, LS and LL and that also divide the optimal box exactly in two (see Figure 6.5).

Notice the two block distributions in this figure. The non-straight (but optimal)

blue edge divides the optimal box in two but the distribution of the blocks is

incorrect. Our standard deviation method would detect this case.

In practice these cases turn out not to happen very often so this alternative

classifier is often a better choice as it is both quicker than the robust one and

requires less memory for each pixel. Although it is easy to think of example

pixel lists where the integral classifier fails, our experiments show that this is

not common in real life situations.

6.3 Proof

In this section we will prove the propositions stated in Section 6.2.

6.3.1 Proof of Proposition 1

Claims 1 and 2 are known properties of lines [141] and Claim 3 is evident from 1

and 2 (refer to Section 6.2). Thus our proof of Proposition 1 will show Claims 4

6There is a hidden constant of around 12 under the O notation.
7We still are required to make sure that the classifier is not presented with an edge that

violates the LL − LS = 1 or LL = LS relationship. Otherwise any edge that divides the area
in two will classify as straight.

68 6. Linear Time Vectorisation

Figure 6.5: This figure shows a counter-case for the alternate straight edge clas-
sifier. An optimal edge with correct values for LL and LS will not necessarily
be the straight edge, even if it divides the optimal box in two. The edge shown
here in blue is optimal, has LL = 3 and LS = 2 and also divides the optimal box
in two. It, however, is not the straight edge (shown in yellow). These situations
are rare in real life images.

and 5. Furthermore we shall see that the proof of Claim 5 follows directly from

the proof of Claim 4.

We wish to show that any rasterisation of a straight line has at most two

block lengths: LL and LS where LL = LS or LL − LS = 1.

Imagine that we have an arbitrary straight line drawn on a sheet of paper.

Suppose now that we lay an overhead transparency which has been prepared

with a regular grid of unit squares over the line. The process of rasterisation

now consists of colouring the squares which the line passes through. This is a

deterministic process that results in a raster that looks as close to a straight line

as possible. That is, there is no swap, addition or removal of a coloured box that

results in a closer approximation to the line that also leaves no gaps.

Without loss of generality, let us restrict the angle of the line relative to the

grid squares to 0 < θ < π
4
. The proof for all the lines with other angles 8 follows

by symmetry (rotation and reflection). Figure 6.6 illustrates this process.

As we rasterise, we shall only colour at most one box in each column because

0 < θ < π
4

is more horizontal than vertical. In this setting it is not possible

to have any vertical blocks of boxes forming part of the line. If the line only

touches one box in a particular column then that box is coloured. When the

line touches two boxes in a single column we must decide which one to colour

by selecting the box in which the line segment is greatest. This is equivalent to

selecting the top box if the line segment cuts it at a point greater than half way

8We treat 0 and π
4 as special cases in Section 6.3.4.

6. Linear Time Vectorisation 69

Figure 6.6: The task of rasterising a straight line is that of selecting which pixels
to colour from the set of all pixels that the line touches. Pixels are selected if
the line enters them from one side, or from less than half way along the length
of the top. Pixel A was not selected because the line enters it more than half
way along its length. Pixel B was selected because the line enters it less than
half way along its length.

along its base, or the bottom box otherwise. If the line segment cuts it exactly

half way along the base then the bottom box is arbitrarily selected. Again, refer

to Figure 6.6.

It is now possible to derive an expression for the length of a block of pixels

which will be a function of the angle and position at which the line enters its

first pixel. Refer to Figure 6.7.

Suppose that the line enters the first pixel along the top at distance d from

the left edge. Then d < 1
2

or else the pixel would not be coloured. If the line

enters the pixel along the left edge, this is equivalent to a negative value for d

along the top edge (refer to Figure 6.7.) Again, d ≥ −1
2

or the pixel before it

would have been coloured. The value l is the distance from the start of the first

pixel to the point where the line exits the row of pixels. We can therefore bound

l:

d = −1

2
: l ≥ 1

tan θ
− 1

2
.

d =
1

2
: l ≤ 1

tan θ
+

1

2
.

70 6. Linear Time Vectorisation

Figure 6.7: Deriving an expression for the length of a block. The line may enter
the first pixel of a block from either the top (a), which gives a positive value for
d, or the side (b), which gives a negative value for d.

The number, n, of pixels in the block is [l] which we may also bound:

[
1

tan θ
− 1

2
] ≤ n ≤ [

1

tan θ
+

1

2
]. (6.1)

This is true for all blocks in the line since the slope θ is constant with respect

to the grid. Thus any block-length L must satisfy it with n = L. Since n ∈
Z and Equation (6.1) defines an interval of at most 1, there are at most two

possible block lengths, LS = [1
tan θ

− 1
2
] and LL = [1

tan θ
+ 1

2
] and if LL 6= LS then

LL − LS = 1.9

6.3.2 Proof of Proposition 2

We move on now to prove that the blocks must be distributed in a regularly

recurring pattern. Before we can do this, however, we must show that we do

9We do not claim that two block lengths must exist. Consider the degenerate case of a
line with θ = π/4 and initial d = 0. Then every subsequent d will also be 0. Thus only one
block-length (of 1) will exist.

6. Linear Time Vectorisation 71

Figure 6.8: Any straight line rasterisation will have a repeating pattern of blocks.
If a line enters the first pixel of a block at d, then the rasterisation will repeat if
it can be shown to enter the first pixel of some other block at d also.

not lose generality by assuming tan θ ∈ Q, or in other words, tan θ = s
l
, s, l ∈ Z.

Obviously not very many values for θ make tan θ rational. It has been shown that

it is possible to replace every occurrence of a real number with a rational number

to an arbitrary precision. Indeed, since computing devices are capable only of

representing rational numbers this must be done. If a computing device is ever

invented that is capable of representing (as well as operations on) arbitrary real

numbers then our method will no longer be correct. We may, in that case, expect

to see rasterisations of lines with no repeating pattern of blocks. While we confine

ourselves, however, to digital computers and their rational representations of

numbers, we are able to define tan θ = s
l
, s, l ∈ Z.

The points o and t given to the digital computer to define the line are such

that |ox − tx| and |oy − ty| are integers. Therefore tan θ = |oy−ty |
|ox−tx| is rational.

From this definition we are able to derive LL, LS, p and q as in Section 6.2.

Suppose, as above, that the line enters the first pixel d from the left of the

box at angle θ (again d may be negative if the line enters the left side of the

box). The angle of the line will not change, so if we can show that it reaches

another block at some later stage and enters it also at distance d from the left,

then we must be in a repeating cycle. Refer to Figure 6.8.

72 6. Linear Time Vectorisation

If the line enters the first pixel along the top side at d from the left then it

will enter the second block (not the second pixel) at entry = 1
tan θ

+d− [1
tan θ

+d].

In general:

entry =
n

tan θ
+ d− [

n

tan θ
+ d].

We wish to prove that at some stage, for every θ, we will return to the original

d. That is, we wish to show:

n

tan θ
+ d− [

n

tan θ
+ d] = d

n

tan θ
= [

n

tan θ
+ d].

It is clear that this equation has infinite, periodic solutions if n
tan θ

∈ Z because

−1
2
≤ d < 1

2
. This is true if tan θ ∈ Q which we have shown to be the case. The

rasterisation of the line therefore repeats the same pattern of blocks infinitely.

6.3.3 Proof of Proposition 3

We show now that the blocks within each repeating cycle will be evenly dis-

tributed.

We would not expect the rasterisation of a straight line, within the repeating

pattern, to place all of the long blocks up one end and all of the short blocks down

the other. In fact, we would expect the blocks to be exactly evenly distributed.

We define an even distribution of p short blocks and q long blocks as a continuous

sequence of blocks where at most dp
q
e short blocks are placed adjacently and at

most d q
p
e long blocks are placed adjacently. We shall then prove that if we were

to place either one too many short blocks or one too many long blocks together

then we would produce a suboptimal rasterisation result.

Long Blocks

We aim to show that it is not possible to place d q
p
e+1 long blocks together with-

out making the rasterisation result suboptimal. We prove this by contradiction.

Figure 6.9 shows a block of length d q
p
e+1 and we show that such a block results

in a contradiction. Figure 6.10 shows the last pixel in the block. If the pixel was

6. Linear Time Vectorisation 73

Figure 6.9: Placing too many long blocks together produces a suboptimal ras-
terisation result. The point at which the line enters the last pixel of the final
long block will be less than 1

2
and therefore the block should be short.

Figure 6.10: The distance maxe is defined as the maximum distance (from the
top) at which the line can enter the side of the pixel in order to make this pixel
part of the rasterisation. It is contingent on the angle of the line (θ). If the line
enters at a distance greater than maxe from the top of the pixel then this pixel
will not be part of the rasterisation.

truly necessary for that block, the line must cover it for at least half its length.

We will show that it actually uses less than half of that pixel by showing that

it enters its vertical side at a point further away than maxe = 1 − tan θ
2

. This

distance is an overall distance of d q
p
e + 1 − tan θ

2
from the top of the first block.

Trigonometry calculations show that the actual point at which it enters the last

pixel of the final block is (LL(d q
p
e + 1) − (1 + d)) tan θ from the top of the first

block where −1
2
≤ d < 1

2
.

Showing that this intersection is further away than maxe reduces to showing:

(LL(dq
p
e+ 1)− (1 + d)) tan θ > dq

p
e+ 1− tan θ

2
. (6.2)

Before we are able to show that Equation (6.2) holds, we summarise some

74 6. Linear Time Vectorisation

facts we have now proved:

1. We have shown that we do not lose generality by letting tan θ = s
l
∈

Q, s, l ∈ Z.

2. We know that l > s and l
s
6∈ Z. If l

s
∈ Z then there is only one block-

length10. If there is only one block-length then the blocks must be dis-

tributed evenly.

3. We have shown that long blocks have length LL = d l
s
e and short blocks

have length LS = b l
s
c = k.

4. It follows (as in the derivation in Section 6.2) there will be q = l− sk long

blocks and p = s− q short blocks.

Equation (6.2) now becomes:

(d l

s
e(dq

p
e+ 1)− (1 + d))

s

l
> dq

p
e+ 1− s

2l

d l

s
e(dq

p
e+ 1)− (1 + d) > dq

p
e l

s
+

l

s
− 1

2

d l

s
e(dq

p
e+ 1) >

l

s
(dq

p
e+ 1) + d +

1

2

d l

s
e − l

s
>

d + 1
2

d q
p
e+ 1

(6.3)

To show Equation (6.3) holds, we represent l in modulus form as l = zs + r

where z is the modulus of l and s, and r is the remainder:

l = zs + r.
l

s
=

zs + r

s
.

d l

s
e = z + 1.

b l

s
c = z.

10Refer to Section 6.2. The length of a long block is LL = d l
se and the length of a short

block is LS = b l
sc. If l

s ∈ Z then LL = LS .

6. Linear Time Vectorisation 75

The last two statements are true because l
s
6∈ Z. So:

d l

s
e − l

s
= z + 1− zs + r

s
,

=
s− r

s
. (6.4)

We may also derive a similar expression for d q
p
e:

q = l − sb l

s
c,

= l − sz,

= r.

dq
p
e = d q

s− q
e,

= d r

s− r
e.

So:

d + 1
2

d q
p
e+ 1

=
d + 1

2

d r
s−r
e+ 1

. (6.5)

Substituting (6.4) and (6.5) back into Equation (6.3) we get the following target:

s− r

s
>

d + 1
2

d r
s−r
e+ 1

. (6.6)

Note that s−r
s

> (d + 1
2
) s−r

s
because −1

2
≤ d < 1

2
. Rewriting this we know

that s−r
s

>
d+ 1

2
r

s−r
+1

. Because we have enlarged the denominator, we know that

d+ 1
2

r
s−r

+1
≥ d+ 1

2

d r
s−r

e+1
(note that d + 1

2
≥ 0) and thus Equation (6.6) is also true.

We have therefore shown that if d q
p
e + 1 long blocks are placed together we

violate the rules of rasterisation.

Short Blocks

We use the same strategy in the case of short blocks to show that if we were to

place dp
q
e+ 1 short blocks together then the line would exit the last pixel of the

76 6. Linear Time Vectorisation

Figure 6.11: Placing too many short blocks together causes a contradiction with
the rules of rasterisation. The proof is similar to the one for long blocks shown
in Figure 6.9.

final block at a distance that would add another pixel to the block (thus making

it a long block). Refer to Figure 6.11.

Again suppose that the line enters the first pixel of the first block along the

top at distance d from the top left, 1
2
≤ d < 1

2
. We can calculate the point

at which the line will exit the final pixel of the final block as being (LS(dp
q
e +

1)− d) tan θ from the top of the first block. We would like this value to be less

than the distance which would no longer require another pixel added to the block

(refer again to Figure 6.10). That is, we would like it to be less than dp
q
e+1− tan θ

2

so we wish to show:

(LS(dp
q
e+ 1)− d) tan θ < dp

q
e+ 1− tan θ

2
. (6.7)

This is equivalent to:

6. Linear Time Vectorisation 77

(b l

s
c(dp

q
e+ 1)− d)

s

l
< dp

q
e+ 1− s

2l
,

b l

s
c(dp

q
e+ 1) <

l

s
(dp

q
e+ 1)− 1

2
+ d,

b l

s
c − l

s
<

d− 1
2

dp
q
e+ 1

,

z − zs + r

s
<

d− 1
2

d s−r
s
e+ 1

,

−r

s
<

d− 1
2

d s−r
s
e+ 1

,

r

s
>

1
2
− d

d s−r
s
e+ 1

. (6.8)

Notice that r
s

> (d − 1
2
) r

s
because −1

2
≤ d < 1

2
. Rewriting this we know that

r
s

>
1
2
−d

s−r
s

+1
. Because we have enlarged the denominator we know that

1
2
−d

s−r
s

+1
≥

1
2
−d

d s−r
s
e+1

(note that 1
2
− d > 0) and so Equation (6.8) is also true.

We have therefore shown that if dp
q
e+ 1 short blocks are placed together we

violate the rules of rasterisation.

6.3.4 Special Cases

We have proved our three propositions for all lines with θ in the interval 0 <

θ < π
4
. We must now show that our propositions are true for lines with θ = 0

and θ = π
4
. This is a trivial proof. Lines with θ = 0 are horizontal and therefore

contain only one block which is the size of the entire line. Therefore all of our

propositions are true in this case. Lines that have θ = π
4

are diagonal in which

every pixel is its own block. In this case there is only one block-length (of 1)

and therefore all the propositions are also true in this case.

Since now we have proved our propositions for all lines with θ in the interval

0 ≤ θ ≤ π
4
, the proof for all other lines follows by symmetry (rotation and

reflection).

78 6. Linear Time Vectorisation

Number and CPU time profiles (ms)
Algorithm Size of Images Best Worst Average

Algorithm 1 1000 (176x144) 82 181 124
1000 (352x288) 204 426 297
1000 (704x576) 501 932 613

O(n log n) 1000 (176x144) 99 211 139
version [61] 1000 (352x288) 251 498 312

1000 (704x576) 507 1457 992
Hough 1000 (352x288) 118 950 355
Transform 1000 (352x288) 369 1286 863

1000 (704x576) 975 3110 1862

Table 6.1: The performance of our vectorisation algorithm compared to our
implementation of the O(n log n) algorithm and the optimized Hough transform.

6.4 Runtime Performance

We have demonstrated a method to classify a list of pixels as either straight

or non-straight in constant time. This classifier when used in line 1 of the

Douglas-Peucker algorithm results in the ability to locate straight edges within

an image, and build vectorised poly-lines for the boundaries of objects, in linear

time. Classical algorithms for this task run in O(nlog2(n)) or even O(n2). While

O(nlog2(n)) to O(n) does not seem to be a large improvement, in the case of

image analysis for robotic vision, the algorithms must often perform well on

inexpensive hardware, even for large n. Even a modest size image will have

approximately 100,000 bytes of data so the improvement will be significant.

Some test results are shown in Table 6.4 which compares the runtime of our

algorithm over a series of images to that of an O(nlog2(n)) implementation of an

edge classifier[61] and an implementation of the Hough Transform. The images

used in these tests were from our image archive where the number of straight

lines in each image varies. The average, however, is approximately 4.

The performance increase obtained from the improvement from O(nlog2(n))

to O(n) time comes at the cost of some extra memory required to store infor-

mation about each pixel in the edge, as the pixel list is built. The trade-off,

9Note that we do not see a direct correlation between the n in each runtime efficiency and
the size of each image because the efficiency is calculated for n edge pixels not n pixels per
image. We can, however, see an approximate correlation because a larger image will have more
edge pixels. The same images (simply resized) were used for each set of tests to illustrate this.

6. Linear Time Vectorisation 79

however, is not large as each pixel requires only an extra two values to be stored.

If the alternative, integral based classifier is used then only one extra value must

be kept per pixel, in which case the cost of the trade-off is minimised.

Part II

Vision for Dynamic and

Unpredictable Conditions

80

Chapter 7

Basic Concepts and Related

Work

In this section we deal with the two areas where vision systems for mobile au-

tonomous robotics must display versatility and the ability to cope with dynamic

conditions. The first of these, robustness to variable illumination conditions, is

emerging as the primary area of interest in robotic vision at this time. Surveys

of recent conferences show that a large amount of research is currently being

undertaken to solve the problem of how to adapt a vision system rapidly to un-

known conditions. Research in all of the leagues in RoboCup is also following this

trend. Every league either has a stated goal, or has some kind of plan to move

away from controlled illumination conditions into natural light. For example,

the Four-Legged league has run a variable illumination challenge for the previ-

ous two years while the Small-sized league has already moved to uncontrolled

illumination conditions.

The second area in which vision systems for mobile autonomous robotics

must be versatile is in its object recognition — particularly when posture or ges-

ture recognition is necessary. Standard posture and gesture recognition systems

assume that the viewed object is always readily identifiable in each image and is

in some kind of standard position relative to the camera. A mobile robot cannot

guarantee its own position in the environment, let alone relative to some other

object which it has determined to analyse.

We will discuss both of these areas in turn.

81

82 7. Basic Concepts and Related Work

7.1 Variable Illumination Conditions

Machine vision systems have been traditionally used well in environments where

illumination conditions can be carefully controlled. One such example is that of

electronics manufacturing where computer vision has been used extensively for

over a decade to automatically examine circuitry for small flaws [101, 88]. In such

an application, the circuit board will be placed in a known position in front of the

camera, under known illumination conditions and compared to a reference image.

While such a controlled environment is possible in the context of manufacturing

robotics, once a robot is placed in a less predictable environment, the techniques

applied to these controlled environments quickly become unusable. It is the

ultimate goal of general purpose robotics research to develop robots that will be

able to function alongside humans in the real world. This is truly a much more

complex and dynamic environment.

7.1.1 Light Conditions

There are two dimensions that uniquely specify an illumination condition: light

intensity and colour temperature. Light intensity is a measure of the amount of

light that is reflected from a particular surface. It varies according to the intensity

of the light source and in inverse proportion to the square of the distance between

the surface and the light source. It is measured in lux 1. The colour temperature

of light is so named because as solid objects are heated they emit light2. A

solid object heated to 1000o Kelvin, for example, emits most of its light in the

infra-red spectrum but some visible red light will also be present. As objects

become hotter, the wavelength of the light emitted becomes shorter and therefore

the colour changes. At 3000o Kelvin, a bright yellow colour is emitted and at

even higher temperatures the object will emit green and then blue light. Each

wavelength in the colour spectrum of light is uniquely defined by a particular

temperature. White light is the addition of light of every wavelength.

Lighting conditions may vary in an environment in several different ways.

Changing light source: The most obvious way an illumination condition may

11 lux = 1 lumen/m2. A lumen is the amount of light emitted along any particular angle
by a light source of intensity 1 candella radiating equally in all directions.

2This process is independent of the material properties of the object, assuming the heat
does not also catalyse a chemical reaction such as oxidation.

7. Basic Concepts and Related Work 83

vary is if a light source changes — it may become brighter or duller, change

colour, move its position or appear or disappear altogether. Of course the

light source does not actually have to change, it only has to change relative

to the robot. Illumination intensity varies in inverse proportion to the

square of the distance to the source, so if the robot moves the illumination

intensity will vary accordingly.

Natural (outside) environments encapsulate exactly such a light source.

The sun moves across the sky in the course of a day and this does not

simply alter the direction of the light source. As it moves across the sky

different wavelengths of light are refracted through the atmosphere. This

is why, towards the evening and morning the sky looks red while in the

middle of the day it appears blue. Furthermore, in the early morning

and late afternoon, the light from the sun must pass through a greater

amount of the atmosphere to reach us (see Figure 7.1). This means that

more of its energy will be absorbed by the atmosphere and therefore the

intensity of the light that reaches us will vary. Although the sun is a

constant light source, when coupled with the natural rotation of the earth

and its atmosphere, the sun effectively is a light source that alters both

in illumination intensity and colour temperature. This makes vision in

natural lighting conditions difficult.

Specular reflection: In any visual scene there will be both direct light (from a

light source) and ambient light. Any ambient light present is the result of

one of the light sources being reflected on objects in the visual scene. The

quality and colour of the ambient light therefore is largely determined by

the properties of the objects in the environment. Highly reflective surfaces,

for example a mirror, can effectively create another light source, while

highly absorbent (black) surfaces will not reflect any light at all.

While we do not normally consider the effect of ambient light due to the

presence of direct light, on occasion the reflective properties of objects in

the environment can be quite important. Consider Figure 7.2 which shows

a close up of a RoboCup beacon against a white background. Notice how

the white background has a pink and yellow tinge to the colour around the

edges of the beacon. This is due to the beacon’s specular reflection of the

84 7. Basic Concepts and Related Work

Figure 7.1: The rotation and atmosphere of the earth effectively make the sun
a variable illumination source. In the morning or evening the light from the sun
must pass through more of the atmosphere to reach us, making it less intense.
Refraction in the upper atmosphere also absorbs some wavelengths of light while
reflecting others making the sun appear to change colour (towards red) in the
evening and morning.

7. Basic Concepts and Related Work 85

Figure 7.2: Specular reflection can alter the appearence of nearby objects. Notice
the pink and yellow tinge on the white wall behind the beacon.

direct, overhead, lights. The beacon is effectively acting as a weak yellow

and pink light source in this scene.

Shadows: The presence of shadows can obviously dramatically affect a per-

ceived illumination condition. In effect shadows increase the importance

of ambient light — an obstacle has blocked direct light from a source, so

the only light reflected on our object will be ambient light. Of course,

this makes the exact effect of shadows on a scene very unpredictable. It

depends not only on the nature of the object casting the shadow, but also

on the reflective properties of the other objects in the environment.

Although in most current research environments the presence of shadows

is eliminated by controlled illumination, most real world environments rou-

tinely contain objects that cause shadows. Any vision system designed to

work outdoors, for example, must allow for clouds to temporarily obscure

the sun.

86 7. Basic Concepts and Related Work

The Effect of Light Conditions on Perception of Colour

To detail adequately the properties of the link between lighting conditions and

the perception of colour, it would be necessary to investigate the physical char-

acteristics of the modern CCD device (digital camera). One should not simply

assume that the camera is performing accurately in all lighting environments —

especially if it has modern features such as auto-white balance, focus and shutter

speed. In fact, the quality of a CCD device across different lighting environments

is a largely subjective assessment anyway. Who is to say that each person’s eyes

(by which we judge the quality of images) function in exactly the same way?

