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Abstract. The Legal Knowledge Interchange Format (LKIF), being de-
veloped in the European ESTRELLA project, defines a knowledge rep-
resentation language for arguments, rules, ontologies, and cases in XML.
In this article, the syntax and argumentation-theoretic semantics of the
LKIF rule language is presented and illustrated with an example based
on German family law. This example is then applied to show how LKIF
rules can be used with the Carneades argumentation system to construct,
evaluate and visualize arguments about a legal case.

1 Introduction

The Legal Knowledge Interchange Format (LKIF) is an XML application being
developed in the European ESTRELLA project (IST-4-027655) with the goal
of establishing an open, vendor-neutral standard for exchanging formal models
of the law, suitable for use in legal knowledge-based systems. By the end of
the ESTRELLA project, LKIF will enable four kinds of legal knowledge to be
encoded in XML: arguments, rules, ontologies and cases. The focus of the present
paper is the LKIF language for modeling legal rules.

Legal rules express norms and policy. These are not only norms or policies
about how to act, but also about how to reason about the law when plan-
ning actions or determining the legal consequences of actions. For example,
the definition of murder as the “unlawful killing of a human being with malice
aforethought” expresses both the legal (and moral) norm against the intentional
killing of another human being and the reasoning policy creating a presumption
that an accused person has committed murder once it has been proven that he
killed another human being intentionally. Such presumptions are not sufficient
for proving guilt. Rather, a guilty verdict would be legally correct only at the
end of a properly conducted legal trial. If during this trial the defendant is able
to produce evidence of the killing having been done in self-defense, for example,
a guilty verdict would be correct only if the prosecution meets its burden of
persuading the court or jury that the killing was in fact not done in self-defense.

Thus, the semantics of the LKIF rules is based not on the model theory
of first-order logic, but rather on the dialectical and argumentation-theoretic
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approach to semantics articulated by Ron Loui in “Process and Policy: Resource-
Bounded Non-Demonstrative Reasoning” [25]. Essentially, legal rules are inter-
preted as policies for reasoning in resource-limited, decision-making processes.
In argumentation theory, such reasoning policies are viewed as inference rules
for presumptive reasoning, called argumentation schemes [37]. Arguments are
instances of argumentation schemes, constructed by substituting variables of a
scheme with terms of the object language. An argument graph is constructed
from a set of arguments. A set of argumentation schemes defines a search space
over argument graphs. Reasoning with argumentation schemes can be viewed
as heuristic search in this space, looking for argument graphs in which some
disputed claim is acceptable or not given the arguments in the graph. In dia-
logues, the parties take turns searching this space, looking for counterarguments.
Turn-taking, termination conditions, resource limitations and other procedural
parameters are determined by the applicable rules of the legal proceeding, i.e.
by the argumentation protocol for the particular type of dialogue.

The rest of this article is organized as follows. First, we provide an infor-
mal introduction and overview of LKIF rules, including some examples. This
is followed by the formal definition of its abstract syntax. Then we define the
semantics of the rule language, by mapping rules to argumentation schemes, us-
ing the Carneades model of argument [19]. LKIF rules is then illustrated with a
more lengthy legal example about support obligations, based on German family
law. This example is also used to illustrate an XML syntax for interchanging
rule bases in LKIF, presented in the following section. Then we show how the
Carneades argumentation system can use LKIF rule bases to construct and visu-
alize arguments about cases. Finally, we conclude with a brief dicussion of related
work, summarize the main results and suggest some ideas for future work.

2 Informal Overview

For simplicity and readability, we will be using a concrete syntax based on Lisp s-
expressions to represent rules. Variables will be represented as symbols beginning
with a question mark, e.g. ?x or ?y. Other symbols, as well as numbers and
strings, represent constants, e.g. contract, 23.1, or "Jane Doe".

An atomic sentence is a simple declarative sentence containing no logical
operators (negation, conjunction or disjunction). For example, the sentence “The
mother of Caroline is Ines.” can be represented as (mother Caroline Ines).