Research in this area is well beyond the scope of this thesis. We therefore re-

strict our discussion by assuming that the CCD device is performing accurately

and the image our software is presented with is an accurate reflection of the

environment, although we do recognise that this is a theoretical restriction.

There is a large body of work investigating the effect of lighting conditions

on the perception of colour [83, 55, 13], and it has long been recognised that

there is no linear relationship between a variable illumination parameter and

the result on the perceived colour — no matter what colour space3 is used.

Some colour spaces were originally developed with the intention of decoupling

the colour intensity from the perceived colour. The YUV and HSI colour spaces

are examples of this. The thought was that a particular object should retain its

colour properties under different illumination intensities. In other words, as the

illumination condition became brighter or duller, the intensity value of a colour

would change (Y in the YUV space, and I in the HSI space) but the two colour

values would remain the same (U and V in YUV, H and S in HSI).

Ideally, given a colour value C = (y, u, v) and an illumination condition, I,

we would like a function f : C × Y → C ′ that will transform C into the colour

it would be in some standard condition (C ′). Although the properties of the

YUV and HSI colour spaces do reflect their ideal to a certain degree, they are no

where near mathematically precise enough to be used for such purposes. Even if

they were useful in such a way, as the illumination intensity in a scene drops, the

importance of ambient light increases — indicating that the reflexive properties

of the objects in the environment will play an important role in determining

perceived colour. This is something that no colour space could compensate for.

Figure 8.2 in Chapter 8 illustrates the effect of varying illumination conditions

3Refer to the Glossary on colour spaces on Page 181.

7. Basic Concepts and Related Work 87

on the colour space.

7.1.2 Related Work

Several methods have been proposed to deal with variable illumination condi-

tions [3, 100]. If there is some a priori knowledge of the geometry of the objects

present within the environment then this can be used to identify the objects

in a colour-independent way. The pixels in each object can then be examined

and a classification automatically learned for the current lighting condition [21].

There is nothing particularly bad about this approach except, as we have noted

in Chapter 3, geometric image processing is often a time consuming operation

and so such an approach may be unsuitable for real-time robotics environments.

If the objects in the environment are geometrically simple enough, this remains

a viable method and, indeed, such methods have been used successfully to dy-

namically update colour calibrations [51, 49]. Such a process is a very popular

method for self calibration in robotics. Self-calibration still occurs off-line but

has the advantage that it does not require human supervision.

Others have improved on this technique by defining colour classes as sections

of the colour space relative to some reference colour [71]. These techniques

first assume that a reference colour can be tracked using the above geometric

methods, and then assume that the variable illumination has affected all colours

equally. Given these assumptions other colour classes may be tracked relative

to the reference colour. It is a dangerous assumption to make, however, that

different colours are affected in the same way by the same change in illumination.

Euclidean distances in colour spaces can be stretched or compressed by a change

in illumination condition [91].

If nothing is known a priori about the geometric properties of the environ-

ment then the traditional approach is to use a colour constancy method. Colour

constancy refers to the invariance of perceived colour of different surfaces under

variable illumination. The literature in this area is huge and goes back many

years so we restrict our discussion to the major works and to those relevant to

machine vision for robotics.

Several colour constancy approaches have been suggested where incident light

is reconstructed and used to adjust the perceived colours of objects [9, 10, 80].

Forsyth proposes exactly this approach for machine vision in conditions where

the illumination parameters are known (or measurable), but not necessarily

88 7. Basic Concepts and Related Work

static [46]. Such approaches are statistical in nature because they treat colour

classes as probability distributions within the colour space. Mayer et al. apply

this approach to self calibration of a machine vision system [90], but no-one has

yet successfully applied such an algorithm to a real-time vision system. This is

because the calculations involved are extremely computationally complex. Even

when processing power increases to be able to handle it well, the approach will

not necessarily be effective on mobile, autonomous robots. It is relatively easy

to measure the lighting conditions at the point in the environment where the

robot is physically located through the use of on-board sensors, but how would

the robot measure the lighting conditions at the physical location of the viewed

objects? Furthermore the material properties (such as reflexivity) for each object

in the environment could not necessarily be assumed.

Another colour constancy approach is to track the change in position of each

colour class through the colour space as the illumination varies. In this way,

these approaches are similar to those of Jüngel et al. discussed above [71] except

that they do not require any prior geometric information concerning objects in a

particular colour class. Such an approach can be shown to work well when illu-

mination conditions vary steadily [4] and has the advantage that it avoids com-

plex geometric calculations. However, the assumptions underlying this model of

colour constancy make it difficult to apply to a robotic vision system. The first

assumption is that the lighting conditions will never change dramatically — only

gradually. For example, such a system would work well in an outdoor environ-

ment as the sun sets. Slowly the environment becomes darker and the colour

temperature shifts towards the red end of the spectrum. It would not work well

on a day when there were fast moving, small clouds in the atmosphere that

repeatedly cast shadows and then moved on. It would not work well either in

an indoor environment where lights can be suddenly switched on and off. The

second assumption is that every single colour class will be present in roughly con-

stant quantity in each image. How can you track a colour class through variable

illumination conditions if there are no examples of the class in the image? An

object that disappeared from view and then reappeared sometime later would

be completely unrecognised by this type of system.

7. Basic Concepts and Related Work 89

7.1.3 Our Contribution

Our contribution to illumination independent object recognition is a vision sys-

tem that works quickly enough to run in the real-time processing environment

of a mobile, autonomous robot, is independent of the illumination condition and

able to adapt quickly to changing conditions. While our method does require a

calibration, and does not provide complete illumination invariance, it is robust

enough to changes in illumination intensity and colour to function under a wide

variety of conditions without re-calibration. For example, the same calibration

can be used to detect objects under direct sunlight, in natural shade, under fluo-

rescent lights (blue colour temperature, low intensity) and under halogen lamps

(yellow colour temperature, high intensity). Our method is not only illumina-

tion independent, it is actually computationally less expensive than the standard

pipeline discussed in Section 1.2. We describe our method in Chapter 8.

7.2 Versatile Posture Recognition

Recognition of the posture and gesture of an object is an important task for many

robotic vision systems. For example, domestic robots should be able to recognise

and respond to human actions in their environments [44]. Competitive robots

(as in RoboCup) should be able to respond to the actions of opponent robots.

Accordingly, there are many techniques available in the literature for recognising

the posture of a known object within a visual scene. Much of this work focuses on

recognition of facial or hand gestures (for example, [20]) as there are immediate

applications of this in many areas including user-interface design, face recognition

and security monitoring systems. Indeed, this is a very important application

for robotic vision systems as well because robotic interaction with humans is

becoming increasingly common [12, 11]. It is not our intention to explore all of

the literature in this area because it is simply too broad for the scope of this

thesis. We instead address the work that is relevant to robotic vision systems.

We have noted that posture and gesture recognition is an important task

for mobile robotics. Indeed, several commercial robots have successfully im-

plemented facial, posture and gesture recognition systems in their software, for

example the AIBO Mind software from Sony 4. There are some important differ-

4http://www.aibo.com

90 7. Basic Concepts and Related Work

ences, however, between these existing systems and what is required in an ideal

robotic vision system. For example the AIBO Mind software can only recognise

the face of its owner if the face is a particular distance from the camera and

looking straight at it. Indeed, this seems to be a restriction of many posture

recognition systems as well. For example, a security monitoring system at an

airport monitors crowds of people, examining people’s behaviour for anything

suspicious [143]. However, in this system the camera is fixed and all people are

viewed from the same perspective. If the camera is above a doorway then peo-

ple are also always viewed from the same distance and orientation as they pass

through the doorway. A mobile, autonomous robot that is free to move around

its environment will not necessarily have such a fixed perspective. Gesture and

posture recognition are difficult without a fixed perspective and distance to the

viewed object.

Another problem with implementing gesture and posture recognition is that

work in this area tends to be very domain-specific. For example, recognising

a facial gesture (posture) relies on domain knowledge such as how to locate

the eyes and nose within an image [40]. It is not our contention that these

tasks could be made simpler — in fact, it is hard to see how you could perform

these tasks without the computational expense associated with the extraction of

complex features such as the eyes and nose. Although sometimes complex feature

extraction is necessary, we postulate that because these techniques are so well

used and known, many simpler methods get overlooked when the recognition

task is itself more simple. For example, we will show in Chapter 9 that it is not

necessary to extract the features of a coffee cup handle to detect the pose of a

coffee cup relative to the viewer. This task can be performed at a lower level.

Even at a high level, posture recognition can often be simplified by perform-

ing a low-level analysis before high-level feature extraction is performed. One

technique for performing exactly the same task as our main example — recog-

nising the postures of Sony AIBO robots for the task of playing robot soccer —

relies on learning the shapes of coloured patches on the soccer uniform of the

AIBO [29, 136]. There are other techniques for posture detection as well. Some

are based on perimeters of objects [116] and some on the comparison of surfaces

to other planar surfaces (circles, squares etc.) [40]. Each of these techniques has

in common a complex pre-processing phase that must be performed in order to

extract the necessary features (usually lines and edges). Some tasks do require

7. Basic Concepts and Related Work 91

Figure 7.3: The medial axis of an object is the set of points that are equi-distant
from any edge.

high-level processing. Others, however, benefit from a lower-level posture recog-

nition algorithm. Shapes on an AIBO’s soccer uniform, for example, are much

more readily identified by symmetry than by edge analysis and the posture of

an AIBO can be determined much more quickly this way. Simple hand gestures

too, are more inexpensively identified by symmetry than by finding features such

as knuckles and fingers.

7.2.1 Posture Recognition by Symmetry

Symmetry is an important property of many real-world objects. When viewed

from certain perspectives, many objects appear (relatively) symmetrical while,

when viewed from a different orientation, they do not. Therefore the degree of

symmetry in an object is often a useful indicator as to its relative posture [74].

However, in order to analyse the symmetry of a raster image, some computa-

tionally useful representation of the image must be obtained. The most com-

mon such technique is the medial axis [79, 28] although others have been sug-

gested [122, 142].

The concept of a medial axis is fairly intuitive to understand. Conceptually,

the medial axis of a polygon is the set of points that are equi-distant from

any edge. In Figure 7.3 the medial axis of the black polygon is shown in red.

92 7. Basic Concepts and Related Work

Figure 7.4: The medial axis can be found by a distance transform as shown here.
Each pixel classified blue in the middle image is assigned a value based on its
distance to the edge of the blue blob. Higher values are shown in the right image
in white, lower values in red.

There are several ways to compute the medial axis. It may be found by a pixel

stripping method [28], or similarly, by a distance transform on the edges of the

polygon [79]. Refer to Figure 7.4 for an example of this method. The distance

transform of the cup is shown in the red image on the right, where the distance

of each pixel from the edge of the polygon is indicated by its colour. You can

also use a vectorisation of the boundary of the polygon to inexpensively compute

the medial axis using the set of maximally inscribed circles [30]. Of course, this

requires an efficient vectorisation algorithm, such as the one we have presented

in Chapter 6.

Once the medial axis has been found (or some other simplified representation

of the object), there are many suggested methods for using it for the task of

posture and gesture recognition [128, 41, 134].

7.2.2 Our Contribution

Our contribution to this field of posture and gesture recognition is an algorithm

that works by symmetry and is capable of quickly determining an object’s relative

pose and gesture. It works independently of where the object is located in the

environment — provided it is close enough for sufficient detail to be present in

the image, and it is computationally inexpensive, allowing it to be used in real-

time vision systems. While our method is certainly not a general solution to

the posture recognition problem, it does provide a computationally inexpensive,

7. Basic Concepts and Related Work 93

perspective independent system that can be used in a wide variety of situations.

We first illustrate our technique using the tasks of analysing the posture of

opponent robots in a game of robotic soccer. Secondly we will perform posture

recognition of hand gestures, and finally we apply our method to the analysis

of maritime signalling flags. Even though these are widely varied domains, all

lend themselves to our symmetry analysis approach to object recognition. We

describe our method in Chapter 9.

Chapter 8

Illumination-Independent Object

Recognition

In this chapter we introduce an efficient object recognition system that is robust

to changes in colour intensity and temperature. To do this, we build on the

work we presented in Part I of this thesis, particularly that of optimised edge

detection (Chapter 5) and sparse colour classification (Chapter 4). The aim of

our algorithm is to obtain a description of the boundaries of objects detected

in the image. We have already shown one way that such a list will be useful in

the task of object recognition in Chapter 6. We will demonstrate another in this

chapter.

Our algorithm will provide the basis for object recognition in a wide variety

of illumination conditions without re-calibration. It can do this because it does

not rely solely on colour classification in order to form blobs. We have presented

a sparse classifier (Section 4.1) that is very accurate, but only on pixels that are

at the core of each colour class. It essentially refuses to make a decision for most

other pixels, labelling them as unknown. We use this in combination with the

late edge detection methods we presented in Section 5.2 to enable us to find the

border of objects without performing either a robust classification, or a complete

edge detection. We present two variations of our method. One variation runs

extremely quickly but is only able to find simple shapes. The other variation is

slightly more processor-intensive but will recognise an arbitrary shape.

94

8. Illumination-Independent Object Recognition 95

(a) (b)

Figure 8.1: This figure shows the result of varying illumination intensity (a) and
colour temperature (b) on a common scene in RoboCup. The top row of images
is the source image, the middle row is a robust classification and the bottom
row is our edge detection routine. Note that although variation in illumination
conditions is detrimental to colour classification, it does not particularly affect
edge detection.

8.1 The Basis of Illumination Independence

It is well accepted that edge detection algorithms are far more robust to changes

in the temperature and intensity of light than colour based segmentation al-

gorithms. This is easy to illustrate. Consider Figure 8.1 which illustrates the

effect of varying the illumination intensity (a) and temperature (b) of a common

scene in RoboCup. Although the edge information in the images is not lost un-

til the illumination levels become extremely low, the robust colour calibration

becomes useless quite quickly. We have seen in Chapters 4 and 7 how fragile

colour calibrations can be.

It is apparent then that edge detection, rather than colour segmentation, is

a better basis for object recognition systems if robustness to dynamic lighting

conditions is a requirement. However, edge detection on its own will not yield

sufficient information quickly enough. For example, to find the ball in the binary

edge images in Figure 8.1 we would need to run a circle detection algorithm such

96 8. Illumination-Independent Object Recognition

as the Hough transform1. This would be far too slow for our purposes. Instead,

our method works by combining edge detection with the sparse classification

technique introduced in Section 4.1.

8.1.1 Training a Sparse Classifier for Illumination Inde-

pendence

We have argued in Chapter 7 that there is no way to train a robust classifier for

variable illumination conditions. We may, however, train a sparse one as long

as there is not too much variation in the conditions. Figure 8.2 shows how this

is possible. As the lighting conditions vary, the perceived colour changes in a

non-predictable way ((a) and (b)). However, as long as there is some overlap we

may classify only the pixels in the overlap section as orange (c). We therefore

have found a core class orange that contains pixels that are perceived as orange

across both images. The classification itself (c) would be poor if we were to use

it for object recognition purposes, but we do not wish to use it directly in this

way.

We see now how it is possible to train a sparse classifier for dynamic illumi-

nation conditions. We simply widen our set of training images to include many

images from different lighting environments and, in the manner described above,

train a sparse classifier to label only the pixels that are at the core of each colour

class. Of course if the lighting conditions are too variable then the intersection

operation of the sparse classifier (Equation 4.4) will yield an empty set. In this

case we should be less ambitious with our illumination conditions.

8.1.2 Combining Edge Detection with Sparse Classifica-

tion

One initial algorithm for illumination-independent object recognition is shown

in Algorithm 8.1. In this algorithm we use the list of labelled pixels as seed

points to find the border points of each object in the image. Although we can

not be sure that every pixel that is part of, for example, the ball, will be labelled

as orange, we can be certain that some of them will. Therefore to find the

border points of an object we start at a seed point and iterate over pixels in

1See Chapter 6.

8. Illumination-Independent Object Recognition 97

(a) (b) (c)

Figure 8.2: This figure shows the result of varying the illumination conditions
on the colour space. For both images (a) and (b) a perfect calibration was made
and every pixel that was labelled orange is plotted in the three dimensional
YUV space. Notice that the location of the orange colour class shifts in the space
as the illumination changes. We can find the core of the colour class orange (c)
by only classifying pixels that are labelled orange in both images. This leads
to a poor robust classification, but a good sparse classification.

98 8. Illumination-Independent Object Recognition

any direction until a previously identified edge is found (Line 4). Once we find

an edge we may border trace using the algorithm in Section 5.2.2 to obtain the

entire list of pixels in the border.

Algorithm 8.1 Basic illumination-independent object recognition.
Input: An image I.

Output: A list of the border points Eo for each object o in I.

1: EdgeDetect(I)

2: SparseClassify(I)

3: for all classified pixels p in I do

4: Iterate across pixels in any direction until an edge pixel e is found

5: if e does not belong to the border of a known object then

6: BorderTrace(e) to obtain a list of border points E

7: Assign new object o with edge E, Eo

8: end if

9: end for

This process renders an image segmentation that works in a similar fashion to

other region-growing techniques [133] except that it has the advantage of being

illumination-independent. Refer to Figure 8.3 where each row in the table shows

the process working under a different illumination condition (but with the same

calibration file). The first picture is the source image for the row, the second

shows the results of a sparse classification step, the third shows the result of

Algorithm 8.1 and the final image shows the object recognition step. In each

case the ball, goal and beacon are found correctly, despite the large variation in

illumination.

The disadvantage of this method is the runtime cost. Refer to Table 8.1 for

a breakdown in the runtime cost of this algorithm, compared to the Bruce et

al. pipeline we discussed in Chapter 1. Most of the execution time is taken in

the edge detection step. Therefore we would expect that optimising the edge

detection step will improve the runtime cost of our algorithm. We have already

presented our methods for this improvement in Chapter 5 so we present here

two algorithms that build on that work. Our algorithms significantly improve

the efficiency of Algorithm 8.1 to make it feasible for use in real-time robotic

environments.

Notice that Algorithm 8.1 is not fast enough to analyse 30 fps on an AIBO.

8. Illumination-Independent Object Recognition 99

250-430

lux

450-700

lux

700-900

lux

Figure 8.3: The basic algorithm for illumination-independent object recognition.
A sparse classification (column 2) is used along with a border-following algorithm
(column 3) to locate regions within the image. These regions can be analysed for
objects of interest (column 4). Note that the system uses the same classification
in each illumination condition with accurate results.

100 8. Illumination-Independent Object Recognition

Component Average Time
on AIBO (ms)

Our basic pipeline Sparse classification 1.71
Edge detection 20.90

Border following 17.71
Object recognition 5.87
Total per frame 46.19

Time taken for 30 frames 1385.70
(1s of data)

The Bruce et al. Robust classification 2.42
pipeline Blob forming 9.13

Object recognition 6.21
Total per frame 17.76

Time taken for 30 frames 532.80
(1s of data)

Table 8.1: The runtime cost of basic illumination-independent object recognition
is quite high compared to the Bruce et al. pipeline discussed in Chapter 1. A
large component of this cost is in the edge detection and border following steps;
therefore optimising these steps will improve the runtime cost ofour algorithm.

In fact, 30 frames analysed at this speed takes 1404.3ms, or just under one and

a half seconds. Clearly, a large part of the cost of the algorithm is associated

with the edge detection and border following steps. Therefore, we propose two

modifications to Algorithm 8.1 in order to make it execute quickly enough to

use in a mobile, autonomous robotic environment. Both of our alternatives use

the late edge detection technique that we introduced in Chapter 5. By delaying

the edge detection step until it is required we can perform edge detection only

on the sections of the image in which we need it.

8.2 Detecting Simple Object Boundaries

The first of our alternatives uses the partial late edge detection that we described

in Chapter 5. There are several cases where we do not require a complete de-

scription of the boundary of an object in order to parameterise it, as occurs

with most simple shapes. The ball in RoboCup is a good example because it is

circular. We require only three points on the boundary of the ball in order to

apply the geometrical technique of perpendicular bisectors to find the centre and

8. Illumination-Independent Object Recognition 101

radius2. Therefore we need only to cast three rays in different directions from

a seed pixel p that we are sure is part of the ball. Of course, we may wish to

cast more rays, or to start with more than one seed point, in order to check if

we have actually found the ball or just some other object that also looks orange.

This is an extremely fast ball-finding algorithm.

There are other shapes as well that can be found in this way. We present in

Algorithm 8.2 our fast algorithm for determining the parameters of a rectangle

provided the angle of orientation is known a priori. If the angle of the horizon

in the image is known then this algorithm can be applied to find (for example)

the beacons or goals in RoboCup or a great many rectangular shaped objects in

the real world.

We use the method outlined above to find a set of points, P , that are on

the boundary of the rectangle. The points are then rotated in space so that the

rectangle is rectilinear (Line 2). Each vertical column and horizontal row are

then examined to find the lines on which the most points in P lie (Lines 6-21).

These lines are labelled as the sides of the rectangle (Line 23). Finally the four

corners are rotated back to the frame of reference of the image (Line 24). If

the aspect ratio of the rectangle is also known a priori, the algorithm adjusts

the rectangle based on the side that had the weakest support value (S). Similar

algorithms may be employed to detect any regular polygon.

If enough original sample points are chosen in the initial set of points P ,

then the algorithm is quite tolerant to noise in the image and even eliminates

points where the edge has been determined incorrectly (see Figure 8.4 in the

next section).

8.2.1 Runtime Performance of Simple Object Detection

In Table 8.2 we examine the runtime performance of simple object recognition3.

The most expensive components of this pipeline are in edge point detection

and shape recognition, but the pipeline is still a dramatic improvement on the

basic pipeline in Algorithm 8.1. Indeed this pipeline is not only illumination-

independent, it is faster than the Bruce et al. pipeline. We could potentially

2We discussed this technique previously in Section 5.2.
3Note that the two object recognition components in Table 8.2 should not be directly

compared. Much of the work that happens in object recognition in the Bruce et al. pipeline is
performed in the shape recognition phase in our pipeline.

102 8. Illumination-Independent Object Recognition

Algorithm 8.2 Efficient rectangle parameterisation.

Input: A set of points P that lie roughly on the boundary of a rectangle of

unknown aspect and size but known orientation, θ.

Output: The parameters of the rectangle R as four corner points — ptl, ptr, pbl

and pbr.

1: for all p ∈ P do

2: Rotate P by angle −θ

3: end for

4: Find the bounding, rectilinear rectangle of P and assign to R.

5: Let maxS1 = 0, maxS2 = 0

6: for all x in R do

7: Let S = the sum of points that lie on or near x

8: if S > maxS1 then

9: maxS2 = maxS1

10: maxS1 = S

11: end if

12: end for

13: Let x1 = MIN(maxS1, maxS2), x2 = MAX(maxS1, maxS2)

14: Let maxS1 = 0, maxS2 = 0

15: for all y in R do

16: Let S = the sum of points that lie on or near y

17: if S > maxS1 then

18: maxS2 = maxS1

19: maxS1 = S

20: end if

21: end for

22: Let y1 = MIN(maxS1, maxS2), y2 = MAX(maxS1, maxS2)

23: R = {(x1, y1), (x2, y1), (x1, y2), (x2, y2)}
24: Rotate R by angle θ around the origin.

8. Illumination-Independent Object Recognition 103

Component Average Time
on AIBO (ms)

The Bruce et al. Robust classification 2.42
pipeline Blob forming 9.13

Object recognition 6.21
Total per frame 17.76

Time taken for 30 frames 532.80
(1s of data)

Our pipeline using Sparse classification 1.71
only simple Edge point detection 6.71

object recognition Simple shape recognition 5.29
Object recognition 1.64
Total per frame 15.35

Time taken for 30 frames 460.50
(1s of data)

Table 8.2: By using our partial late edge detection in conjunction with the
sparse classification, our object recognition pipeline is not only illumination-
independent, it executes more quickly than the Bruce et al. pipeline.

analyse 60 fps at this speed.

8.3 Detecting Complex Object Boundaries

The second of our alternatives uses the complete late edge detection that we

described in Section 5.2.2. The basis of this method was that a point on the

boundary of an object would be found in the same way as above, casting a

ray from a seed pixel p until we reach the edge of the object. We noted in

Section 5.2.2, particularly in Figure 5.4, that it may not be enough to simply

cast rays from seed pixels to determine the parameters of a complex shape.

We therefore proposed a combination of a boundary-following algorithm and a

partial late edge detection that could be used to discover and trace the boundary

of an object in linear time, Algorithm 5.1.

Algorithm 5.1 will, under most conditions, return a list E of pixels that

represents the boundary of the object in which the pixel p resides. Due to noise

in the image, on occasion, it is possible for E to locate an island, rather than

the object. Refer to Figure 8.4 (a) where the yellow pixels illustrate the ray cast

from p (the red pixel) and the green pixels indicate the edge, E, that has been

104 8. Illumination-Independent Object Recognition

(a) (b)

Figure 8.4: One of the main problems with our method is that “islands” can
be found and traced instead of the border of the object (a). We use a standard
polygonal interior test to detect this situation (b).

located. The correct boundary of the object has not been found in this case due

to noise in the image.

We may use the standard polygonal inclusion test [98] to detect this situation

(Figure 8.4 (b)). A ray cast from any point to a point on the edge of a polygon

cuts the polygon an odd number of times if that point is inside the boundary

of the polygon. We wish to see if our original point p is inside the polygon

represented by E. Therefore the algorithm is simple. As E is constructed (Al-

gorithm 5.1) we count the number of times a pixel q = (x, y) is placed in E with

qx = px and qy < py. If this number is odd then the original point p is inside the

polygon E, otherwise it is outside.

Another problem that may be encountered due to noise in the image is that

the edge detector does not return a closed contour: that is, there may be gaps

in the list of pixels that comprise the edge of the object. If the edge detector is

calibrated to be sensitive (that is, for thick edges — refer to Section 5.1) then

this is not a frequent problem, as the results in Section 8.4 illustrate. When

it does occur it is possible to detect the situation by bounding the number of

pixels that may comprise the edge of an object. In this case we discard the edge

entirely and the object is missed in that frame.

8. Illumination-Independent Object Recognition 105

Once the boundary has been correctly determined, it is usually useful to vec-

torise it. This can be done in linear time using the algorithm that we presented

in Chapter 5. Once a vectorisation has been obtained there are several useful

and fast analysis algorithms. We will leave our discussion of these techniques for

Chapter 9.

8.3.1 Runtime Performance of Heterogeneous Object De-

tection

Most object recognition tasks will blend a mixture of objects that can be de-

tected using simple object recognition, and objects that must use complex object

recognition. Table 8.3 shows the runtime cost of such a system. Images in these

tests were from the RoboCup domain and had a mixture of balls, beacons and

goals (representing simple objects) and opponent AIBOs (representing complex

objects).

We make several observations on Table 8.3, particularly with respect to the

introduction of complex objects (AIBOs). In order to analyse AIBOs we must

identify their skeleton (as we will see in Chapter 9) so the processing that was

done on blobs (in the Bruce et al. pipeline) and on complex shapes (in our

pipeline) is enough to identify a complete and ordered list of pixels along the

border of the AIBOs’ uniforms. We do not, however, include a full AIBO recog-

nition algorithm in either pipeline.

This processing represents one extra step for the Bruce et al. object recogni-

tion component than for our pipeline. This is reflected in the slower processing

time for object recognition for the Bruce et al. pipeline than was seen in Ta-

bles 8.1 and 8.2. Our object recognition has no extra overhead because this

work is done in the complex shape recognition component.

Different sample images were used for this set of tests (so that AIBOs could

be included) so minor variations from the data in the above tables are to be

expected. Classification is marginally slower in these images because there are

more potential colours to classify and therefore a longer decision list.

We see from this table that our pipeline is essentially equivalent in speed to

the Bruce et al. pipeline, being less than 1% slower. Therefore we have managed

to provide an illumination-independent object recognition system for minimal

extra cost.

106 8. Illumination-Independent Object Recognition

Component Average Time
on AIBO (ms)

The Bruce et al. Robust classification 2.73
pipeline Blob forming 8.99

Object recognition 14.71
Total per frame 26.43

Time taken for 30 frames 792.90
(1s of data)

Our pipeline Sparse classification 2.51
Edge point detection 7.98

Simple shape recognition 5.06
Complex shape recognition 10.44

Object recognition 1.34
Total per frame 27.33

Time taken for 30 frames 819.90
(1s of data)

Table 8.3: The final runtime cost of the two pipelines including analysis of both
simple and complex objects. Our pipeline executes less than 1 ms/frame slower
than the Bruce et al. pipeline but provides an illumination-independent object
recognition system.

8. Illumination-Independent Object Recognition 107

8.4 Accuracy of our Method

In this section we discuss the accuracy of our object recognition methods pre-

sented in this chapter. We have collected 500 images that contain scenes that

may be expected in a typical RoboCup game. The image database is divided into

two sections. The first 200 of the images are taken from a moving AIBO (and

thus contain varying degrees of blur), the other 300 are taken from an AIBO

standing still. The images vary in lighting condition (200-1500 LUX, with dy-

namic shadows) though they are similar enough that a suitable sparse classifier

has been found (see Section 8.1.1).

Table 8.4 shows the accuracy of our system. There are several things to note

here. Firstly, the system performs well — especially given the variable lighting

conditions. Even in images taken from a moving camera the system performs

well enough to use as the primary sensory input of a soccer playing robot.

The second thing to notice is that we may determine the extent of the closed

contour problem (Section 8.3) by comparing the accuracy of our system on simple

objects with the accuracy achieved when we detect these same objects uning our

algorithm for complex objects. Typically, we only fail to detect objects due

to this problem in less than 10% of images taken from a stationary camera.

This accuracy is sufficient for the posture recognition task we will describe in

Chapter 9. We fail to detect objects approximately 25% of the time when the

images contain blur. This is to be expected — complete edge detection in blurry

images remains a difficult problem.

Table 8.4 shows only the positive accuracy (that is, objects in each image that

were correctly identified). There were an insignificant number of false positives —

less than 10 for all objects in all images — however, this result is not significant

to the discussion in this chapter. It is the object rules that we describe in

Chapter 11 that rule out false positives.

108 8. Illumination-Independent Object Recognition

O
b
je

c
t

O
c
c
u
r
e
n
c
e
s

in
R

e
c
o
g
n
is

e
d

A
c
c
u
r
a
c
y

9
5
%

C
o
n
fi
d
e
n
c
e

R
e
c
o
g
n
is

e
d

A
c
c
u
r
a
c
y

9
5
%

C
o
n
fi
d
e
n
c
e

3
0
0

Im
a
g
e
s

(s
im

p
le

)
(%

)
In

te
r
v
a
l

(c
o
m

p
le

x
)

(%
)

In
te

r
v
a
l

B
lu

e
G

o
a
l

1
2
3

1
1
7

9
5
.1

2
%

8
9
.7

7
%

to
9
7
.1

5
%

1
0
9

8
8
.6

2
%

8
1
.8

0
%

to
9
3
.1

0
%

Y
el

lo
w

G
o
a
l

1
1
9

1
1
4

9
5
.8

0
%

9
0
.5

4
%

to
9
8
.1

9
%

1
0
7

8
9
.9

2
%

8
3
.2

0
%

to
9
4
.1

4
%

S
ta

ti
o
n
a
ry

P
/
B

B
ea

co
n

5
7

5
6

9
8
.2

5
%

9
0
.7

1
%

to
9
9
.6

9
%

5
1

8
9
.4

7
%

7
8
.8

8
%

to
9
5
.0

9
%

C
a
m

er
a

B
/
P

B
ea

co
n

8
3

7
9

9
5
.1

8
%

8
8
.2

5
%

to
9
8
.1

1
%

7
6

9
1
.5

7
%

8
3
.6

0
%

to
9
5
.8

5
%

(3
0
0

P
/
Y

B
ea

co
n

3
4

3
1

9
1
.1

8
%

7
7
.0

4
%

to
9
6
.9

5
%

2
9

8
5
.2

9
%

6
9
.8

7
%

to
9
3
.5

5
%

Im
a
g
es

)
Y

/
P

B
ea

co
n

6
2

5
7

9
8
.3

9
%

9
1
.4

1
%

to
9
9
.7

1
%

5
4

8
7
.1

0
%

7
6
.5

5
%

to
9
3
.3

1
%

O
ra

n
g
e

B
a
ll

2
1
2

2
0
3

9
5
.7

5
%

9
2
.1

3
%

to
9
7
.7

5
%

1
9
2

9
0
.5

7
%

8
5
.8

8
%

to
9
3
.8

1
%

R
ed

A
IB

O
8
7

-
-

-
6
3

7
2
.4

1
%

6
2
.2

3
%

to
8
0
.7

1
%

B
lu

e
A

IB
O

1
1
2

-
-

-
8
6

7
6
.7

9
%

6
8
.1

6
%

to
8
3
.6

4
%

B
lu

e
G

o
a
l

9
7

8
6

8
8
.6

6
%

8
0
.8

3
%

to
9
3
.5

5
%

7
3

7
5
.2

6
%

6
5
.8

2
%

to
8
2
.7

7
%

Y
el

lo
w

G
o
a
l

8
6

7
6

8
8
.3

7
%

7
9
.9

0
%

to
9
3
.5

6
%

6
8

7
9
.0

7
%

6
9
.3

2
%

to
8
6
.3

3
%

M
o
v
in

g
P

/
B

B
ea

co
n

5
2

4
5

8
6
.5

4
%

7
4
.7

3
%

to
9
3
.3

2
%

3
1

5
9
.6

2
%

4
6
.0

7
%

to
7
1
.8

4
%

C
a
m

er
a

B
/
P

B
ea

co
n

3
5

2
9

8
2
.8

6
%

6
7
.3

2
%

to
9
1
.9

0
%

2
3

6
5
.7

1
%

4
9
.1

5
%

to
7
9
.1

7
%

(2
0
0

P
/
Y

B
ea

co
n

3
9

3
4

8
7
.1

8
%

7
3
.2

9
%

to
9
4
.4

0
%

2
7

6
9
.2

3
%

5
3
.5

8
%

to
8
1
.4

3
%

Im
a
g
es

)
Y

/
P

B
ea

co
n

4
1

3
4

8
2
.9

3
%

6
8
.7

4
%

to
9
1
.4

7
%

2
9

7
0
.7

3
%

5
5
.5

2
%

to
8
2
.3

9
%

O
ra

n
g
e

B
a
ll

1
5
6

1
3
9

8
9
.1

0
%

8
3
.2

4
%

to
9
3
.0

8
%

1
1
1

7
1
.1

5
%

6
3
.6

0
%

to
7
7
.6

9
%

R
ed

A
IB

O
4
9

-
-

-
3
1

6
1
.2

2
%

4
7
.2

5
%

to
7
3
.5

7
%

B
lu

e
A

IB
O

5
4

-
-

-
2
9

5
3
.7

0
%

4
0
.6

1
%

to
6
6
.3

1
%

T
ab

le
8.

4:
T

h
e

ac
cu

ra
cy

of
ou

r
ob

je
ct

re
co

gn
it
io

n
sy

st
em

in
a

se
t

of
50

0
im

ag
es

:
30

0
ta

ke
n

fr
om

a
st

at
io

n
ar

y
ca

m
er

a,
an

d
20

0
co

n
ta

in
so

m
e

d
eg

re
e

of
b
lu

r.
T

h
e

im
ag

es
w

er
e

ta
ke

n
ov

er
a

va
ri

et
y

of
li
gh

ti
n
g

co
n
d
it

io
n
s.

Chapter 9

Versatile Posture Recognition

In Chapter 8 we presented our pipeline for illumination-independent object

recognition. This pipeline enabled us to quickly find the description of the

boundaries of objects in an image (for complex edge detection). However, what

we were to do with those boundaries was left unanswered. In this chapter we

combine that pipeline with the fast vectorisation technique that we presented

in Chapter 6 to present an efficient posture and gesture recognition system for

complex objects such as robots and humans. Our technique is not a general so-

lution to all posture recognition problems, but it is useful across a wide variety

of domains and does have some advantages over existing systems. It is a very

efficient algorithm that provides a robust posture recognition that is tolerant to

changes in the distance to the viewed object.

Our technique will build on work by Chin, Snoeyink and Wang [28] in that we

will be using the medial axis of objects to determine their symmetry. However,

we employ a slightly different definition of the medial axis. The medial axis is,

conceptually, a minimal representation of an object. It is defined by Lee [79] as

the boundary of the Voronoi diagram of the edges of a polygon.

While our definition is different, it is still an identical transform. We define

the medial axis as the raster representation of that polygon where every pixel

inside the polygon is assigned a weight equal to its Manhattan distance to the

nearest edge of the polygon. The set of pixels with locally maximal weights will

be identical to the medial axis defined by Lee. This set is what we define as

the skeleton. There is an example of the medial axis in Figure 9.1 (b) shown in

shades of red, while the resulting skeleton is shown by the blue lines.

109

110 9. Versatile Posture Recognition

(a) (b)

Figure 9.1: The posture of many objects can be calculated from the symmetry
of their skeleton (a). The skeleton (the blue lines) is computed from the medial
axis (shown in red) of the blob (shown in blue) (b).

9.1 Object Symmetries

Most real world objects have at least one line of symmetry. Our technique can

use one or more lines of symmetry. However, we have found it to be particularly

successful in the case when we identify the posture of objects that have exactly

one symmetrical axis.

For example, consider a common coffee mug as in Figure 9.1 (a). When

viewed from the top the mug has a single line of symmetry passing through the

centre of its handle. If the mug is viewed from directly in front (that is, with

the handle facing us) or from directly behind (with the handle behind the cup)

then the cup will look symmetrical to us along the vertical axis. If, however, we

view the cup from the side then the handle will create an asymmetry which we

can use to identify the posture of the object.

We use a technique very similar to the computation of the medial axis [28] to

identify the structure of an object. We define the skeleton of the object as the set

of all locally maximal pixels in the medial axis. This skeleton can then be easily

analysed for symmetry using the techniques presented below. A symmetrical

skeleton would indicate that the object is being viewed from either in front or

behind. The further from symmetry the skeleton is, the larger the rotation of

our viewpoint relative to the object is (refer again to Figure 9.1 (a)).

The first step when computing the skeleton is to segment the image to identify

coloured regions that belong to our object. Colour segmentation is an extremely

common task in visual processing systems so our approach has no extra overhead

9. Versatile Posture Recognition 111

Actual Orientation 0o 45o 90o 120o 150o 180o

Perceived Orientation −1o 49o 86o 118o 153o 179o

Figure 9.2: The actual orientation of the coffee cup is compared to the perceived
orientation from our posture technique. Our algorithm is easily accurate enough
to be useful for a robotic vision system.

compared to other systems because of this step. We have previously described

a method for efficiently doing this first step in Chapter 4.

After the areas of the image (we will refer to them as blobs) that correspond

to the object are identified, we can find the medial axis by stripping pixels from

the boundary of the blob (or, similarly, by a distance transform) until the medial

axis is evident [28] (see Figure 9.1 (b)). We can, however, significantly improve

on this technique. We have presented a linear time algorithm for computing the

poly-line representation of a given list of pixels in Chapter 6, and in Chapter 8

we presented a linear time algorithm for finding a list of pixels that represents

the edge of a blob, without doing edge detection on the entire image. Applying

these methods results in an algorithm that is an order of magnitude faster than

the original stripping technique because not every pixel needs to be examined.

The final step is to identify the skeleton, S, from the medial axis, A. We

care only about the nodes of the skeleton — the lines are drawn on the images

in the figures to aid human understanding. To find S, we assign each pixel in

the medial axis p ∈ A a support value Vp based on how deep it is within the

bounds of the blob (that is, the lighter areas in Figure 9.1 (b) are assigned higher

weights). The local maxima within A are found by comparing each value Vp with

the values of the other pixels in A that are close to p. If a unique local maximum

is found within a given area then that pixel is added to S. However, sometimes

there will be a number of pixels in an area with the same support value. In this

case, our algorithm selects one pixel as a representative and adds that to S. By

placing the nodes Vp in a heap data structure, the entire process is achieved in

linear time relative to the number of pixels in the blob.

112 9. Versatile Posture Recognition

9.1.1 Symmetries in the Medial Axis

Using skeletons for the task of object recognition is common [97, 39]. Usually,

after the medial axis is found a match is sought between the medial axis and

some learned or stored pattern. Our new technique also differs at this point.

The medial axis is analysed for symmetry by comparing its median point

to the median point of the entire colour-segmented blob. This is a simple task

that can be performed efficiently in one or more dimensions1. The median point

on the skeleton is calculated from the set of all points in the skeleton while the

median point of the blob is calculated from the set of all pixels in the blob.

We refer to the median points as MS= (MSx , MSy) or MB= (MBx , MBy). The

median of all the x-projections for all points in the skeleton S is denoted as MSx .

Similarly the median of all the y-projections for all points in the skeleton is MSy .

In the same way the medians for the x and y projections of all points in the blob

are MBx and MBy .

The relationship between MS and MB reveals the orientation of the viewed

objects. Refer to Figure 9.2. This figure illustrates how the distance between

MSx and MBx varies with the orientation of an object with one axis of symmetry.

MSx is represented by a green line in these images, while MBx is the yellow line.

If the distance between MSx and MBx is large then the object is at its most

non-symmetric orientation relative to the viewpoint. In fact, there is a direct

correlation between the perceived angle of orientation (θ) that is proportional

to the inverse sine of the distance between MSx and MBx . The correlation fits

closely the equation

θ = arcsin(d/maxd). (9.1)

The variable maxd represents the distance in pixels between MS and MB

at 90o orientation. This calculation can be adjusted appropriately for objects

with more than one axis of symmetry. Furthermore, our technique is largely

1Strictly speaking the median point in 2 dimensions of the set Q = {(x1, y1), ...(xn, yn)} is
the point P = (x, y) ∈ Q that minimises f(x) =

∑n
i=1 ‖ P − Qi ‖ where ‖ P − Qi ‖ is the

Euclidean distance between the points P and Qi. Finding the spatial median is intractable [7]
so this is not the definition we use. Rather we define ‖ P −Qi ‖ to be the Manhattan distance
between P and Qi. In this way the median point may be computed in linear time on the x and
y components independently. We use medians rather than means because medians are more
robust estimators of central tendency than means [135].

9. Versatile Posture Recognition 113

Figure 9.3: For certain objects, more than one orientation may yield the same
distance between MS and MB. In this case we may compare the position of either
MS or MB to the bounding rectangle, R to discriminate between possibilities.

independent of the distance to the viewed object. The distance between the

two median points, with respect to maxd, may be normalized against the overall

size of the blob. This means that the computationally expensive process of

image normalization, which is common in posture recognition systems [40], is

not required for our technique to work. Normalization can be performed as the

final step on several pre-calculated points, instead of the initial step on the entire

image.

Equation (9.1) fits well when the viewing angle is in the range −90o < θ <

90o. If the actual angle of orientation lies in the range 90o < θ ≤ 180o or

−90o > θ ≥ −180o then the solution provided by our equation will be out of

phase. Consider Figure 9.3. For each orientation within 90o < θ ≤ 180o or

−90o > θ ≥ −180o there is another within −90o < θ < 90o.

To discriminate between these possibilities we introduce a new feature —

the bounding rectangle, R, of the blob. Let MR= (MRx , MRy) where MRx is

the median of the x-projection of all pixels in R and MRy is the median of the

y-projection of all pixels in R.

When our viewing angle is close to 0o the object looks completely symmetric

114 9. Versatile Posture Recognition

to us. There is a set of orientations that produce a skeleton homomorphic to the

one produced at 0o. All parts of the object viewed from this set we will label the

front of the object. The parts of the object that are only visible from outside

this set of angles are labelled the side. In our coffee cup example, we are viewing

more of the side of the object as the handle moves into view.

When θ is small, the perspective of the viewpoint ensures that the side of

the object will have few pixels in it compared to the front. This is because

it is further away from the viewpoint. We call any posture visible from the set

of angles −90o < θ < 90o, Posture A. The ratio of pixels in the side to the

front of the object when viewed in Posture A is RatioA. Each possible Posture

A, however, has a mirror posture shown in Figure 9.3. Both of these postures

render the same angle θ using Equation (9.1) because | MBx− MSx| is equal. We

call the mirror Posture B and the ratio of pixels in the front to the side of

the object in this posture RatioB. The perspective of the camera ensures that

RatioB will be very large compared to RatioA because the side of the object is

closer to the viewpoint than the front.

When we examine RatioB to RatioA we notice several ways that the ratio

affects the computation of MBx and MSx . MBx will be influenced by all of the

extra pixels now visible in the side of the object and thus will be biased toward

that side of the object. MSx will be relatively unaffected by the extra pixels

(as the skeleton uses only the local maxima of the medial axis) but the side

will look larger and the skeleton obtained will reflect this. Therefore MSx will

also be biased toward the visible side of the object. Notice in Figure 9.3 that,

although θ remains constant, MBx and MSx move significantly toward the visible

side of the object in Posture B and this is reflected in their relationship with

MRx . Thus it is enough to compute | MRx− MBx| or | MRx− MSx| to determine

9. Versatile Posture Recognition 115

Actual Orientation 0o 30o 60o 90o

Perceived Orientation −3o 27o 65o 86o

Actual Orientation 110o 130o 150o 180o

Perceived Orientation 103o 121o 145o −176o

Figure 9.4: Our technique can be used to accurately determine the posture of an
AIBO. The perceived orientation is, again, very close to the actual orientation
of the robot, the largest error being 9o.

whether our relative orientation lies in either the range −90o < θ < 90o or in

either of the ranges 90o < θ ≤ 180o and −90o > θ ≥ −180o.

9.2 Application to Robot Soccer

We have been able to successfully detect the orientation of an opposing robot

using our technique, regardless of the distance it is from the camera. The AIBO

robot, in RoboCup uniform, has coloured patches on its body that are either blue

or red (signifying the team). The patches are symmetrical along the long axis of

the dog but are not symmetrical along any other axis. (Refer to Figure 9.4.) Once

the image has been segmented, the first task is to determine which blobs of the

correct colour belong to a particular dog. We do this by proximity clustering [56].

In this way it is possible for us to identify which blobs (representing patches on

uniforms) belong to which AIBO.

Once all the blobs belonging to each individual AIBO have been identified,

the orientation of the AIBO is identified by symmetry using the technique above.

Refer to Figure 9.4. The medial axis of each of the blobs is computed and the

skeleton obtained for the AIBO. The median point of this skeleton, MSx , is com-

pared to the median point of all of the pixels in each of the coloured blobs, MBx .

If the AIBO is in an orientation that exposes only its exact front, then these

116 9. Versatile Posture Recognition

Figure 9.5: Our technique may also be used to detect the kicking motion of
an AIBO. We do this by analysing the vertical symmetry, as opposed to the
horizontal symmetry for detecting the posture.

two median points will closely match. However, due to the non-symmetrical

nature of the other patches on the AIBO, MSx will be biased further from MBx

and toward the side of the AIBO in view as the perceived orientation angle

becomes greater. Using this technique we can determine the orientation of the

robot without any shape or posture analysis. Our technique is also independent

of the distance to the AIBO because the constant maxd may be normalized with

respect to the size of the blob cluster that represents the uniform patches. Fur-

thermore, it is robust to small changes in the posture of the AIBO. In particular

we are still able to analyse an opponent while it is walking, introducing only

minor inaccuracy.

We have made available on our website2 several videos of an AIBO using

our technique to recognise the posture of another AIBO. In each video the first

AIBO must determine the other AIBO’s posture in relation to it, and move into

a position to mark it. When it reaches its marking position it assumes a guard

posture to indicate that it is finished. The videos show that the AIBO maintains

the ability to recognise the posture of the opposing AIBO as it moves around the

perimeter, and as it moves further and closer to the opponent — only occasionally

making the wrong decision. We illustrated our ability in the technical challenge

section of the RoboCup 2004 competition in Lisbon, Portugal.

We have used a similar technique to analyse the intent of opposing robots in

the soccer game. As an AIBO kicks the ball its vertical symmetry changes. Refer

to Figure 9.5. From this sequence of images we see that the MSy is significantly

biased toward MBy as the AIBO flattens its vertical posture. Since most kicks

2http://www.griffith.edu.au/mipal/

9. Versatile Posture Recognition 117

Images Posture Accuracy (%) 95% Confidence
Recognised Interval

Red AIBO 113 94 83.19% 75.23% to 88.96%
Blue AIBO 87 69 79.31% 69.65% to 86.49%

Table 9.1: The accuracy of our posture recognition technique as applied to
robotic soccer.

involve this flattening process we have an orientation-independent way of deter-

mining if the opposing AIBO is currently kicking the ball. We have also made

available a video of the AIBO using this technique to correctly predict kicks from

an opponent and intercept them. We have demonstrated our ability both with

and without a ball present to show that we are not using the location of the ball,

but rather the features of the opponent AIBO, to determine the interception.

9.2.1 Accuracy of Our Method to Robot Soccer

Table 9.1 shows the accuracy of our method as we have applied it to robotic soc-

cer. We captured 200 images containing pictures of AIBOs in realistic RoboCup

postures over several sequences of real-time data. In each sequence there is a

time-delay of approximately one-tenth of a second between each image. We re-

stricted the scenarios so that all of the images contain exactly one AIBO. There

were 113 images of an AIBO in a red uniform taken over two different sequences,

and 87 images of an AIBO wearing blue and also taken over two sequences. The

images were all taken with a stationary camera, though some of the AIBOs in

the images were moving at the time the image was captured3. The criteria for

successful posture recognition was human inspection of the resulting skeleton

overlayed on the original image (as in Figure 9.5).

The main cause of error in our technique is noisy data. The medial-axis

varies with noise in the image, but only within limited bounds. Therefore it is a

simple matter to judge the feasability of the data retrieved in the current frame

by what we have seen in previous images. If the information in the current frame

renders a posture that is unlikely based on the data we have recieved over several

previous images then we simply ignore it. The frequency with which this occurs,

and the effectiveness of our solution can be seen in Table 9.2. Typically, our

technique will yield the correct posture in approximately 24 frames out of every

3This represents a realistic assumption for posture recognition. Our technique will not work
on blurry images that distort the shape of the patches of the AIBO’s uniform.

118 9. Versatile Posture Recognition

Images Posture Incorrect Posture Failures Failures
Recognised not Ignored (caught %) (not caught %)

Red AIBO 113 94 7 10.62% 6.19%
Blue AIBO 87 69 7 12.64% 8.05%

Table 9.2: The number of failed attempts at posture recognition because of noisy
data. Some of these failures are recognised as such and ignored (caught), others
are not. Failures are given as a percentage of the images in which they occur.

Figure 9.6: By analysing both vertical and horizontal symmetry we may accu-
rately determine the gesture of a human hand. Our AIBO can recognise four
distinct hand gestures.

30 (1 second of data). It will further ignore 4 after realising that they must be

incorrect. Only two out of every 30 frames will be used incorrectly.

9.3 Gesture Recognition of a Hand

Our technique is applicable in many varied posture recognition tasks. We now

illustrate how our method can be applied to differentiating between several com-

mon and simple hand gestures. Computing both the horizontal (MSx , MBx) and

vertical (MSy , MBy) median values leads to a robust algorithm that is able to

recognise several hand gestures. Refer to Figure 9.6 where we see that it is pos-

sible to accurately determine the difference between an open hand and a closed

hand with the thumb either up or down. Again, MBx and MBy are illustrated

by the yellow horizontal and vertical lines, while MSx and MSy are illustrated by

green lines.

We see that in the images where the thumb is up, the horizontal line of (near)

symmetry is broken and so MSx moves away from MBx . Similarly when the hand

9. Versatile Posture Recognition 119

is extended, the vertical line of (near) symmetry is broken and so MSy moves

away from MBy . Using this technique we have given the AIBO the capability

to recognise and respond to four simple hand gestures. Notice that it does not

matter how far away the hand is from the camera, as long as it is close enough

that the details can be clearly seen. This is also illustrated in Figure 9.6.

9.4 Maritime Signal Flags

The final illustration of our technique applies to maritime signalling flags. This

example shows how repeated application of our technique constructs a very effi-

cient tree to discriminate between several similar objects.

Although ships communicate more frequently with radio and modern com-

munication devices, the maritime signalling flags have not become entirely re-

dundant. Vessels still use combinations of flags to communicate with each other,

particularly in crowded areas such as ports and channels. In the internation-

ally agreed upon protocol there is one flag per letter of the alphabet. Signallers

may choose to spell out messages, or alternatively, they can communicate many

common messages by the presence of only one flag, or the combination of two.

We have successfully managed to apply our technique to quickly and accurately

recognise each of the alphabetical flags. Firstly, the colours in the flag are iden-

tified using image segmentation and the flags are rotated in the image so that

the horizontal axis of the flag is parallel with the bottom of the image. It is not

necessary to compute the skeleton for such a simple, planar recognition task, so

instead of using MS we compute the medial pixel of the blue blob (MB) and

compare it to the medial point of the entire flag (MR).

All the flags containing only blue and white are shown in Figure 9.7 (a).

These are A, J, M, N, P, S and X4. We have chosen to illustrate our technique

on this subset because there are several flags in it that have similar symmetries:

the symmetries are identical in, say, S and P (a white box in a blue square and

a blue box in a white square).

Repeated application in different regions of the bounding box allows us to

analyse flags that have identical symmetries. We first take the bottom and top

two thirds, then left and right two thirds. Notice that the flags which originally

contained the same symmetry information become quite different. For example,

4The entire set of flags can be found at http://www.omniglot.com/writing/imsf.htm.

120 9. Versatile Posture Recognition

in Figure 9.7 (b) we see that the white square inside the blue box (S) is easily

distinguished from the blue square inside the white box (P) because the distance

from MBx (shown in yellow) to MRx (shown in green) is different in each case.

By applying this technique we can quickly and correctly identify every flag in

the set.

9. Versatile Posture Recognition 121

(a)

(b)

Figure 9.7: Our technique is very versatile. We show here the ability to correctly
identify particular flags from a set of maritime signal flags (b) even though those
flags have very similar symmetrical properties (a).

Part III

Reliance on Domain-Specific

Knowledge in Object

Recognition

122

Chapter 10

Basic Concepts and Related

Work

Most object recognition systems use hard-coded, domain-specific knowledge. For

example, all leagues in RoboCup rely on the ball being orange and spherical. If

it were changed to be a non-uniform colour or a non-uniform shape then most

object recognition systems would have to be largely re-coded1. We saw how

devastating this was in the RoboCup challenge in the four-legged league in 2003

which required the robots to locate a black and white ball. Only eight of the

twenty-four teams managed to even identify the ball and no team passed the

challenge2.

10.1 Generic Object Recognition

There is much literature on different methods for representing objects generi-

cally in such a way that they can be located within target images. Most of

the recent work focuses on trying to learn object representations from sample

images [99, 78]. As such, the generic representation usually takes the form of

a statistical model [64] or some subspace representation of the features of the

object [95]. These methods rely on supervised learning techniques and work well

when the objects in question appear in a similar pose and at a similar distance

1This is certainly true for the team Griffith 2003 code. There are many other examples of
systems that are programmed in this way because they are based on the Bruce et al. vision
pipeline.

2http://www.openr.org/robocup/challenge2003/Challenge2003 result.html

123

124 10. Basic Concepts and Related Work

in subsequent images. Supervised learning techniques are, as yet, unsuitable

for robotic object recognition because of these reasons. Object recognition for

mobile, autonomous robots requires a system that is tolerant to changes in the

image such as occlusion, viewing distance, angle and posture of the viewed ob-

ject. While we expect that, in the future, these problems will be addressed by

the object recognition community, we focus our work on a non-learned (but still

generic) description of objects.

Some of the first work done in this area was by Bergevin et al. who at-

tempted to use 2-D line drawings as descriptions of commonly encountered 3-D

objects [14]. The idea was that a human would draw a sufficiently detailed set

of 2-D line drawings of the object, viewed from a number of perspectives and

orientations, and the system would match the skeletons of objects in the images

to the set of line drawings. The matching function worked in a similar way to the

process we described in Section 7.2.1. While the system was somewhat success-

ful, it proved too computationally expensive. The matching function would need

to evaluate each skeleton against every line drawing — multiple perspectives of

multiple objects. Also, it took a great deal of expertise in drawing, as well as

requiring that the user know how the medial-axis of each object would appear

from different angles.

More recent work has focused on decomposition techniques. That is, objects

are represented as a composition of smaller parts that can be described more

simply [92, 123]. Using this method an object can be described as the relationship

between a set of easily recognisable shapes. For example, a person might be

described as a circle on top of an oval with certain texture or colour properties,

to recognise the head and torso.

The advantage of describing objects in this manner is that we no longer

think of objects in terms of how they are found in the image, but rather in

terms of what they look like. In traditional object recognition systems, all of

the knowledge about each particular object of interest is coded into a program

that describes how to find that object. Even a simple change in an object’s

properties will require a large re-coding effort under this type of system. Not

only is it more intuitive to think about what objects look like, rather than how to

locate them, but it is more convenient from a programming point of view as well.

By developing an object recognition system that utilises a descriptive object

10. Basic Concepts and Related Work 125

language we can abstract the domain-specific properties of object recognition

away from the object recognition system itself.

The idea of codifying the domain specific knowledge in a goal driven and

code-independent manner is not new. The German team in Robocup 2003 [82]

presented an XML-based3 specification language for agent behaviours. Our work

presents a similar system applied to the task of visual object recognition.

10.2 Utilising Machine Vision Techniques

Another closely related problem, which our work also addresses, is that of how to

combine and apply existing vision processing techniques to the object recognition

task [103]. For example, one object may require that edges be extracted and the

texture of the internal pixels analysed for identification, while a different object

is more easily identified by colour segmentation and connected region analysis.

Draper [37] proposes that the task of object recognition is a goal driven task and

the user of the system should not need to specify which combination of vision

processing techniques are applicable on a per-object basis. Instead Draper pro-

poses that the vision processing tasks themselves can be treated as primitives

and their correct combination and application learned by the system for each

object, again by supervised learning techniques. While we do not attempt to

address the problem of learning combinations of techniques in this thesis, we do

address this problem by the static transformation of user-created object descrip-

tions into a vision processing pipeline for each object. Our processing pipeline

will be optimal in that it will only apply required vision processing techniques

according to the description of each object it is required to identify.

10.3 Our Contribution

As with most vision processing techniques, applying generic object recognition

to the field of mobile, autonomous robotics brings its own problems. Robots

that operate in unpredictable environments must not only determine where each

object is within each image, but if it is present at all. We present an XML based

Object Description language (XOD) that is capable of generically describing

objects in the manner outlined above. One advantage of our system is that

3Refer to the Glossary on XML on Page VI.

126 10. Basic Concepts and Related Work

object descriptions are easily understood and written by a human. This allows

a non-expert user to quickly modify or create descriptions of new objects that

the robot may encounter when its environment is changed.

We also present an efficient implementation of our language that is capable

of building on the work we have presented in the previous chapters to provide

a vision pipeline that is both fast enough to use in a mobile robotic context,

and quickly adaptable to changing environments. Our work simplifies the task

of describing the objects so that the domain-specific knowledge is removed from

the vision-processing module and the details of the vision processing itself do not

need to be understood by the user. Objects are described by their appearance

rather than by the algorithm that is required to locate them in an image, and

this is done in such a way that if the domain context is switched then we can

leave the underlying vision system programming unchanged.

We claim that our approach allows rapid expansion to newer or changing

vision domains. We will present both the XOD language and the techniques

used to translate it to C++ code. We will also present several illustrations

where we have used our system to recognise vastly changed objects from those

found in RoboCup. We present the XOD language and its implementation in

Chapter 11.

Chapter 11

Versatile Object Definitions

In this chapter we present an XML based object description language (XOD).

XOD is the first version of a language used to describe the objects we expect our

robot to see in a code-independent way. As we described in Chapter 10, such

a language allows the domain knowledge required to identify objects in a scene

to be abstracted away from the underlying vision system code. Therefore, if the

environment of the robot is changed, and new or altered objects are encountered,

the vision system does not need to be recoded.

11.1 Primitives

The language works with several types of primitives — points, edges, blobs and

objects — as well as collections (lists) of these primitives. When we formalise

the language as a logic these primitives are the atomic terms of the logic and

the relationships between the primitives of our language become the predicates

of the logic. We also take advantage of the overlap between object-orientation

and knowledge representation in AI to allow our primitives to have properties

defined on them.

A point is used to represent a pixel. It is not the responsibility of the vision

system to convert items from pixels into world coordinates, so a point’s

location (x, y) in an image is one of its properties. We can use points to

specify properties of other objects such as line intersections or centres of

objects.

127

128 11. Versatile Object Definitions

An edge is simply a collection of connected points, for example a connected

border between two different colours. There are two stages of processing

on edges — edge detection and vectorisation. It is sometimes useful to

represent edges in raster form and sometimes useful to represent them in

vector form so our language allows descriptions for both representations.

Our language operates on the properties of edges and the relationships

between edges and blobs to find objects. Note that a property of an edge

could also be an object in itself — such as the list of points that compose

it. When it is required, we use the vectorisation method presented in

Chapter 6 for the task of vectorisation of a straight line, and the methods

presented in Chapter 8 to vectorise more complex shapes. As these can be

expensive operations, they are performed only on demand.

A blob represents an area of connected and similarly coloured pixels as well

as some other properties of these pixels (such as the bounding rectangle).

Our language operates on the properties and relationships between blobs

to find objects. Blobs are traditionally formed by tree-based union find

operations [16], but we have found this method to be too restrictive for our

purposes. Instead we use the methods that we have presented in Chapters 5

and 8 to identify objects. Our system can choose between late or early and

between partial or complete edge detection as the context requires. Our

blobs are defined by either the edges that compose their boundaries, or a

set of points that lie on their boundary.

Thus an object is a named entity in our language. It can be a blob, an edge or

a point or a set thereof. Objects are made externally available for post-

processing by other modules on the robot. We may, for example, have an

object called ball or we may also have an object called field edge which

is actually a set of vectorised lines representing the edge of the field.

11.2 Declarative Elements

The task of XOD is to represent objects of interest in a way that allows C++

code to be automatically generated for the task of locating the objects within

an image if they are present. We use an XML based language because of its

transportability and readability by humans and machines, but the language can

11. Versatile Object Definitions 129

Pink/Yellow Beacon XOD Formalised Logic
<object>

<id>PY BEACON</id> entity(A, B, py beacon) ⇔
<above> above(A, B) ∧

<touching proximity=1> touching(A, B, 1) ∧
<proportional error=0.25> proportional to(A, B, 0.25) ∧

<blob><colour>PINK</colour></blob> colour(A, pink) ∧
<blob><colour>YELLOW</colour></blob> colour(B, yellow)

</proportional>
</touching>

</above>
</object>

Figure 11.1: The simplified XOD for a pink on yellow RoboCup beacon. Notice
that XOD is an XML representation of a formalised logic.

be represented as logic clauses for even more readability (see illustrations and

figures). The main construct in this language is the tag <object> which en-

capsulates the definition of an object. All objects have a property of a name

indicated by the <id> tag. Many more features or properties are possible, in

the style of Object-Orientation [75] or Frames [137].

To illustrate the language, assume now that the object which the vision

system will attempt to recognise is to be identified via the use of colour (a

common case in RoboCup), and not by lines or edges. Then the object will

be encapsulated (circumscribed/bounded) by a blob if it is a single colour or

encapsulated by two or more overlapping blobs of different colours. Our language

allows us to search for interesting blobs both by their properties (for example the

<colour> tag) and by the relationships between blobs (<above>, <in front>,

<touching>) . For example, the XOD in Figure 11.1 could be used to locate a

pink blob touching the top of and proportional to a yellow blob. This definition

would be useful if we were looking for the pink on yellow beacon in RoboCup

four-legged league.

XOD also allows limitations on the blobs that we use, based on the properties

of the blob. For example if we were looking for a large orange blob that has at

least 50% of the pixels within the bounding rectangle of the correct colour then we

might write something like the XOD in Figure 11.2. This figure also illustrates

how the language will permit us to check relationships (or apply predicates)

with other, previously defined objects such as the field edge. The truth value of

these predicates is determined differently depending on the type of object being

used. For example, the truth value of below(A, FIELD EDGE) will need to be

130 11. Versatile Object Definitions

Field Edge XOD Formalised Logic
<object>

<id>FIELD EDGE</id> entity(A, field edge) ⇔
<edge> a ∈A ∧

<source>FIELD BLOB</source> bounded by(a, field blob) ∧
<colour>WHITE,GREEN</colour> [between colours(a,white,green) ∨
<colour>YELLOW,GREEN</colour> between colours(a,yellow,green) ∨
<colour>BLUE,GREEN</colour> between colours(a,blue,green)] ∧
<vectorise>line</vectorise> straight line(a)

</edge>
</object>
<object>

<id>CLOSE BALL<id> entity(B, close ball) ⇔
<below> below(B, field edge) ∧

<blob>
<colour>ORANGE</colour> colour(B, orange) ∧
<area op=gt>5000</area> greater than(area(B), 5000) ∧
<pixels op=gt>2500</pixels> greater than(pixels(B), 2500)

</blob>
<object>FIELD EDGE</object>

</below>
</object>

Figure 11.2: This XOD illustrates the use of object properties and relationships
to restrict the blobs that match an object description. Here we search for a close,
orange ball that is on the field.

calculated differently depending whether field edge is an edge or a blob. In

Figure 11.2 it is implemented as an edge vectorised to a straight line to illustrate

that objects do not necessarily need to be formed from blobs.

11.3 Imperative Elements

Our language goes beyond declarative statements to simplify using quantifiers.

This is illustrated when more than one blob in an image matches the criteria

in an object definition. In this situation we have the option to specify how to

select the correct one or to save the list for post-processing. We do this via the

imperative <select> tag. We may choose either to keep the entire set or to select

one object according to some criteria. Figure 11.3 illustrates the example where

we want to choose the largest orange blob with fewer than 500 pixels.

We can choose to select by any of the attributes of the blob or by comparing

to some other named entity. For example, it is possible to select the closest red

blob to the object identified already to be the yellow goal. In the four legged

league this could be useful in identifying the red goal keeper. In the absence of

any select statement the default action is dependent on the type of object. If

11. Versatile Object Definitions 131

Far Orange Ball XOD Far Orange Ball XOD
<object>

<id>FAR BALL</id> entity(A, far ball) ⇔
<blob>

<colour>ORANGE</colour> colour(A, orange) ∧
<pixels op=lt>500</pixels> less than(pixels(A), 500) ∧

</blob>
<select>

<area op=gt></area> ∀x greater than(area(A), area(x)) ∧
</select> colour(x, orange) ∧ less than(pixels(x), 500)

</object>

Figure 11.3: XOD for an orange ball that is further away.

the object is a blob then the largest blob by area is selected. If the object is a

point or an edge then the set is kept and the object remains a collection.

There are other imperative statements in the language used to modify or cre-

ate objects rather than define or select them. These are the <create>, <copy>,

and <set> tags. Full descriptions of these, and all of the statements in XOD

can be found in Section 11.6. Before we proceed to the implementation of XOD,

we will first examine several illustrative applications.

11.4 XOD Illustrations

11.4.1 Black and White Ball

One of the RoboCup four-legged league challenges in 2003 required teams to

locate a black and white ball and then score a goal with it. The challenge

was not performed successfully by any team in the competition. The XOD

language allows us to specify a definition for the ball that requires only very minor

alterations in the ball definition (see Figure 11.4) and the system will identify

balls of non-uniform colour easily; in this case, a black and white ball. There

is only a minor performance penalty in locating the black and white ball rather

than the orange one. This is due to the system needing to calculate a bounding

rectangle for the edge-processing operations based on relationships between black

and white blobs rather than a single orange one. The edge processing operation

will be performed in the same amount of time for either ball provided they

appear to be the same size in the image. Compared to a hard-coded system1 our

system performs well. Figure 11.5 shows a comparison of the computation time

1As implemented by Griffith University for the RoboCup 2003 competition.

132 11. Versatile Object Definitions

needed to locate various sized orange balls in an image. The extra computational

time for the XOD system is largely due to the dynamic memory management

associated with processing dynamic sets of objects2. The execution times shown

in this table include the entire processing pipeline outlined in Chapter 8.

11.4.2 Flag Instead of Beacon

One proposal to move RoboCup more towards real soccer is to replace the navi-

gation beacons with corner flags. The pictures in Figure 11.6 illustrate that our

XOD system is capable of easily adapting to this change. Turning the beacons

on the side requires only that the <above> relationship in the beacon definition

be replaced with a <left of> relationship.

11.4.3 Identifying an Air-Hockey Puck

We believe that our language and the techniques presented in this chapter are

applicable to wider domains than RoboCup. To illustrate this point we describe

our use of XOD to detect a cylindrically shaped hockey puck on an air hockey

table. The hockey puck is white, as are the paddles which also resemble cylinders.

There is white writing on the table and the reflection of the overhead lights is

also white which complicates the visual environment. The table itself is blue and

the table edge is a green colour that looks fluorescent under the partially black

light.

Our rules specify that the puck blob must be touching the blue of the table

and under the green table edge. We also specify that it must be at least 1.5

times as wide as it is high, as from the perspective of above the table this will

be true no matter where the puck is on the table. Finally we rule out blobs that

are too small to be pucks seen from the camera height. Figure 11.7 illustrates

AIBO vision workshop detecting a hockey puck in this relatively complex visual

environment. We illustrate some of our processing by outlining the detected

table edge lines and the edge pixels of the hockey puck.

2The Griffith University team policy in the code-base of 2003 was to avoid dynamic memory
management altogether for the sake of performance. Most code, including the vision system,
ran entirely on statically allocated memory.

11. Versatile Object Definitions 133

Orange Ball XOD Black and White Ball XOD
<object> <object>

<id>BALL BLOB</id> <id>BALL BLOB</id>
<contains>

<blob> <blob>
<colour>ORANGE</colour> <colour>WHITE</colour>

</blob> </blob>
<proportional error=0.2>

<touching proximity=1.5>
<blob>

<colour>BLACK</colour>
</blob>
<blob>

<colour>BLACK</colour>
</blob>

</touching>
</proportional>

</contains>
</object> </object>
<object> <object>

<id>BALL</id> <id>BALL</id>
<edge> <edge>

<source>BALL BLOB</source> <source>BALL BLOB</source>
<colour>GREEN,ORANGE</colour> <colour>GREEN,WHITE</colour>
<colour>WHITE,ORANGE</colour> <colour>GREEN,BLACK</colour>

</edge> </edge>
<vectorise>circle</vectorise> <vectorise>circle</vectorise>

</object> </object>

Figure 11.4: A comparison between the XOD for a black and white ball, and the
XOD for an orange ball. Notice that no code in the vision system was changed
in order to identify a drastically different ball. The alterations to XOD are very
simple.

Ball Size XOD Orange XOD Black and Hard Coded
Ball (ms) White Ball (ms) Orange Ball (ms)

Small (100 pixels) 8ms 8ms 6ms
Medium (7,000 pixels) 10ms 11ms 7ms
Large (10,000 pixels) 14ms 18ms 9ms

Figure 11.5: The execution of XOD is fast because it is translated into C++
code. The times in this table are measured from Aibo Vision Workshop 2 (see
Chapter 12), not the AIBO.

134 11. Versatile Object Definitions

Figure 11.6: The XOD to rotate a beacon by 90 degrees and recognise a flag
requires only one tag be modified. The <above> relationship must be changed
to <left of>.

11. Versatile Object Definitions 135

Figure 11.7: XOD is very generic. It is simple to write an XOD for any object
that is likely to be encountered. Here we demonstrate our XOD for an air-hockey
puck. Notice that XOD is versatile enough to write a description that correctly
distinguishes the puck from the similarly shaped paddles.

11.5 Implementation

The first step in our implementation is to perform a sparse classification of the

source image (refer to Chapter 4). Pixels of the same colour class are then

clustered into groups. From these groups, blobs can be formed as required using

the process in Chapter 8, or edges can be found using the process in Chapter 5.

The system knows the properties of each object it is required to find, so it is

specific as to which blobs will be formed and which edges will be identified. For

example, if the system is never required to locate anything that is pink then it

will never form blobs or detect edges from these pixels.

Once the appropriate blobs and edges have been processed, a universal work-

ing set is formed of each. Each XOD is then converted to C++ code that

performs the following three-step meta-procedure:

1. Build subsets of the universal set according to the properties specified in

the <blob> and/or <edge> section(s) of the definition.

136 11. Versatile Object Definitions

Figure 11.8: A flowchart implementation of the XOD in Figure 11.1. Blob sets
are formed by colour and then searched for blobs that fulfill the relationship
predicates. Of all the blobs that fill these relationships, one is selected by the
properties specified in the <select> tag.

2. Apply predicates forming sets of composite blobs and edges which represent

intermediary and candidate objects.

3. Apply the operators according to the <select> statements.

Figure 11.8 illustrates the meta-code generated from the XOD example in

Figure 11.1 (searching for a pink on yellow beacon). Firstly subsets containing

all the pink and yellow blobs respectively are collated from the universal blob set.

If there were other property restrictions defined on these blobs then they would

also be checked at this stage. The second step is to compare every blob in list

1 against every blob in list 2 to see if the predicates defined by the relationship

tags evaluate to true. If they do, then a new blob is created that encapsulates

both of these blobs and it is added to the universal blob set as well as a new set

containing those blobs generated in this stage. Properties are generated from

the two source blobs and the new blob is given a colour unique to this XOD.

Finally the largest blob (by area) is selected from the set of composite blobs and

named py beacon. (The XOD in Figure 11.8 has no <select> statement so the

default action applies — select largest by area).

11. Versatile Object Definitions 137

11.5.1 Optimisation

For efficiency, our implementation does not actually manipulate sets of objects

but rather indices to objects in an array. All objects (including composite objects

created by our procedure) are stored in a single, immutable (with the exception

of adding new objects) array.

We also perform several other important optimisations. Calculating the rela-

tionship between objects can be expensive. Determining the on top of predicate

between two blobs, for example, requires a pixel-by-pixel analysis of the two

blobs. We do not wish to force our system to calculate these relationships more

than once if they are needed by multiple queries but we also want to avoid cal-

culating relationships between blobs that are never queried. Single images can

contain many blobs so it is unfeasible even to keep an exhaustive list of blob

relationships which have been evaluated. Our solution is to store calculated re-

lationships in a sparse two dimensional array implemented as a map of maps. An

absent query using the two blob indices as keys indicates that a relationship has

not been evaluated. Computationally expensive predicates (such as <above>,

<touching>) are evaluated and stored only on first use. Some bits are set at

this time to indicate that the computationally expensive predicates have not yet

been calculated. When they are required, the predicates are calculated individ-

ually. The predicates mostly evaluate to true or false so a bit-field is an optimal

implementation both in terms of space and time efficiency. Thus we minimise

the space required to 16 bits for each pair of objects3.

One of the most expensive techniques applied to most vision pipelines is that

of edge detection. In our system, edges are optimally evaluated only as required.

Late edge detection is always used, and the XOD system knows when to use

partial late edge detection. When a <blob> tag is encountered, the system will

check to see if there is an included <vectorise> before the edges of the blob

will be discovered. The properties of the <vectorise> tag determine the choice

between partial and complete late edge detection.

The result of edge detection is a set of connected pixels. Many applications4

require a vectorisation process before this information is useful. In the XOD

3This includes the space required to store some added information required to evaluate
some of the properties on the relationships. The <touching> relationship, for example, allows
a tolerance so we need to store how close the blobs are rather than the fact that they touch.

4Though not all. The German team in the four-legged league in 2003 presented a paper on
a Monte-Carlo localisation technique that required a set of edge pixels[109].

138 11. Versatile Object Definitions

Black and White Ball XOD
<object>

<id>BALL BLOB</id>
<contains>

<blob>
<colour>WHITE</colour>

</blob>
<proportional error=0.2>

<touching proximity=1.5>
<blob>

<colour>BLACK</colour>
</blob>
<blob>

<colour>BLACK</colour>
</blob>

</touching>
</proportional>

</contains>
</object>
<object>

<id>BALL</id>
<edge>

<source>BALL BLOB</source>
<colour>GREEN,WHITE</colour>
<colour>GREEN,BLACK</colour>

</edge>
<vectorise>circle</vectorise>

</object>

Figure 11.9: A recap of the XOD for a black and white ball presented here for
reference.

language, the shape of the object is given in the <vectorisation> tag so the task

becomes one of determining if the required shape is present and represented

by a certain point set and, if it is, to parameterise it. We have shown in the

previous section how simple shapes can be determined much more quickly in our

system than in many current image processing techniques, such as the Hough

Transforms, permit. Therefore, we build on the object recognition techniques

presented in Part II.

11.5.2 XOD Implementation Example

Here we illustrate the entire system by describing the processing pipeline that

would be generated by the XOD in Figure 11.9. This XOD description is of a

black and white soccer ball as illustrated above in Section 11.4.1 and Figure 11.4.

We repeat it here for reference.

The first step in every pipeline is to perform sparse image segmentation

as described in Chapter 4. Pixels are classified and simultaneously clustered

according to their colour class. The clusters form the basis of blobs in our

11. Versatile Object Definitions 139

Figure 11.10: Blobs are formed in our system by clusters of pixels. We show an
image here of the black and white clusters. The image has been modified so that
black clusters are visible.

system. This step is illustrated in Figure 11.10 which shows a modified image so

that the colour classes black and white can be easily seen. The lines drawn on

the right image are to illustrate the clusters — no boundary detection of clusters

is performed at this stage. Each cluster is labelled as a blob and placed in the

universal blob set, sorted by colour and then size to optimise searching.

The object recognition system will know what colours are required because

it was generated from the XOD. The XOD in Figure 11.9 describes a composite

object that is made of two black blobs contained in one white blob (as per

the <contains> tag) so the object recognition system will work with blobs of

these colours. The innermost tags are <touching> and <proportional> and

they require two black blobs so the universal blob set is searched for black blobs

that fill the spatial requirements. Each two matching black blobs that are found

will be compared against the universal set of white blobs to see if there is a

blob that satisfies the <contains> tag. If there is, then a new blob will be

created to represent the merge of these three blobs and put in a set labelled

CANDIDATE BALL BLOBS. The lack of any <select> tag indicates that the

largest of these blobs is to be chosen as the BALL BLOB. The pseudo-code for

this process is in Algorithm 11.1.

140 11. Versatile Object Definitions

Algorithm 11.1 Pseudocode for the C++ implementation of the XOD in Fig-

ure 11.9.
Input: A universal set of blobs B, indexed by colour.

Output: A blob labelled BALL BLOB (inserted into B) representing a black

and white ball, if it exists.

1: Let C be the empty set labelled CANDIDATE BALL BLOBS.

2: for all black blobs, b1 in B do

3: for all black blobs, b2 in B do

4: if proportional to(b1, b2, error) ∧ touching(b1, b2, proximity) then

5: for all white blobs, w in B do

6: if contains(w, b1) ∧ contains(w, b2) then

7: Create c representing w, b1 and b2.

8: C = C ∪ {c}
9: end if

10: end for

11: end if

12: end for

13: end for

14: if C 6= ∅ then

15: Select BALL BLOB, the largest blob from C.

16: B = B ∪ {BALL BLOB}.
17: end if

11. Versatile Object Definitions 141

(a) (b) (c)

Figure 11.11: The ball is identified using partial edge detection. Seed points are
found (a) and rays are cast to find points on the circumference of the circle (b).
We then use the perpendicular bisectors method to parameterise the circle (c).

As the algorithm must compare every black blob to every other, and then

each accepted pair to every white blob, it has cubic cost — there is no way of

avoiding this. Clever indexing of the universal set, and carefully written criteria

on the blobs can significantly optimise the runtime cost.

The final step in Figure 11.9 is to use this blob to detect a circle. The XOD

informs us that we are interested in locating edges between white and green

pixels, and between black and green pixels but not, for example, between black

and white pixels. After the edges have been located we vectorise them as a circle.

The system knows that circles can be easily vectorised using partial edge

detection and so edges are found using the method presented in Section 5.2.1

and examined against pixels in the original image to determine if they represent

a boundary between the correct colours. Note that we are not required to specify

colours in an <edge> tag. If they are not present then any edge will be permitted.

Once sample points are found that we know lie on the edge of the circle, the circle

is vectorised using the perpendicular bisectors method. Repeated application of

perpendicular bisectors among different sample points allows us to determine

whether we have actually found a circle with the correct characteristics. If we

have not, the shape is discarded as noise. Figure 11.11 illustrates how samples

are selected for partial late edge detection and the resulting circular vectorisation

is obtained.

More complicated objects can be identified using the complete edge detection

method presented in Chapter 5. For example, the uniform of an AIBO can not

142 11. Versatile Object Definitions

AIBO XOD
<object>

<id>AIBO</id>
<source>AIBO COMPOSITE BLOB</source>
<edge></edge>
<vectorise>aibo posture</vectorise>

</object>

Figure 11.12: We may use XOD to describe the posture of an AIBO. The sys-
tem knows that it must apply the algorithms from Chapter 9 to obtain this
information.

be recognised using partial edge detection. However, the XOD knows which

code module to call for each type of vectorisation. The posture vector of an

AIBO described in Chapter 9 can be expressed very simply in XOD as shown

in Figure 11.12 (assuming that AIBO COMPOSITE BLOB is a composite blob

representing a correctly identified cluster of AIBO uniform patches).

11.5.3 Assumed Objects

Assumed objects are those that are not described by XOD but are nevertheless

available to it (and therefore assumed) in every system. We have only one such

assumed object in our system, that being the horizon in the image. Not only can

XOD use this object to test if blobs are above or below the horizon in the image

(for example), but the XOD system itself uses this entity when determining some

relationships. For example, the relationship above is not determined relative to

the top of the image, but relative to the horizon. The horizon is represented

as a straight-line vectorised edge with one endpoint on one side of the image,

and the other on the other side. Therefore there must be code that runs on the

robot that calculates these endpoints through whatever means are available on

the particular robot. On the AIBO we use the same system as presented by the

German team in their 2003 team report [108] — a combination of accelerometer

readings and joint positions.

11.6 XOD Language Specification

A complete specification of the XOD language will appear in a publication sub-

sequent to this thesis. We list here, for reference, the most commonly used tags

and options. In this table, an entity refers either to a blob, to an object or to an

11. Versatile Object Definitions 143

General Tags Contained by Description
blob object/relationship Specifies a cluster of pixels
edge object/relationship Specifies a list of pixels on border of some blob
object Declares a named XOD entity
Relationship Tags Contained by Description
above entity/relationship Specifies that the first entity is above the second
behind entity/relationship Specifies that the first entity is behind (according to

Z-order) the second
below entity/relationship Specifies that the first entity is below the second
contains entity/relationship Specifies that the first entity contains the second
in front entity/relationship Specifies that the first entity is in front (according to

Z-order) of the second
left of entity/relationship Specifies that the first entity is left of the second
not entity/relationship Negates the contained relationship
proportional entity/relationship Specifies that the first entity is proportional

in size to the second
right of entity/relationship Specifies that the first entity is right of the second
touching entity/relationship Specifies that the first entity touches the second
Imperative Tags Contained by Description
select entity In the case of multiple entities matching a single XOD,

describes which one to select
vectorise edge Describes how to vectorise an edge

(e.g., as a line, circle, etc.)
Other Tags Contained by Description
area blob Restricts the blobs that match this XOD by area

select Specifies conditions on selection by area
bounding rect blob Restricts the blobs that match this XOD by bounding box

select Specifies conditions on selection by the bounding box
colour edge Restricts the edges that match this XOD by colour

blob Restricts the blobs that match this XOD by colour
select Specifies conditions on selection by colour

id object Uniquely names an object or a set of objects
pixels blob Restricts the blobs that match this XOD by

the number of pixels
select Specifies conditions on selection by the number of pixels

shape select Specifies conditions on selection by shape when select is
working on a set of vectorised edges

source edge Specifies the source entity (blob/object) to edge detect
Assumed Objects Object Type Description
HORIZON edge A vectorised line representing the horizon in the image

Table 11.1: An XOD reference. The complete specification is forthcoming.

edge.

Part IV

Development and Debugging

Facilities

144

Chapter 12

AIBO Vision Workshop 2

12.1 Basic Concepts and Related Work

In embedded systems, such as autonomous robots, development of vision pro-

cessing tasks is severely hindered, not only by the limitation on the available

processing power inherent in such a system but also by the usually meager facil-

ities available for testing, debugging, quality evaluation and profiling. The task

of development for an embedded device is often very challenging[5, 89, 120] and

several attempts have already been made to provide generic support tools for the

process (for example Thrun’s embedded development system[124]). However, we

add to these general difficulties the requirements for developing a real-time vision

processing system, which compounds the problem significantly. For example, it

is often very difficult to use generic programming techniques, such as in Thrun’s

work, when programming vision systems, because of the vastly different image

formats delivered by different hardware1, the sheer quantity of data and the

limitations in processing power already mentioned. Such limitations place re-

strictions on the usual mechanisms for the dynamic binding required for generic

programming. To process an image of size 176 by 144 pixels of 3 bytes per pixel

requires over 25 thousand virtual function calls if the class that represents a

colour, or a pixel, is generically programmed. If there were, say, 25 image frames

per second we would be performing 625 thousand unnecessary virtual function

translations per second on a low-powered device. Add to all of this the require-

ment of real-time response to visual stimuli (featured in many robotics based

1Examples of formats include RGB, YUV and HSI. For more information refer to colour
spaces in the Glossary on Page 181.

145

146 12. AIBO Vision Workshop 2

tasks), as well as the necessity for rapid development to respond to changes in

the visual environment, and development becomes impossible without the simul-

taneous development of utilities that assist in the process.

There are many examples of tools, some of them quite complex, written for

the sole purpose of aiding the development of some other piece of software. In a

broad sense, every IDE2 and debugging tool fits into this category. Specific tools

such as our first example, a simulation environment to simplify the development

of robot navigation algorithms [87], are written frequently to aid in development

and testing of complex problems. This particular tool was developed to simulate

large environmental terrains for the purpose of comparing different navigation

strategies and allows the user to “plug in” different navigation algorithms. There

are many other examples of such tools: a virtual reality (VR) toolkit for dis-

tributed development of VR user interfaces [114], an IDE for scientific computing

and data visualisation [6] and a tool for simulation and analysis of scheduling

algorithms [112] to name but a few. All of these tools are similar in that they

aid in developing solutions for a particular problem domain in a generic man-

ner. Of course, not all support tools take the form of complete applications in

themselves. Statically linked code libraries that support development features

are very common such as Ptolemy [17], which is a simulation library for hetero-

geneous and embedded systems. Tools may even take the form of raw source

code that is compiled with the target code to perform common tasks such as

reliable estimation of execution time on embedded devices [48].

We see from these examples that if a particular type of problem becomes a

frequent task then companies and individuals alike will go to great lengths to

produce reliable, flexible and reusable toolkits to aid in development of solutions

for it. Some of the toolkits cited above classify as major software engineering

efforts in their own right. A toolkit may still be developed for sufficiently complex

problems that are not very common, but it is likely that the toolkit will be highly

domain-specific and largely not reusable. For this reason it is unlikely to be

widely distributed.

2Refer to the Glossary on IDEs on Page 183.

12. AIBO Vision Workshop 2 147

12.2 AIBO Vision Workshop 2

In this chapter we present our tool for vision system development — AIBO

Vision Workshop 2 (AVW2). The inspiration for AVW2 comes from a program

called Filter-Graph distributed with the (free) Microsoft Direct-Show SDK3.

To illustrate the concept behind AVW2, let us consider briefly the philosophy

behind Direct-Show. The Direct-Show architecture divides the task of displaying

a movie into a pipeline architecture as defined by Shaw et al. [115]. For example,

a file loader component may open the file containing the data and then pass it

to a normalising filter for sound which passes the data to a renderer to display

it on screen. If the incoming data arrives from a network rather than a file then

the only change that needs to be made is to replace the file reading component

with a network retrieval component. Similarly, if we want to save the movie

to a file rather than display it then we simply replace the renderer component

with a file writer. By allowing a “plug in” architecture with a standard set of

data formats it is possible to obtain an extremely flexible environment for movie

processing. All input components collect the data, convert it to the internal

format and pass it on to “connected” processing components. Finally one or

more output components receives processed data and renders it in some way. If

a user wished to process a home-made movie and write their name in the corner

of every frame, for example, then this is almost a trivial task by simply writing

a processing component that works with the common data formats.

AVW2 works in a similar manner. Images are obtained by one of the input

filters and converted from whatever format they were in to AVW2’s standard

image format. The standard image format chosen is commonly used by many

hardware camera devices (YUV2). The images are then passed to one or more

processing components which are called filters. Each filter, in turn, receives the

cumulated incoming data, performs some processing task and then passes the

original data as well as any new or modified data to any connected filters. Along

the way each filter displays any debugging information either in a visual manner

(on the screen) or, if more appropriate, to AVW2’s text output console.

Figure 12.1 illustrates this process. Image (a) is a screenshot of AVW2 with a

file-loading input filter and three custom-built processing filters while Image (b)

shows how data are passed between the different filters internally. The load file

3The SDK can be accessed at http://msdn.microsoft.com.

148 12. AIBO Vision Workshop 2

filter passes the AVW2 format converted source data to the first processing filter

which, in this case, is a colour classifier performing the common task of image

segmentation. The colour classifier converts the data to a colour segmented

image (which it displays for debugging purposes) and passes both the source

image and the colour segmented data to the next filter in the chain. In this

case the next filter is a bounding box detection algorithm (or blob former) which

locates bounding boxes of objects within the image. Finally all of these data

are passed to a circle detection filter which identifies the ball. These filters

correspond to the processing steps that we examined in the XOD description of

black and white balls in Chapter 11.

12.2.1 AVW2 Customisation

In order to allow users to create their own processing components AVW2 must

do two things. Firstly, the filters must be user-written as the processing that

each filter does is specific to the application. Secondly, AVW2 must be able to

properly handle user-defined data types. For example, a user should be able to

create a filter that processes an image and produces some intermediate data of

form A. The data must be passed up the filter chain even though AVW2 knows

nothing of its structure. Furthermore, if a filter that requires data of type A is

added to the filter chain then it is necessary for AVW2 to check that some prior

filter in the chain can supply data of that type. AVW2 does this by allowing

filters to access data by a string key. Each component in the chain assigns a key

to each of its outputs and filters further up the chain can request this data by its

key. The keys are typed so AVW2 can check that each filter’s data requirements

are met when the filter is added to the chain (see Figure 12.2).

Filters may be written by users in one of two ways: as a dynamically-linked

library (DLL)4 or as a script interpreted by AVW2 at runtime. Figure 12.3

explains the filter architecture. Users create general purpose image processing

filters by following a standard DLL format which acts as a class factory for a

class inherited from a generic DLL filter class. Alternatively, scripted image

processing behaviour (in C++) may be used in place of compiled filters. In this

case the ScriptFilter simply reads a C++ source file and executes it rather than

the user creating an entire compiled filter. In either of these ways then, code can

4Refer to the Glossary on DLLs on Page 182.

12. AIBO Vision Workshop 2 149

(a)

(b)

Figure 12.1: AVW2 works similarly to a pipeline architecture. An input filter
loads the image and passes the data through a series of other filters until the
object recognition task is complete.

150 12. AIBO Vision Workshop 2

Figure 12.2: AVW2 is a generic tool for vision system development. It supports
generic data types and type cheking through a system of keys and values.

be moved (ported) directly from the embedded device and either compiled into

an AVW2 DLL or used in an AVW2 script.

By doing this we gain several important advantages. Firstly, code can be

debugged in a much more sophisticated debugging environment than is likely to

be present on the embedded device. Secondly, debugging information can either

be drawn superimposed on the source image or replace the source image entirely.

This allows for visual representation of the debugging data which is critical for

developing image processing algorithms. If the entire functionality of the target

code is divided into several filters then debugging information can be displayed

for each step. Thirdly, the image processing pipeline itself is constructed at

runtime and filters are loaded and connected dynamically. This makes it easy

to see the effect of using different algorithms to perform the same task. For

example, a nearest neighbour colour classification algorithm can be replaced by

a decision tree colour classification algorithm with only two mouse clicks. The

performance of each (both in runtime efficiency and quality of result) in the

context of the entire processing pipeline can then be easily evaluated.

Of course, in order to develop a filter for AVW2 one must support AVW2’s

native image format for the source image data. As already mentioned, we often

wish to avoid the overhead of generic programming on a real-time embedded

device5. We do not, therefore, wish to impose AVW2 support code into the code

5For development on an AIBO this is not an issue because the internal data format is

12. AIBO Vision Workshop 2 151

Figure 12.3: The filter architecture of AVW2. Filters provide the generality and
extensibility required to make AVW2 a generic tool.

base of the embedded device. The way then to overcome this problem is to write

an AVW2 specific wrapper for each filter that can convert the data from AVW2’s

format into the native format of the device. The wrapper is only used when the

code is run from within AVW2 and is discarded when run on the embedded

device (see Figure 12.4). Therefore the rigid real-time performance requirement

is relaxed for the wrapper ccode.

Another important requirement for customisation of AVW2 is that users can

configure the data-flow between their filter components as easily at runtime from

within AVW2 as they can at compile time on the embedded system. AVW (the

original, not AVW2) had a strictly pipeline data-flow architecture [115]. That

is, each filter output could connect to one, and only one, filter input. As well as

this, only the data output from the filter directly preceding could be accessed by

any particular filter. While this provided users with a simple mental-model, it

severely restricted what could be done. If some component needed, for example,

the same (AVW was originally designed to support development on an AIBO), but this will
obviously not be the general case.

152 12. AIBO Vision Workshop 2

Figure 12.4: Each filter must wrap the code intended for the embedded device
by marshalling the data required.

12. AIBO Vision Workshop 2 153

(a)

(b)

Figure 12.5: Several small variations to the pipeline architecture make AVW2
much more powerful. For example, every piece of data from any filter is available
as input to any other filter further up the pipeline. This alleviates the problem of
requiring multiple inputs on filters (a). Instead the same thing can be achieved
more simply (b).

to use data from two separate sources with the purpose of providing data fusion,

then there was no way this could occur.

The new architecture of AVW2 is much more flexible while at the same time

preserving some of the intuition behind the pipeline idea. The first difference is

that all of the data from every ancestor in the chain is preserved and accessible

through the key mechanism described above. This completely solves the problem

of requiring multiple inputs on filters. Figure 12.5 illustrates why. The data-flow

in (a) requires that the final component, a beacon detection routine, uses both the

data from the colour segmentation routine (top) and that from the edge detection

routine (bottom). If every prior piece of data in the filter chain is available to

each filter then these two filters do not need to run concurrently and a sequential

pipeline will suffice (b). Filters are, however, allowed multiple outputs and this

essentially creates a branch in the processing chain. This is most useful when

154 12. AIBO Vision Workshop 2

we want to compare two different filters that perform the same function on the

same source data. The screenshot in figure 12.6 shows this feature being used to

compare two different image segmentations. The final data-flow architecture of

AVW2 is similar in many ways to the oscilloscope architecture defined by Shaw

et al. [115]. It definitely resembles a pipeline architecture but many differences

emerge because of the flexibility needed to allow the filters to interact in the

same way they would on the embedded device. Thus filters may be connected

and interact in a more complex manner than a pipeline would strictly allow.

12.3 Features of AVW2

12.3.1 AVW2 as a Testing, Debugging and Validation

Tool

One of the most powerful means of testing and debugging vision-processing code

is to use immersive techniques to display the data as it is actually seen by the

device, in a frame-by-frame manner, and watch the results of the code as it is

executed. AVW2 permits each filter to display the results of its computation in

a visual representation (refer to the screenshot in Figure 12.1). If the incoming

images are streamed over a network connection directly from the device then

not only is it easy to see the result of the entire vision pipeline, but if some

part of the pipeline is malfunctioning then it is far easier to identify the faulty

component. Images can be saved from an incoming stream in real time and

played back at a later date for a more comprehensive, step-by-step debugging.

In fact, it is possible even to run part of the processing chain in the embedded

device, send the results over an Ethernet (often wireless) back to AVW2 and pick

up the rest of the processing chain remotely. All that is required is a custom

input component that receives results from the LAN rather than images. This

functionality adds much flexibility to AVW2, especially when it is impossible to

stream images from the device over a LAN at full speed (as is the case with

AIBOs). For example, we often embed the image classification component on

the AIBO and send segmented data back to the rest of the image-processing

components in AVW2. The segmented data is much smaller than a raw image so

we are able to receive many more frames per second this way and thus overcome

some of the limitations of the wireless network itself.

12. AIBO Vision Workshop 2 155

Figure 12.6: Permitting multiple outputs from filters increases the flexibility of
AVW2 for purposes of comparison. In this image we are comparing the results
of two different colour calibration classifications.

156 12. AIBO Vision Workshop 2

The image processing code resides in a separate compilation unit from AVW2

(in a DLL) so it is quite easy to attach a debugger such as gdb or one that comes

with an integrated development environment to the DLL to obtain all the fea-

tures of a modern debug environment. Stack traces, line-by-line and breakpoint

debugging, variable inspection and alteration, register and disassembly informa-

tion and memory leak detection utilities can all be utilised on the code which

will eventually run on the embedded device. Most embedded devices support

very few, if any, of these debugging facilities, so code development will be faster

and testing and debugging will be easier if AVW2 is used. Logic errors will also

12. AIBO Vision Workshop 2 157

be simpler to detect due to the immersive environment provided at each step of

the filter chain.

Although visual immersion is usually the tool of choice for debugging and

code validation, sometimes visual environments lack basic text-based I/O. While

it is extremely difficult to debug vision systems using only text-based I/O, it is

a very valuable supplementary tool. AVW2 provides this facility by a UI com-

ponent that displays and logs any text-based I/O from each filter as it executes.

To do this it provides a set of platform-independent macros for passing messages

such as warnings from either a C++ script or an AVW Filter DLL to AVW2.

The code to do this does not need to be changed when it is moved from either a

script to a filter DLL or from an AVW component to the embedded device. Text

output macros are interpreted differently in a script to a DLL and are simply

ignored (or printed to standard output) in code on the target platform. Future

versions of AVW will redirect standard input and output to AVW2’s console,

allowing stream based I/O.

12.3.2 AVW2 as a Rapid Development Tool

One of the features of AVW2 is that C++ code can be interpreted rather than

compiled. AVW2 is a fully-featured C++ scripting environment supported by

Agilent Technologies’ embedded C/C++ interpreter CINT6. Although scripted

code runs at considerable performance penalty, it is very useful when a fast

development cycle is necessary or when minor alterations to existing code must

be made quickly.

AVW2 exposes an interface to CINT which the script can then use. This

interface allows the script to set the parameters of the filter (such as the type of

data the filter requires and produces) as well as to obtain the source data, set the

result data and draw the debug image for the filter. A script then runs in exactly

the same way as a compiled DLL — the main script file will simply include the

target code for the embedded system, marshalling the data as necessary. We

have included in Appendix B a script that illustrates how easy it is to produce

a simple filter for AVW2. This simple script uses a class that is intended to

run directly on the target device to complete the task of image segmentation

by colour. The other support code simply informs AVW2 of the current script’s

6http://root.cern.ch/root/Cint.html. This software is free to distribute.

158 12. AIBO Vision Workshop 2

data requirements. Incoming data is retrieved using the key mechanism discussed

previously and outgoing data is passed back to AVW2 the same way.

After the script is complete and changes are unlikely to occur it is possible to

have CINT and AVW2 compile it using #pragma compile at the top of the source

code7. This produces a DLL that can be used instead of the script. However,

this is not equivalent to writing a filter DLL (described above) as it must still

communicate with AVW2 through CINT and the exposed scripting interface.

It is still a useful compile, though, as it does significantly increase the speed of

execution.

These and many other advantages justify the use of AVW2 as a rapid de-

velopment tool for embedded vision processing systems. The CINT compiler

exposes a fully featured, command line interface, debug environment on scripts.

It is possible to execute a script line by line, inspect and alter variables and trace

execution through the code, all from within AVW2. This requires no third party

utilities at all making AVW2 the only necessary tool to develop vision-processing

code on a lightweight system.

12.3.3 AVW2 as a Profiler and Performance Monitor

Another feature of AVW2 is that it exposes a simple interface for profiling and

performance monitoring of code. AVW2 profiles every filter on every execution

without user intervention, but this is often not an accurate reflection of the time

actually spent by the vision-processing code. As mentioned above (and illus-

trated in Figure 12.4) there is a small overhead in DLL filters and a somewhat

larger overhead in scripted pieces of code where the code must marshal parame-

ters from AVW2 formats to the format expected by the target device. While this

overhead is acceptable in AVW2 execution, it is undesirable in profile statistics

in which we would like to reflect only the execution time of our code targeted

to the embedded device. For this reason it is possible through both the exposed

script interface and the DLL filter base class to tell AVW2 when to start the

profiler and when to stop it. This is useful to compare execution times of differ-

ent algorithms before making an implementation decision. As mentioned above,

AVW2 exposes its own console-like command interface which is used to display

and log profiling code.

7This requires a third party command line compiler (such as g++) set up correctly on the
system.

12. AIBO Vision Workshop 2 159

12.4 Discussion

The development of embedded vision-system code is usually a very difficult task,

but is nevertheless becoming increasingly important. Autonomous robots, in par-

ticular, often use vision as their primary sensory input and more and more robots

of such nature are being developed. Still, however, the tools available are usually

highly specific tools for particular tasks developed by individuals or groups and

not redistributed. Using this kind of development model, many hours of effort

are required simply to develop the tools needed before actual vision system de-

velopment can take place. With the increasing emergence of embedded devices

that require vision-processing technology, we are seeing many such customised

and extremely specific tools developed. We can provide many such examples

of these kinds of toolkits that are useful for RoboCup, in particular, but are

not really useful in broader applications. The vision toolkit by Carnegie Mellon

University for RoboCup [16] is an excellent example of a class library that would

be very useful in creating a filter for AVW2 but does not attempt to provide

generic support for vision solutions on embedded devices.

AVW2 is a tool that significantly reduces the effort spent on support tools

for vision systems programming, by providing a generic tool that aids in most,

if not all, of the common tasks associated with such problems. The user must

only write the application-specific code and a small wrapper to marshal data

between that code and AVW2. After this AVW2 improves debugging, testing and

validation systems, provides an immersive development environment and allows

for code profiling and runtime evaluation. AVW2’s flexibility and support for fast

software development cycles lies both in its ability to accept scripted, rather than

compiled, source code and to allow any fraction of the vision-processing pipeline

to run on the embedded device, communicating with the rest of the pipeline

within AVW2 over LAN. AVW2’s power as a general tool lies in its ability to

accurately reflect the vision-processing architecture on the target device by its

filter components coupled with the keyed data-types. We have ourselves used

and developed AVW2 as a support tool for embedded vision system development

on our own code for the RoboCup competition over the previous three years.

Part V

Putting it all Together

160

Chapter 13

Conclusions and Future Work

We have observed that there are several critical areas when considering machine

vision as the primary sensory input for mobile autonomous robotics. Firstly,

much of the literature in machine vision focuses on still image processing in

controlled environments and therefore many of the algorithms and techniques

that have been developed are robust and useful, but computationally expensive.

They also have poor adaptability to unpredictable conditions. We therefore

addressed these issues in Parts I and II of this thesis by introducing several

improvements to key low-level vision algorithms. We argued that by improving

the efficiency and adaptability of the low-level algorithms we would obtain a

remarkable improvement in many high-level vision systems that are composed

of them.

We also noted that most vision systems are developed for use in a specific

task and visual environment and are therefore quite difficult to adapt to chang-

ing operational contexts. We addressed this issue in Part III of this thesis by

introducing our descriptive language for object recognition, XOD.

Finally we have observed the practical difficulties inherent in building and

maintaining vision systems in embedded devices (such as robots) due to the

nature both of vision system programming, and embedded devices. We have

noted the lack of good support tools that are available and so, in Part IV of

this thesis, we have proposed our own tool, AVW2, for the purpose of real-time,

embedded vision system development.

Although improvements in any one of these areas are valuable, vision will

only become useful as the primary sensory input for mobile robotics when all

four areas are developed concurrently. For example, what use is it having fast

161

162 13. Conclusions and Future Work

low-level algorithms that cannot be used on the robot because they cannot adapt

to dynamic lighting conditions? Or what use are the most robust and adapt-

able algorithms when they operate too slowly for use in a real-time processing

environment? How will vision system development be maintained for a wide

variety of domain contexts if the entire system must be re-coded from scratch

every time a new object must be recognised? Or what use are any algorithms at

all if they cannot be quickly developed, debugged, tested and maintained by the

programmers working on them? In the context of robotic vision, each of these

areas relies heavily on the others.

In this thesis we have presented significant contributions to each of these areas

in order to develop a robotic vision system for the AIBO that is fast, robust,

tolerant to changing conditions and easily adaptable. There are many areas that

still need to be addressed and many techniques that we have not examined. We

will discuss these in the next section. Here we describe the final vision system

pipeline that is a result of this thesis. We consider this pipeline a substantial

improvement in nearly every way over the basic pipelines that we examined in

Section 1.2.

13.1 Our Advanced Vision Pipeline

There are two basic inputs that the vision system developer must provide to

our vision system. These are the sparse colour classification (Chapter 4) and

an XOD for each object that the system is required to recognise (Chapter 11).

The system does not interpret the XOD at runtime1 so the XOD is translated

into automatically generated C++ and compiled into the runtime of the robot.

This means that the vision system developer is (usually) not required to write

any code. There are some exceptions to this that we will come to. Figure 13.1

describes our pipeline.

Once the XOD has been provided our pipeline can be implemented. The

basic means of implementation of our vision system pipeline was described in

Section 11.5.2. The colour class of pixels is first determined by the sparse colour

classification and each group of similarly coloured pixels is clustered forming

blobs. The XOD describes both how the blobs must relate to each other and

1Though it is certainly possible to interpret XOD at runtime, and indeed we have an AVW2
component that does this, pre-compiled code is faster.

13. Conclusions and Future Work 163

Figure 13.1: Our advanced vision pipeline utilises a fast, illumination-tolerant
object recognition system along with a generic object description language. This
provides the greatest possible robustness and flexibility to the system. The user
of the system need only supply the sparse classifier calibration and an XOD
description for each object in the environment.

164 13. Conclusions and Future Work

Stop Sign XOD
<object>

<id>STOP SIGN BLOB</id>
<blob>

<colour>RED</colour>
</blob>

</object>
<object>

<id>STOP SIGN</id>
<source>STOP SIGN BLOB</source>

<edge>
<not><colour>RED,WHITE</colour></not>
</edge>
<vectorise>hexagon</vectorise>

</object>

Figure 13.2: Some XOD could require a programmer to write an extension. For
example, to detect hexagons (as in this code) would require a custom vectorisa-
tion module.

their shape. The vision processing system locates candidate blobs within the

image that matches each description. The XOD also specifies how to select the

correct blob for each object.

Usually we will wish to find the edges of the blobs, not merely a randomly

shaped cluster of pixels inside them. For example, balls should be round, goals

and beacons rectangular and we certainly require the outline of the AIBO’s uni-

form in order to apply the posture detection technique in Chapter 9. Therefore,

very often the XOD will specify that objects be selected by shape. The system

already knows how to find many vectorisations efficiently, including straight lines

(Chapter 6), circles and squares (Chapter 5) and even the posture vector of the

AIBOs (Chapter 9). However, it is plain to see that determining specific shapes

that are unknown to the system will require new code to be written. If we were

required to locate hexagons (for example, stop signs), we would need to write a

code module that could detect them: there is no way to specify how to detect

a hexagon using XOD. However, once the module was written, the XOD for a

stop sign would be something like Figure 13.2.

For the RoboCup domain, the XOD is fairly large. There are four beacons,

two goals, field lines, the ball and various robots that the system must know how

to find. The XODs that we have shown in this thesis (both in this chapter and in

Chapter 11) have been simplified from what works in a real system. We did this

so we could illustrate the concepts more clearly. It is not sufficient, for example,

to find any pink, rectangular blob that is on top of a yellow, rectangular blob

13. Conclusions and Future Work 165

and call it a beacon. This would mean that certain combinations of clothes in

the crowd would be identified as beacons. Beacons should also be checked by

their relationship to the horizon and field — both in distance and size. There

are many such checks that are required. The ball must be on the field and of

an appropriate size especially compared to the goals, as it is easy to confuse a

few misclassified orange pixels in a yellow goal with a ball that is very far away.

Goals should also be checked against the horizon to eliminate the problem of

people dressed in blue standing on the edge of the field. All of these checks tend

to extend the length of the XOD. Nevertheless, the concept remains the same

and final runtime performance is not greatly impacted.

13.1.1 Summary

Machine vision for mobile, autonomous robotics is both a difficult and active

research field. As we noted in the introduction, there are many available systems

with different approaches and advantages that address this topic. We selected

the Bruce et al. pipeline for comparison not because it represented the state of

the art, but because it or similar pipelines are popular and are used by many

people in the field of robotics. Such pipelines are especially popular in robotic

applications where the main research effort is not in vision, and the development

team simply require vision to “work” so that they can test something else. For

these reasons it has emerged as something of a standard within the community.

We saw the performance data for our raw pipeline in Section 8.3. In Ta-

ble 13.1 we examine our systems performance once XOD is also incorporated.

We do not see a marked increase in runtime cost because the XOD is trans-

lated into C++ and compiled into the system. However there is a small per-

formance penalty for using XOD because of the dynamic memory allocation

required to maintain lists of objects. We compare our system against the Bruce

et al. pipeline.

The data in Table 13.1 was gathered from over 1000 images in our database,

all typical scenes from RoboCup. The objects present in the environment include

balls (sometimes more than one per image), beacons, goals and opponent robots.

We do not have an implementation of the Bruce et al. pipeline that includes the

dog recognition component that is present in our system, so the data for that

pipeline does not reflect this processing, but ours does.

We see from these results that the one thing the Bruce et al. pipeline still

166 13. Conclusions and Future Work

Min frame (ms) Max frame (ms) Avg frame (ms)

The Bruce et al. pipeline 25.97 26.81 26.37
Our pipeline (no XOD) 25.32 29.07 27.09

Our pipeline (with XOD) 26.48 34.51 29.91

Table 13.1: Our pipeline implements a robust and flexible object recognition sys-
tem that is fast enough to use in the context of real-time vision system processing
on mobile autonomous robotics.

Our pipeline Bruce et al.

Operation in constant lighting conditions
Operation in variable lighting conditions

Real-time object recognition
Predictable speed per frame

Versatility to changing operational domains
Support for complex object recognition (e.g. AIBOs)

Object analysis using edges
Object recognition in blurry images

Table 13.2: A summary of the features of our system.

has in its favour is that the execution time is very predictable. This is because

there is nothing in the system that changes depending on the information within

each frame. Our pipeline must use different amounts of dynamically allocated

memory if there are more blobs in a particular frame. In addition our system will

spend more time border following and edge detecting if the objects that require

these routines are large within the images.

Table 13.2 summarises the features of our improved object recognition system

as opposed to the features available to the pipeline of Bruce et al.

13.2 Future Work

The techniques that we have presented in this thesis represent a significant ad-

vance in vision processing for mobile autonomous robotics. Nevertheless the field

is in its infancy and there are certainly many further avenues to explore. We

will examine each of the areas addressed in this thesis in turn.

13. Conclusions and Future Work 167

13.2.1 Computational Complexity of Image-Analysis Al-

gorithms

We have examined several common low-level image processing algorithms and

improved on their runtime performance. They were an image segmentation algo-

rithm, an edge detection algorithm and a straight-line vectorisation algorithm.

Nevertheless there are many low-level image processing concepts that we have

not yet addressed.

For example, our system is incapable at this time of using textures to discrim-

inate between objects, although this is an important and well studied area [106].

Texture analysis techniques generally are exceptionally computationally expen-

sive (even more so than edge detection) but there is little doubt that textures are

as important to human vision as edges [70]. At some stage, efficient texture anal-

ysis algorithms must be developed and employed in machine vision systems for

mobile, autonomous robots. There is a large gap in the literature as to exactly

how this may be accomplished. At the time of writing the author is unaware

of any real-time robotic vision systems that employ texture mapping techniques

as part of their processing pipeline — they are simply too slow. Some simple

texture mapping has been used, for example on the AIBO by Sony’s AIBO Mind

software. This software examines areas within each image for the black/white

pattern that identifies the AIBO’s charging station. In a way this could be

considered primitive texture mapping but in reality it is doing little more than

colour thresholding.

Another area that we anticipate will be crucial in future robotic vision sys-

tems is that of optical flow [63]. This technique is concerned by information

that is obtained by analysing the difference between two subsequent incoming

frames. Our system examines the information only on a per-frame basis and

therefore any information that can be gleaned by a differential analysis of two

consecutive frames will be lost. At the time of writing optical flow algorithms

are only in early stages of development and even though they are somewhat slow

and inaccurate now, we expect to see more robotic vision systems incorporating

these kinds of algorithms in the near future.

A great deal of information, in particular depth and perspective, can also be

gained from stereoscopic vision [94]. These systems are typically very processor-

intensive. Indeed, stereoscopic vision systems take greater than twice the pro-

168 13. Conclusions and Future Work

cessing time of a monoscopic system unless dedicated hardware is used for each

camera. We expect that the development of faster and cheaper processors will

somewhat alleviate this problem, but it remains to be seen whether the benefits

associated with stereoscopic vision will be worth the added computational cost.

13.2.2 Vision for Dynamic and Unpredictable Conditions

A survey of recent literature will show that the most intensive research in robotic

vision at the current time is in adaptability to changing lighting conditions. We

have addressed this in this thesis by utilising a sparse classification algorithm

in combination with fast edge detection for object recognition. However, our

algorithm is not a perfect solution to the problem. While our algorithm is suc-

cessful over a very wide range of illumination conditions, if the lighting conditions

change significantly then our algorithm will still fail. For example, the same cal-

ibration can be used in our system for indoor, outdoor, direct light or shade

but a system that is calibrated for daylight will not adapt to evening condi-

tions. A true solution to the problem of changing lighting conditions therefore

remains undiscovered. We have examined some of the current work in this area

in Chapter 7.

13.2.3 Reliance on Domain-Specific Knowledge in Object

Recognition

Certainly the ideal robot would have the ability to encounter unrecognised ob-

jects in its environment and learn their properties and utility. It would then

store this information so that the next time it encountered the same object, or

similar objects, it would recognise them. Children certainly show the capacity

to do this in the early stages of development and so we would like a robot to

mimic this behaviour. This would drastically reduce the development time for

robots because there would be no need to codify information concerning every

possible object in the environment. Nevertheless, this goal is still a very long

way away.

In this thesis we have presented an implementation-independent language

that can be used to store information about the objects that we expect the

robot to encounter. This is extremely useful for abstracting the details of the

environmental information from the vision system code, but our system still re-

13. Conclusions and Future Work 169

quires someone to write object descriptions. The next logical step would be to

apply machine learning techniques to the XOD language and have the system au-

tomatically generate descriptions of objects that it was shown. This step would

reduce the labour involved with generating object descriptions. Perhaps, after

this is achieved, the somewhat ambitious task of automatically recognising pre-

viously un-encountered objects in an arbitrary environment could be addressed.

We have noted in the literature review in Chapter 10 some of the current work

that is heading in this direction.

Part VI

Appendix

170

171

Appendix A

C++ Implementation of our Border Following

Algorithm

We attach, for reference, the C++ implementation of our edge detection al-

gorithm. The C++ class “EdgeDetector” implements our early edge detection,

while “RunningEdgeDetector” implements partial late edge detection and is used

in conjunction with the border following algorithm in Section 5.2.2 to implement

complete late edge detection.

/* Mi-Pal 2005

** EdgeDetector.h

** Author: Nathan Lovell

**

** This file is copyright to the authors.

** It formed part of the Mi-Pal 2005 entry in

** the Robocup Legged league

**

** This code is released under GPL V2.0 (see license.txt)

** You should have received a copy of the GNU General Public

** Licensealong with this program; if not, write to the Free

** Software Foundation, Inc., 59 Temple Place, Suite 330,

** Boston, MA 02111-1307 USA

** Note: No warantee of any kind is associated with this code.

**

*/

#ifndef EDGES_H

#define EDGES_H

#include "AVWImage.h"

class EdgeDetector

{

172

public:

. EdgeDetector();

. ~EdgeDetector();

. void NewImage(AVWImageBase *pSrc, int window);

. void MarkEdges(AVWClassifiedImage *pDest, int sensitivity);

.

private:

. int *m_diffsX;

. int **m_diffsY;

. int m_nx, m_ny;

. int m_nWindow;

. int m_nSensitivity;

. AVWImageBase *m_pSrc;

};

class RunningEdgeDetector

{

public:

. RunningEdgeDetector();

. ~RunningEdgeDetector();

. void NewRun(AVWColour clr);

. bool NextPixel(AVWColour clr);

.

private:

. AVWColour m_startClr;

. AVWColour m_prevClr;

};

#endif

173

/* Mi-Pal 2005

** EdgeDetector.cpp

** Author: Nathan Lovell

**

** This file is copyright to the authors.

** It formed part of the Mi-Pal 2005 entry in

** the Robocup Legged league

**

** This code is released under GPL V2.0 (see license.txt)

** You should have received a copy of the GNU General

** Public License along with this program; if not,

** write to the Free Software Foundation, Inc.,

** 59 Temple Place, Suite 330, Boston,

** MA 02111-1307 USA

** Note: No warantee of any kind is associated with this code.

**

*/

#include "EdgeDetector.h"

#include "ClassifiedColours.h"

#define WSZ (2 * m_nWindow + 1)

EdgeDetector::EdgeDetector()

{

. m_nWindow = 0;

. m_nx = 0;

. m_ny = 0;

. m_pSrc = 0;

. m_diffsX = 0;

. m_diffsY = 0;

. m_nSensitivity = 0;

}

174

EdgeDetector::~EdgeDetector()

{

. if (m_diffsX != 0)

. delete[] m_diffsX;

. if (m_diffsY != 0)

. {

. for (int i = 0; i < m_nx; i++)

. {

. delete[] m_diffsY[i];

. }

. delete[] m_diffsY;

. }

}

void EdgeDetector::NewImage(AVWImageBase *pSrc, int window)

{

. if ((m_nx != pSrc->GetSizeX()) || (m_ny != pSrc->GetSizeY()))

. {

. if (m_diffsX != 0)

. delete[] m_diffsX;

. m_diffsX = 0;

. if (m_diffsY != 0)

. {

. for (int i = 0; i < m_nx; i++)

. {

. delete[] m_diffsY[i];

. }

. delete[] m_diffsY;

. m_diffsY = 0;

. }

. }

. m_nWindow = window;

. m_nx = pSrc->GetSizeX();

. m_ny = pSrc->GetSizeY();

175

. m_pSrc = pSrc;

. if (m_diffsX == 0)

. m_diffsX = new int[WSZ];

. if (m_diffsY == 0)

. {

. m_diffsY = new int*[m_nx];

. for (int i = 0; i < m_nx; i++)

. {

. m_diffsY[i] = new int[WSZ];

. }

. }

}

void EdgeDetector::MarkEdges(AVWClassifiedImage *pDest,

. int sensitivity)

{

. if ((m_diffsX == 0) || (m_nWindow == 0))

. return;

. m_nSensitivity = sensitivity;

. int ptrX = 0, ptrY = 0;

. for (int y = 0; y < m_ny - 5; y++)

. {

. for (int x = 0; x < m_nx - 5; x++)

. {

. AVWColour clr1 = m_pSrc->GetPixel(x, y);

. AVWColour clr2 = m_pSrc->GetPixel(x + 4, y);

. AVWColour clr3 = m_pSrc->GetPixel(x, y + 4);

. m_diffsX[ptrX] = (int)(clr2 - clr1);

. m_diffsY[x][ptrY] = (int)(clr3 - clr1);

.

. if ((x >= WSZ) && (y >= m_nWindow) &&

. (y < m_ny - m_nWindow - 1))

. {

176

. int a = 0;

. int currentX = (ptrX - m_nWindow) < 0

. ? (WSZ - m_nWindow + ptrX) : (ptrX - m_nWindow);

. for (int i = 0; i < WSZ; i++)

. {

. if (i != currentX)

. a += m_diffsX[i];

. }

. a /= (WSZ - 1);

.

. if (m_diffsX[currentX] > a + m_nSensitivity)

. {

. pDest->SetPixel2(x - m_nWindow, y,

. COLOUR::ID_BOUNDRY);

. }

. }

.

. if ((y >= WSZ) &&

. (x >= m_nWindow) &&

. (x < m_nx - m_nWindow - 1) &&

. (pDest->GetPixel2(x, y - m_nWindow) !=

. COLOUR::ID_BOUNDRY))

. {

. int b = 0;

. int currentY = (ptrY - m_nWindow) < 0

. ? (WSZ - m_nWindow + ptrY) : (ptrY - m_nWindow);

. for (int i = 0; i < WSZ; i++)

. {

. if (i != currentY)

. b += m_diffsY[x][i];

. }

. b /= (WSZ - 1);

.

. if (m_diffsY[x][currentY] > b + m_nSensitivity)

. {

177

. pDest->SetPixel2(x, y - m_nWindow, COLOUR::ID_BOUNDRY);

. }

. }

.

. ptrX++;

. if (ptrX == WSZ)

. ptrX = 0;

. }

.

. ptrY++;

. if (ptrY == WSZ)

. ptrY = 0;

. }

.

. for (int y = 0; y < m_ny - 1; y++)

. {

. for (int x = 0; x < m_nx - 1; x++)

. {

. if ((x == m_nWindow - 1) || (x == m_nx - m_nWindow - 1))

. {

. if ((y >= m_nWindow - 1) && (y <= m_ny - m_nWindow - 1))

. {

. pDest->SetPixel2(x, y, COLOUR::ID_BOUNDRY);

. continue;

. }

. }

. if ((y == m_nWindow - 1) || (y == m_ny - m_nWindow - 1))

. {

. if ((x >= m_nWindow - 1) && (x <= m_nx - m_nWindow - 1))

. {

. pDest->SetPixel2(x, y, COLOUR::ID_BOUNDRY);

. continue;

. }

. }

. }

178

. }

}

#define Y_THRESH 15

#define UV_THRESH 15

RunningEdgeDetector::RunningEdgeDetector()

{

}

RunningEdgeDetector::~RunningEdgeDetector()

{

}

void RunningEdgeDetector::NewRun(AVWColour clr)

{

. m_startClr = clr;

. m_prevClr = clr;

}

bool RunningEdgeDetector::NextPixel(AVWColour clr)

{

. int diffY = ABS(m_prevClr.GetDataA() - clr.GetDataA());

. if (diffY > Y_THRESH)

. return true;

.

. int diffU = ABS(m_startClr.GetDataB() - clr.GetDataB());

. int diffV = ABS(m_startClr.GetDataC() - clr.GetDataC());

.

. if ((diffU * diffU + diffV * diffV) > (UV_THRESH * UV_THRESH))

. return true;

.

. return false;

}

179

Appendix B

C++ script for AVW2

We attach, for reference, a C++ script for AVW2 that implements a colour

classification filter by running the code intended for the embedded device.

1 // Uncomment to compile instead of interpret

2 //#pragma compile

3 // Embedded code for colour classifier

4 #include "DecisionListClassifier.cpp"

5 void main()

6 {

7 // Set up the scripted filter

8 SetNameForCurrentFilter("Classifier");

9 SetInputTypesForCurrentFilter("Image");

10 SetOutputTypesForCurrentFilter("Classifier|Image");

11 Whiteboard *pBoard =

GetWhiteboardForCurrentFilter();

12 AVWImage* pInput =

pBoard->GetInputForCurrentFilter("Image");

13 AVWImage* pOutput =

pBoard->GetOutputImageForCurrentFilter("Image");

14 // Create my colour classifier using the code

// to run on the embedded device

15 DecisionListClassifier dlc;

16 dlc.InitFromListFile("clscal.dlc");

17 // Classify my image using the code to run on the

// embedded device

18 unsigned char *pClassifiedData =

dlc.Classify(pInput, pOutput);

19 // Set the output data for the next filter

180

20 pBoard->SetOutputDataForCurrentFilter("Classifier",

pClassifiedData);

21 }

Glossary of Terms

Big-O Notation We use the classical notation of growth in functions for lower

(Ω), upper (O) and exact (Θ) worst case complexity for algorithms [2].

A function f(n) is O(g(n)) if ∃n0 and constant c > 0 such that f(n) <

cg(n),∀n > n0 where n is the size of the input. A function f(n) is Ω(g(n))

if ∃n0 and c > 0 such that f(n) > cg(n),∀n > n0. A function is Θ(g(n)) if

f(n) is O(g(n)) and f(n) is Ω(g(n)).

C/C++ C and C++ are both programming languages. C is one of the most

popular programming languages in the world, particularly for low-level

tasks such as operating systems and when performance is required. C++ is

a development of C that allows object-oriented programming. The AIBOs

are programmed using C++.

CCD (Charge coupled device) A matrix of small sensing devices capable of

detecting the intensity of light. The common name for this device is a

digital camera.

Colour Space A colour space is a means of discretizing and assigning a value to

each colour within a range of perceived colours. There are three component

colours of light (red, green and blue) and from these three wavelengths it

is possible to create any other colour. This means that colour spaces must

be represented as three dimensions. The simplest possible colour space is

the RGB colour space. Each dimension in the space represents the amount

of either red, green or blue that has been used to mix the colour. RGB is

181

182

common because it is easy to visualise and understand — it is a cube in

the colour space.

Our research uses the YUV colour space, where again, each pixel is rep-

resented by three components. The Y component is the intensity of the

light — if you view only this component then you get a black, white and

grey image. The U and V are called chromatism. U represents the balance

between green/red (which are opposite in this colour space) while V is the

balance between blue/yellow. The YUV space can best be thought of as

an inverted square pyramid where the apex sits on the U = 0, V = 0 plane

and the pyramid extends up symmetrically around the Y axis. When you

compare this to the RGB colour space it is easy to see why there is no linear

transform between the two colour spaces. For a more complete description

of colour spaces see [126].

Although we use the YUV colour space, there is nothing in our research

that is intrinsic to this particular space. Our algorithms and methods could

be applied without modification to any colour space.

Cross-Compiled Code In a normal development environment, code is written

on the same machine on which it will eventually be run. The compilation

process takes a human-readable source set (such as a Java or C++ pro-

gram) and translates it into a set of instructions that the machine will be

able to understand directly. Sometimes it is impossible to develop code on

the target device — there may be no keyboard, screen or file system for

example. In this case code must be developed on a PC and the compiler

will translate it into instructions that the target machine will understand

directly. This is called cross-compilation.

DLL (Dynamically Linked Library) A module of compiled code that is not

a complete program in itself. Instead it is linked (dynamically linked li-

brary) to an executable piece of code at runtime. Functions in the module

can be called from the main executable.

Fps (Frames per second) The number of picture (frames) delivered from the

camera to the software each second.

Frame One of a repeating pattern of inoming data. We use this word most

often to refer to an incoming image though it can also refer to incoming

183

sensor data.

HCI (Human-Computer Interaction) The area of research that deals with

how humans use computers. This most often refers the graphical user

interface of an application but other interfaces are also included such as

virtual reality and speach processing.

IDE (Integrated Development Environment) A suite of tools that sup-

port code development for a particular platform. An IDE may contain, for

example, a text editor, compiler and debugger.

JIT (Just-in-time) Debugging A debugging facility that enables a debugger

to be attached to a program just before it crashes, just in time. The

developer can then examine the internals of the program to discover the

cause of the crash.

Ladar (Laser-Radar) A relatively new technology that uses a laser-based,

radar-like device to build a 3D map of the environment that includes tex-

ture information.

Mobile Autonomous Robot A robot that is capable of moving around its

environment and making its own decisions on the actions it will perform,

based on input that is received from on-board sensors. In particular this

type of robot precludes any direct human intervention in its execution.

OOP (Object-Oriented Programming) A methodology for programming.

OOP encapsulates the state of the program in a set of objects. State data

is hidden within each object and only accessible through method calls to

the object.

PC (Personal Computer) We use this term in contrast to the type of com-

puter that is found on a mobile autonomous robot.

Rasterisation The process by which visual information is converted to a ma-

trix of pixels. Rasterisation is a deterministic process — the same visual

information will yield the same pixel matrix every time.

SLAM (Simultanous Localisation and Mapping) A popular area of

research in robotics. A robot wanders around its environment while simul-

taneously discovering landmarks and building a map.

184

XML An extensible markup language for arbitrary data transfer. XML is used

in increasing numbers of applications and framworks including many doc-

ument formats and communication protocols.

Bibliography

[1] I. Abdou and W. Pratt. Quantitative design and evaluation of enhance-

ment/thresholding edge detectors. Proceedings of the IEEE, 67(5):753–763,

1979, ISSN: 0018-9219.

[2] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer

Algorithms. Addison-Wesley, U.S.A., 1974, ISBN: 0-2010-0029-6.

[3] H. Altunbasak and H. Trussell. Colorimetric restoration of digital images.

IEEE Transactions on Image Processing, 10(3):393–402, 2001, ISSN: 1057-

7149.

[4] F. Anzani, D. Bosisio, M. Matteucci, and D. Sorrenti. On-line colour

calibration in non-stationary environments. In Proceedings of RoboCup

2005 — Robot Soccer World Cup IX, Osaka, Japan. Springer-Verlag, 2005,

To appear.

[5] G. Araujo, D. Devadas, K. Keutzer, S. Liao, S. Malik, A. Sudarsanam,

S. Tjiang, and A. Wang. Challenges in Code Generation for Embedded

Processors, pages 49–64. Kluwer Academic Publishers, Germany, 1995,

ISBN: 0-7923-9577-8.

[6] D. Argiro, S. Kubica, M. Young, and S. Jorgensen. KHOROS: An Inte-

grated Development Environment for Scientific Computing and Visualiza-

tion. Available from: http://www.khoral.com.

[7] C. Bajaj. Proving geometric algorithm non-solvability: An application

of factoring polynomials. Journal of Symbolic Computation, 2(1):99–102,

1986, ISSN: 0747-7171.

[8] D. Ballard. Generalizing the Hough Transform to Detect Arbitrary Shapes,

pages 714–725. Morgan Kaufmann, U.S.A., 1987, ISBN: 0-9346-1333-8.

185

186 BIBLIOGRAPHY

[9] K. Barnard, V. Cardei, and B. Funt. A comparison of computational

color constancy algorithms — part I: Methodology and experiments with

synthesized data. IEEE Transactions on Image Processing, 11(9):972–984,

2002, ISSN: 1057-7149.

[10] K. Barnard, V. Cardei, and B. Funt. A comparison of computational color

constancy algorithms — part II: Experaments with image data. IEEE

Transactions on Image Processing, 11(9):385–996, 2002, ISSN: 1057-7149.

[11] B. Bartlett, V. Estivill-Castro, and S. Seymon. Dogs or robots — why do

we see them as robotic pets rather than canine machines? In Proceedings

of the 5th Australasian User Interface Conference, pages 7–14. Australian

Computer Society, 2004, ISBN: 1-9206-8210-4.

[12] B. Bartlett, V. Estivill-Castro, S. Seymon, and A. Tourky. Robots for

pre-orientation and interaction of toddlers and preschoolers who are blind.

In Proceedings of the 2003 Australasian Conference on Robotics and Au-

tomation, CD-Rom Proceedings, 2003, ISBN: 0-9587-5835-2.

[13] G. Baxes. Digital Image Processing: Principles and Applications. John

Wiley and Sons, Australia, 1994, ISBN: 0-4710-0949-0.

[14] R. Bergevin and M. Levine. Generic object recognition: Building and

matching course descriptions from line drawings. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 15(1):19–36, 1993, ISSN: 0162-

8828.

[15] S. Bhandankar, Y. Zhang, and W. Potter. An edge detection technique us-

ing genetic algorithm based optimization. Pattern Recognition, 27(9):1159–

1180, 1994, ISSN: 0031-3203.

[16] J. Bruce, T. Balch, and M. Veloso. Fast and inexpensive color segmentation

for interactive robots. In Proceedings of the International Conference on

Intelligent Robots and Systems, pages 2061–2066. IEEE Computer Society

Press, 2000, ISBN: 0-7803-6348-5.

[17] J. Buck, S. Ha, E. Lee, and D. Messerschmitt. Ptolemy: A framework for

simulating and prototyping heterogeneous systems. International Journal

in Computer Simulation, 4(2):155–182, 1994, ISSN: 1055-8470.

BIBLIOGRAPHY 187

[18] S. Buluswar and A. Draper. Color models for outdoor machine vision.

Computer Vision and Image Understanding, 85(2):71–99, 2002, ISSN:

1077-3142.

[19] T. Caelli and D. Reye. On the classification of image regions by colour,

texture and shape. Pattern Recognition, 26(4):461–470, 1993, ISSN: 0031-

3203.

[20] J. Cai, A. Goshtasby, and C. Yu. Detecting human faces in color images.

Image and Vision Computing, 18(1):63–75, 2000, ISSN: 0262-8856.

[21] D. Cameron and N. Barnes. Knowledge-based autonomous dynamic colour

calibration. In Proceedings of RoboCup 2003 — Robot Soccer World Cup

VII, Padua, Italy, pages 226–237. Springer-Verlag, 2003, ISBN: 3-5402-

2443-2.

[22] J. Canny. A computational approach to edge detection. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986, ISSN:

0162-8828.

[23] M. Cazorla and F. Escolano. Two bayesian methods for junction classifica-

tion. IEEE Transactions on Image Processing, 12(3):317–327, 2003, ISSN:

1057-7149.

[24] W. Cendrowska. PRISM: An algorithm for inducing modular rules. In-

ternational Journal of Man-Machine Studies, 27(4):349–370, 1987, ISSN:

0020-7373.

[25] S. Chalup, R. Middleton, R. King, L. Li, T. Moore, C. Murch, and

M. Quinlan. The NUbots’ team description for 2004. In Proceedings of

RoboCup 2004 — Robot Soccer World Cup VIII, Lisbon, Portugal, CD-

Rom Proceedings. Springer-Verlag, 2004, ISBN: 3-5402-5046-8.

[26] J. Chen, E. Chung, R. Edwards, N. Wong, E. Mak, R. Sheh, M. Kim,

A. Tang, N. Sutanto, B. Hengst, C. Sammut, and W. Uther. A description

of the rUNSWift 2003 legged robot soccer team. In Proceedings of RoboCup

2003 — Robot Soccer World Cup VII, Padua, Italy, CD-Rom Proceedings.

Springer-Verlag, 2003, ISBN: 3-5402-2443-2.

188 BIBLIOGRAPHY

[27] S. Chen, M. Siu, T. Vogelgesang, T. Yik, B. Hengst, S. Bao Pham, and

C. Sammut. The unsw robocup 2001 sony legged robot league team. In

Proceedings of RoboCup 2001 — Robot Soccer World Cup V, Seattle, USA,

page 39. Springer-Verlag, 2001, ISBN: 3-5404-3912-9.

[28] F. Chin, J. Snoeyink, and C. Wang. Finding the medial axis of a simple

polygon in linear time. In Proceedings of the 6th International Symposium

on Algorithms and Computation, pages 382–391. Springer-Verlag, 1995,

ISBN: 3-5406-0573-8.

[29] K. Cho and S. Dunn. Learning shape classes. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 16(9):882–888, 1994, ISSN:

0162-8828.

[30] H. Choi, S. Choi, and H. Moon. Mathematical theory of medial axis trans-

form. Pacific Journal of Mathematics, 181(1):57–88, 1997, ISSN: 0030-

8730.

[31] I. Dahm, S. Deutsch, M. Hebbel, and A. Osterhues. Robust color classifi-

cation for robot soccer. In Proceedings of RoboCup 2003 — Robot Soccer

World Cup VII, Padua, Italy, pages 64–75. Springer-Verlag, 2003, ISBN:

3-5402-2443-2.

[32] N. Danielsson. Axiomatic discrete geometry. Master’s thesis, Imperial

College of Science, Technology and Medicine, University of London, U.K.,

2002.

[33] I. Debled-Rennesson and J. Réveillès. A linear algorithm for segmenta-

tion of digital curves. International Journal of Pattern Recognition and

Artificial Intelligence, 9(4):635–662, 1995, ISSN: 0218-0014.

[34] C. D’Elia, G. Poggi, and G. Scarpa. A tree-structured markov random

field model for bayesian image segmentation. IEEE Transactions on Image

Processing, 12(10):1259–1273, 2003, ISSN: 1057-7149.

[35] G. DeSouza and A. Kak. Vision for mobile robot navigation: A sur-

vey. IEEE Transactions on Pattern Analysis and Machine Intelligence,

24(22):237–267, 2002, ISSN: 0162-8828.

BIBLIOGRAPHY 189

[36] L. Dorst and A. Smeulders. Discrete representation of straight lines. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 6(4):450–463,

1984, ISSN: 0162-8828.

[37] B. Draper. Learning control strategies for object recognition. In K. Ikeuchi

and M. Veloso, editors, Symbolic Visual Learning. Oxford University Press,

U.K., 1996, ISBN: 0-1950-9870-6.

[38] B. Draper, U. Ahlrichs, and D. Paulus. Adapting object recognition across

domains: A demonstration. Lecture Notes in Computer Science, 2095:256,

2001, ISSN: 0302-9743.

[39] R. Duda and P. Hart. Pattern Classification and Scene Analysis. Wiley,

U.S.A., 1973, ISBN: 0-4712-2361-1.

[40] R. Duda, P. Hart, and D. Stork. Pattern Classification. Wiley, U.S.A.,

2001, ISBN: 0-4710-5669-3.

[41] R. Dufour, E. Miller, and N. Galatsanos. Template matching based object

recognition with unknown geometric parameters. IEEE Transactions on

Image Processing, 11(12):1385–1396, 2002, ISSN: 1057-7149.

[42] M. Elstrom, P. Smith, and M. Abidi. Stereo-based registration of ladar

and color imagery. In Proceedings of Intelligent Robots and Computer

Vision XVII: Algorithms, Techniques, and Active Vision, pages 343–354.

Spie Web Publications, 1998, ISBN: 0-8194-2983-X.

[43] N. Eua-Anant and L. Udpa. Boundary detection using simulation of parti-

cle motion in a vector image field. IEEE Transactions on Image Processing,

8(11):1560–1571, 1999, ISSN: 1057-7149.

[44] T. Fong, C. Thorpe, and C. Baur. Collaboration, dialogue, and human-

robot interaction. In Robotics Research: Proceedings of the The 10th Inter-

national Symposium, pages 255–270. Springer-Verlag, 2003, ISBN: 3-5400-

0550-1.

[45] A. Forrest. Interactive interpolation and approximation by Beźier polyno-

mials. Computer Aided Design, 22(9):527–537, 1990, ISSN: 0010-4485.

190 BIBLIOGRAPHY

[46] D. Forsyth. A novel algorithm for color constancy. International Journal

of Computer Vision, 5:5–36, 1990, ISSN: 0920-5691.

[47] G. Genello, J. Cheung, S. Billis, and Y. Saito. Graeco-Latin squares design

for line detection in the presence of correlated noise. IEEE Transactions

on Image Processing, 9(4):609–622, 2000, ISSN: 1057-7149.

[48] P. Giusto, G. Martin, and E. Harcourt. Reliable estimation of execution

time of embedded software. In Proceedings of the Design, Automation and

Test in Europe Conference, pages 580–589. IEEE Computer Society Press,

2001, ISBN: 0-7695-0993-2.

[49] C. Goenner, M. Rous, and K. Kraiss. Real-time adaptive colour segmen-

tation for the robocup middle size league. In Proceedings of RoboCup

2004 — Robot Soccer World Cup VIII, Lisbon, Portugal, pages 402–409.

Springer-Verlag, 2004, ISBN: 3-5402-5046-8.

[50] R. Gonzalez and R. Woods. Digital Image Processing. Prentice Hall,

U.S.A., 1992, ISBN: 0-2011-8075-8.

[51] K. Gunnarsson, F. Wiesel, and R. Rojas. The color and the shape: Au-

tomatic on-line color calibration for autonomous robots. In Proceedings of

RoboCup 2005 — Robot Soccer World Cup IX, Osaka, Japan. Springer-

Verlag, 2005, To appear.

[52] J. Gutmann and C. Schlegel. Amos: comparison of scan matching ap-

proaches for self localization in indoor environments. In Proceedings of the

1st Euromicro Workshop on Advanced Mobile Robotics, pages 61–71. IEEE

Computer Society Press, 1996, ISBN: 0-8186-7695-7.

[53] J. Gutmann, T. Weigel, and B. Nebel. A fast, accurate and robust method

for self-localization in polygonal environments using laser range finders.

Advanced Robotics, 14(8):651–667, 2001, ISSN: 0169-1864.

[54] A. Halme, K. Koskinen, V-P. Aarnio, S. Salmi, I. Leppnen, and S. Ylnen.

Workpartner — future interactive service robot. In Proceedings of the

Millenium of Artificial Intelligence Conference, 9th Finnish Conference on

Artificial Intelligence, CD-Rom Proceedings. Finnish Artificial Intelligence

Society, 2000, ISBN: 9-5122-5128-0.

BIBLIOGRAPHY 191

[55] R. Haralick and L. Shapiro. Computer and Robot Vision. Addison-Wesley,

U.S.A., 1992, ISBN: 0-2015-6943-4.

[56] J. Hartigan. Clustering Algorithms. Wiley, U.S.A., 1975, ISBN: 0-4713-

5645-X.

[57] M. Heath, S. Sarkar, T. Sanocki, and K. Bowyer. Robust visual method

for assessing the relative performance of edge-detection algorithms. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 19(12):1338–

1359, 1997, ISSN: 0162-8828.

[58] G. Heidemann and H. Ritter. A neural 3-D object recognition architecture

using optimized gabor filters. In Proceedings of the 13th International

Conference on Pattern Recognition, pages 70–74. IEEE Computer Society

Press, 1996, ISBN: 8-8186-7472-5.

[59] L. Hermes and J. Buhmann. A minimum entropy approach to adaptive im-

age polygonization. IEEE Transactions on Image Processing, 12(10):1243–

1258, 2003, ISSN: 1057-7149.

[60] J Hershberger and J. Snoeyink. Speeding up the Douglas-Peucker line sim-

plification algorithm. In Proceedings of the 5th International Symposium

on Spatial Data Handling, pages 134–143, 1992, ISBN: 0-9633-5320-9.

[61] J. Hershberger and J. Snoeyink. An O(n log n) implementation of the

Douglas-Peucker algorithm for line simplification. In Proceedings of the

10th Annual Symposium on Computational Geometry, pages 383–384.

ACM Press, 1994, ISBN: 0-89791-648-4.

[62] W. Higgins and C. Hsu. Edge detection using 2D local structure informa-

tion. Pattern Recognition, 27(2):277–294, 1994, ISSN: 0031-3203.

[63] B. Horn and B. Schunck. Determining Optical Flow, pages 389–407. Jones

and Bartlett Publishers, U.S.A., 1992, ISBN: 0-8672-0452-4.

[64] J. Hornegger and H. Niemann. Statistical learning, localization, and iden-

tification of objects. In Proceedings of the 5th International conference

on computer vision, pages 914–919. IEEE Computer Society Press, 1995,

ISBN: 0-8186-7042-8.

192 BIBLIOGRAPHY

[65] P. Hough. Methods and means for recognising complex patterns, 1962.

Patent (U.S.A.): 3 069 654.

[66] H. Hsin. Texture segmentation using modulated wavelet transform. IEEE

Transactions on Image Processing, 9(7):1299–1302, 2000, ISSN: 1057-7149.

[67] G. Iannizzotto and L. Vita. Fast and accurate edge-based segmentation

with no contour smoothing in 2-D real images. IEEE Transactions on

Image Processing, 9(7):1232–1238, 2000, ISSN: 1057-7149.

[68] J. Illingworth and J. Kittler. A survey of the Hough transform. Computer

Vision, Graphics and Image Processing, 44(1):87–116, 1988, ISSN: 0734-

189X.

[69] D. Ioammou, W. Huda, and A. Laine. Circle recognition through a 2 d

hough transform and radius histogramming. Image and Vision Computing,

17:15–26, 1999, ISSN: 0262-8856.

[70] R. Jain, R. Kasturi, and B. Schunck. Machine Vision. Mcgraw-Hill Inc.,

U.S.A., 1995, ISBN: 0-0703-2018-7.

[71] M. Jüngel, J. Hoffmann, and M. Lötzsch. A real-time auto-adjusting vision

system for robotic soccer. In Proceedings of RoboCup 2003 — Robot Soccer

World Cup VII, Padua, Italy, pages 214–225. Springer-Verlag, 2003, ISBN:

3-5402-2443-2.

[72] A. Kak and N. DeSouza. Robotic vision: What happened to the visions of

yesterday? In Proceedings of the 16th International Conference on Pattern

Recognition, pages 839–847. IEEE Computer Society Press, 2002, ISBN:

0-7695-1695-X.

[73] C. Kotropoulos, A. Tefas, and I. Pitas. Frontal face authentication us-

ing morphological elastic graph matching. IEEE Transactions on Image

Processing, 9(4):555–560, 2000, ISSN: 1057-7149.

[74] B. Lahme and R. Miranda. Karhunen-Loève decomposition in the presence

of symmetry — part I. IEEE Transactions on Image Processing, 8(9):1183–

1190, 1999, ISSN: 1057-7149.

BIBLIOGRAPHY 193

[75] C. Larman. Applying UML and Patterns: An Introduction to Object-

Oriented Analysis and Design. Prentice Hall, U.S.A., 1998, ISBN: 0-1374-

8880-7.

[76] R. Larsen. 3-D contextual bayesian classifiers. IEEE Transactions on

Image Processing, 9(3):518–524, 2000, ISSN: 1057-7149.

[77] R. Larsen and M. Marx. An Introduction to Mathematical Statistics and

its Applications. Prentice Hall, U.S.A., 2003, ISBN: 0-1392-2303-7.

[78] Y. LeCun, F. Huang, and L. Bottou. Learning methods for generic object

recognition with invariance to pose and lighting. In Proceedings of the 2004

International Conference on Computer Vision and Pattern Recognition,

pages 97–104. IEEE Computer Society Press, 2004, ISBN: 0-7695-2158-4.

[79] D. Lee. Medial axis transformation of a planar shape. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 4(4):363–369, 1982, ISSN:

0162-8828.

[80] R. Lenz. Estimation of illumination characteristics. IEEE Transactions on

Image Processing, 10(7):1031–1038, 2001, ISSN: 1057-7149.

[81] M. Lindenbaum and A.M. Bruckstein. On recursive, O(n) partitioning

of a digitized curve into digital straight segments. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 15(9):949–953, 1993, ISSN:

0162-8828.

[82] M. Lotzsch, J. Bach, H. Burkhard, and M. Jungel. Designing agent be-

haviour with the extensible agent behaviour specification language xabsl.

In Proceedings of RoboCup 2004 — Robot Soccer World Cup VIII, Lisbon,

Portugal, pages 114–124. Springer-Verlag, 2004, ISBN: 3-5402-5046-8.

[83] V. Hlavac M. Sonka and R. Boyle. Image Processing, Analysis, and Ma-

chine Vision. PWS Publishing, U.K., 1998, ISBN: 0-5349-5393-X.

[84] W. Ma and B. Manjunath. EdgeFlow: A technique for boundary detec-

tion and image segmentation. IEEE Transactions on Image Processing,

9(8):1375–1388, 2000, ISSN: 1057-7149.

194 BIBLIOGRAPHY

[85] C. Madden and R. Mahony. An ordered list approach to real-time line

detection based on the Hough transform. In Proceedings of the 2003 Aus-

tralasian Conference on Robotics and Automation, CD-Rom Proceedings,

2003, ISBN: 0-9587-5835-2.

[86] S. Manay and A. Yezzi. Anti-geometric diffusion for adaptive thresh-

olding and fast segmentation. IEEE Transactions on Image Processing,

12(11):1310–1323, 2003, ISSN: 1057-7149.

[87] J. Markusek and A. Vitko. Unified simulation environment for learning

navigation of a robot operating in unknown terrain. In Proceedings of

the 4th International Conference on Climbing and Walking Robots, pages

435–441. Professional Engineering Publishing, 2001, ISBN: 1-86058-365-2.

[88] A. Marshall and R. Martin. Computer Vision, Models and Inspection.

Barnes and Noble, U.S.A., 1992, ISBN: 9-8102-0772-7.

[89] M. Mataric and D. Cliff. Challenges in evolving controllers for physical

robots. Technical Report CS-95-184, Brandeis University and University

of Sussex, U.K., 1995.

[90] G. Mayer, H. Utz, and G. Kraetzschmar. Towards autonomous vision self

calibration. In Proceedings of the International Conference on Intelligent

Robots and Systems, pages 214–219. IEEE Computer Society Press, 2002,

ISBN: 0-7803-7545-9.

[91] G. Mayer, H. Utz, and G. Kraetzschmar. Playing robot soccer under

natural light. In Proceedings of RoboCup 2003 — Robot Soccer World Cup

VII, Padua, Italy, pages 238–249. Springer-Verlag, 2003, ISBN: 3-5402-

2443-2.

[92] G. Medioni and A. Francois. 3-D structures for generic object recognition.

In Proceedings of the 15th International Conference on Pattern Recogni-

tion, pages 30–37. IEEE Computer Society Press, 2000, ISBN: 0-7695-

0750-6.

[93] M. Meng and A. Kak. Mobile robot navigation using neural networks

and nonmetrical environment models. IEEE Control Systems, 13(6):30–

39, 1993, ISSN: 0272-1708.

BIBLIOGRAPHY 195

[94] H. Moravec. Robot spatial perception by stereoscopic vision and 3d evi-

dence grids. Technical Report CMU-RI-TR-96-34, Carnegie Mellon Uni-

versity, U.S.A., 1996.

[95] S. Nayar, H. Murase, and S. Nene. Parametric appearance representation.

In S. Nayar, T. Poggio, and P. Nayar, editors, Early Visual Learning.

Oxford University Press, U.K., 1996, ISBN: 0-1950-9522-7.

[96] Y. Ogihara, Y. Shibata, H. Najima, K. Kii, K. Oda, and T. Ohashi. Asura:

The kyushu united team 2005 in the four legged robot league. In Pro-

ceedings of RoboCup 2005 — Robot Soccer World Cup IX, Osaka, Japan,

CD-Rom Proceedings. Springer-Verlag, 2005, To appear.

[97] R. Ogniewicz and O. Kübler. Hierarchic Voronoi skeletons. Pattern Recog-

nition, 28(3):343–359, 1995, ISSN: 0031-3203.

[98] J. O’Rourke. Computational Geometry in C. Cambridge University Press,

U.K., 1998, ISBN: 0-5216-4010-5.

[99] T. Pajdla and J. Matas. Feature-based object detection and recognition ii:

Weak hypotheses and boosting for generic object detection and recognition.

In Proceedings of the 8th European Conference on Computer Vision, pages

71–84. Springer-Verlag, 2004, ISBN: 3-540-23989-8.

[100] G. Paschos. Perceptually uniform color spaces for color texture analy-

sis: An empirical evaluation. IEEE Transactions on Image Processing,

10(6):932–937, 2001, ISSN: 1057-7149.

[101] L. Pau. Computer Vision for Electronics Manufacturing. Plenum Press,

U.S.A., 1990, ISBN: 0-3064-3182-3.

[102] P. Perona and J. Malik. Scale-space and edge detection using anisotropic

diffusion. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 12(7):629–639, 1990, ISSN: 0162-8828.

[103] C. Privitera and L. Stark. Human-vision-based selection of image process-

ing algorithms for planetary exploration. IEEE Transactions on Image

Processing, 12(8):917–923, 2003, ISSN: 1057-7149.

196 BIBLIOGRAPHY

[104] M. Quinlan, S. Chalup, and R. Middleton. Application of SVMs for colour

classification and collision detection with aibo robots. In Proceedings of

the Advances in Neural Information Processing Systems Conference, pages

635–642. MIT Press, 2003, ISBN: 0-262-20152-6.

[105] M. Quinlan, S. Chalup, and R. Middleton. Techniques for improving vision

and locomotion on the sony aibo robot. In Proceedings of the 2003 Aus-

tralasian Conference on Robotics and Automation, CD-Rom Proceedings,

2003, ISBN: 0-9587-5835-2.

[106] T. Reed and J. Hans du Buf. A review of recent texture segmentation

and feature extraction techniques. CVGIP: Image Understanding archive,

57(3):359–372, 1993, ISSN: 1049-9660.

[107] T. Röfer, R. Brunn, S. Czarnetzki, M. Dassler, M. Hebbel, M. Jungel,

T. Kerkhof, W. Nistico, T. Oberlies, C. Rohde, M. Spranger, and C. Zarges.

GermanTeam 2005. In Proceedings of RoboCup 2005 — Robot Soccer World

Cup IX, Osaka, Japan. Springer-Verlag, 2005, To appear.

[108] T. Röfer, I. Dahm, U. Duffert, J. Hoffmann, M. Jungel abd M. Kallnik,

M. Lotzsch, M. Risler, M. Stelzer, and J. Ziegler. Germanteam 2003. In

Proceedings of RoboCup 2003 — Robot Soccer World Cup VII, Padua,

Italy, CD-Rom Proceedings. Springer-Verlag, 2003, ISBN: 3-5402-2443-2.

[109] T. Röfer and M. Jungel. Vision-based fast and reactive Monte-Carlo lo-

calization. In Proceedings of the 2003 IEEE International Conference on

Robotics and Automation, pages 856–861. IEEE Computer Society Press,

2003, ISBN: 0-7803-7736-2.

[110] A. Roy and J. Stell. A qualitative account of discrete space. In Proceedings

of the 2nd International Conference on Proceedings of Geographic Informa-

tion Science, pages 276–290. Springer-Verlag, 2002, ISBN: 3-540-44253-7.

[111] G. Schuster and A. Katsaggelos. An optimal polygonal boundary encoding

scheme in the rate distortion sense. IEEE Transactions on Image Process-

ing, 7(1):13–26, 1998, ISSN: 1057-7149.

[112] F. Sensini, G. Buttazzo, and P. Ancilotti. Ghost: A tool for simulation and

analysis of real-time scheduling algorithms. In Proceedings of the 2nd IEEE

BIBLIOGRAPHY 197

Real-Time Education Worksop, pages 110–123. IEEE Computer Society

Press, 1997, ISBN: 0-8186-8256-6.

[113] J. Shaik and K. Iftekharuddin. Automated tracking and classification of

infrared images. In Proceedings of the 2003 International Joint Confer-

ence on Neural Networks, pages 1201–1206. IEEE Computer Society Press,

2003, ISBN: 0-7803-7899-7.

[114] C. Shaw, M. Green, J. Liang, and Y. Sun. Decoupled simulation in virtual

reality with the MR toolkit. ACM Transactions on Information Systems,

11(3):287–317, 1993, ISSN: 1046-8188.

[115] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerg-

ing Discipline. Prentice Hall, U.S.A., 1996, ISBN: 0-1318-2957-2.

[116] B. Shepherd. An appraisal of a decision tree approach to image classifica-

tion. In Proceedings of the 8th International Joint Conference on Artificial

Intelligence, pages 496–501. Morgan Kaufmann, 1983, ISBN: 0-8657-6064-

0.

[117] S. Shimizu, T. Nagahashi, and H. Fujiyoshi. Robust and accurate detection

of object orientation and id without color segmentation. In Proceedings of

RoboCup 2005 — Robot Soccer World Cup IX, Osaka, Japan. Springer-

Verlag, 2005, To appear.

[118] D. Sim and R. Park. Two-dimensional object alignment based on the

robust oriented hausdorff similarity measure. IEEE Transactions on Image

Processing, 10(3):475–489, 2001, ISSN: 1057-7149.

[119] I. Sobel. Camera Models and Machine Perception. PhD thesis, Stanford

University, U.S.A., 1970.

[120] N. Sochen, R. Kimmel, and R. Malladi. A general framework for low level

vision. IEEE Transactions on Image Processing, 7(3):310–318, 1998, ISSN:

1057-7149.

[121] V. Srinivasan. Edge detection using neural networks. Pattern Recognition,

27(12):1653–1662, 1994, ISSN: 0031-3203.

198 BIBLIOGRAPHY

[122] C. Su and B. Wu. A low memory zerotree coding for arbitrarily shaped

objects. IEEE Transactions on Image Processing, 12(3):271–282, 2003,

ISSN: 1057-7149.

[123] P. Suetens, P. Fua, and A. Hanson. Computational strategies for object

recognition. ACM Computer Survey, 24(1):5–62, 1992, ISSN: 0360-0300.

[124] S. Thrun. A framework for programming embedded systems: initial design

and results. Technical Report CMU-CS-98-142, Carnegie Mellon Univer-

sity, U.S.A., 1998.

[125] O. Tobias and R. Seara. Image segmentation by histogram thresholding

using fuzzy sets. IEEE Transactions on Image Processing, 11(12):1457–

1465, 2002, ISSN: 1057-7149.

[126] D. Travis. Effective Color Displays. Theory and Practice. Academic Press,

U.S.A., 1991, ISBN: 0-1269-7690-2.

[127] A. Tremeau and P. Colantoni. Regions adjacency graph applied to color

image segmentation. IEEE Transactions on Image Processing, 9(4):735–

744, 2000, ISSN: 1057-7149.

[128] H. van Assen, M. Egmont-Peterson, and J. Reiber. Accurate object local-

ization in gray level images using the center of gravity measure: Accuracy

vs precision. IEEE Transactions on Image Processing, 11(12):1379–1384,

2002, ISSN: 1057-7149.

[129] C. Veenman, M. Reinders, and E. Backer. A cellular coevolutionary algo-

rithm for image segmentation. IEEE Transactions on Image Processing,

12(3):304–316, 2003, ISSN: 1057-7149.

[130] M. Veloso, S. Chernova, C. McMillen, P. Rybski, J. Fasola, F. vonHun-

delshausen, A. Trevor, S. Hauert, and R. Espinoza. Cmdash05: Team

description paper. In Proceedings of RoboCup 2005 — Robot Soccer World

Cup IX, Osaka, Japan, CD-Rom Proceedings. Springer-Verlag, 2005, To

appear.

[131] M. Veloso, W. Uther, M. Fujita, M. Asada, and H. Kitano. Playing soccer

with legged robots. In Proceedings of the International Conference on

BIBLIOGRAPHY 199

Intelligent Robots and Systems, pages 437–442. IEEE Computer Society

Press, 1998, ISBN: 0-7803-4465-0.

[132] A. Verikas, K. Malmquist, and L. Bergman. Colour image segmentation by

modular neural network. Pattern Recognition Letters Archive, 18(2):173–

185, 1997, ISSN: 0167-8655.

[133] S. Wan. Symmetric region growing. IEEE Transactions on Image Process-

ing, 12(9):1007–1015, 2003, ISSN: 1057-7149.

[134] H. Wang, G. Schuster, A. Katsaggelos, and T. Pappas. An efficient rate-

distortion optimal shape coding approach utilizing a skeleton-based de-

composition. IEEE Transactions on Image Processing, 12(10):1181–1193,

2003, ISSN: 1057-7149.

[135] R. Wilcox. Introduction to Robust Estimation and Hypothesis Testing.

Academic Press, U.S.A., 1997, ISBN: 0-1275-1542-9.

[136] D. Wilking and T. Röfer. Realtime object recognition using decision tree

learning. In Proceedings of RoboCup 2004 — Robot Soccer World Cup

VIII, Lisbon, Portugal, pages 556–563. Springer-Verlag, 2004, ISBN: 3-

5402-5046-8.

[137] P. Winston and B. Horn. Artificial Intelligence. Addison-Wesley, U.S.A.,

1992, ISBN: 0-2015-3377-4.

[138] I. Witten and E. Frank. Data Mining: Practical Machine Learning Tools

and Techniques with Java Implementations. Morgan Kaufmann, U.S.A.,

1999, ISBN: 1-5586-0552-5.

[139] I. Witten and E. Frank. Data Mining — Practical Machine Learning Tools

and Technologies with Java Implementations. Morgan Kaufmann, U.S.A.,

2000, ISBN: 1-5586-0552-5.

[140] M. Worboys. Geographical Information Systems: A Computing Perspec-

tive. Taylor & Francis, U.K., 1995, ISBN: 0-7484-0064-8/0-7484-0065-6.

[141] L. Wu. On the chain code of a line. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 4(3):347–353, 1982, ISSN: 0162-8828.

200 BIBLIOGRAPHY

[142] C. Zhang and F. Cohen. 3-D face structure extraction and recognition from

images using 3-D morphing and distance mapping. IEEE Transactions on

Image Processing, 11(11):1249–1259, 2002, ISSN: 1057-7149.

[143] M. Zhang and J. Fulcher. Face recognition using artificial neural network

group-based adaptive tolerance (GAT) trees. IEEE Transactions on Neural

Networks, 7(3):555–567, 1996, ISSN: 1045-9227.