If P is an atomic sentence, then (not P) is a negated atomic sentence. Sen-
tences which are either atomic sentences or negated atomic sentences are called
literals. The complement of the literal P is (not P), and the complement of (not
P) is P.

Rules are reified in this language, with an identifier and a set of properties,
enabling any kind of meta-data about rules to be represented, such as a rule’s
date of enactment, issuing governmental authority, legal source text, or its period
of validity. We do not define these properties here. Our focus is on defining the
syntax and semantics of these rules.
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Rules have a body and a head . The terms ‘head’ and ‘body’ are from logic
programming, where they mean the conclusions and antecedents of a rule, re-
spectively, interpreted as Horn clauses. Unlike Horn clause logic, a rule in our sys-
tem may have more than one conclusion, including, as will be explained shortly,
negated conclusions.

Here is a first example, a simplified reconstruction of a rule from the Article
Nine World of the Pleadings Game [17], meaning that all movable things except
money are goods.

(rule §-9-105-h
(if (and (movable ?c)

(unless (money ?c)))
(goods ?c)))

§-9-105-h is an identifier, naming the rule, which may be used as a term
denoting the rule in other rules.

We use the term condition to cover both literals and the forms (unless P),
called exceptions, and (assuming P), called assumptions , where P is a literal.
The head of a rule consists of a list of literals. Notice that, unlike Horn clause
logic, rules may have negative conclusions. Negated atomic sentences may also
be used in the body of a rule, also in exceptions and assumptions. Exceptions
and assumptions are allowed only within the body of rules. The example rule
above illustrates the use of an exception.

Legal rules are defeasible generalizations. Showing that some exception applies
is one way to defeat a rule, by undercutting [27] it. Intuitively, a rule applies if
its conditions are met, unless some exception is satisfied . A party who wants to
use some rule need not show that no exception applies. The burden of proof for
exceptions is on those interesting in showing the rule does not apply. Assumptions
on the other hand, as their name suggests, are assumed to hold until they have
been called into question. After an assumption has been questioned, a party who
wants to use the rule must prove the statement which had been assumed.

Another source of defeasibility is conflicting rules. Two rules conflict if one can
be used to derive P and another (not P). To resolve these conflicts, we need to
be able to reason (i.e. argue) about which rule has priority. To support reasoning
about rule priorities, the rule language includes a built-in predicate over rules,
prior, where (prior r1 r2) means that rule r1 has priority over rule r2. If
two rules conflict, the arguments constructed using these rules are said to rebut
each other, following Pollock [27].

The priority relationship on rules is not defined by the system. Rather, priority
is a substantive issue to be reasoned (argued) about just like any other issue. One
way to construct arguments about rule priorities is to apply the argumentation
scheme for arguments from legal rules to meta-level rules, i.e. rules about rules,
using information about properties of rules, such as their legal authority or date
of enactment. The reification of rules and the built-in priority predicate make this
possible. In knowledge bases for particular legal domains, rules can be prioritized
both extensionally, by asserting facts about which rules have priority over which
other rules, and intensionally, using meta-rules about priorities.
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For example, assuming metadata about the enactment dates of rules has been
modeled, the legal principle that later rules have priority of earlier rules, lex
posterior, can be represented as:

(rule lex-posterior
(if (and (enacted ?r1 ?d1)

(enacted ?r2 ?d2)
(later ?d2 ?d1))

(prior ?r2 ?r1)))

Rules can be defeated in two other ways: by challenging their validity or
by showing that some exclusionary condition applies. These are modeled with
rules about validity and exclusion, using two further built-in predicates: (valid
<rule>) and (excluded <rule> <literal>), where <rule> is a constant nam-
ing the rule, not its definition. The second argument of the excluded predicate
is a compound term representing a literal. Thus, literals can also be reified in
this system.

The valid and excluded relations, like the prior relation, are to be defined
in models of legal domains. Rules can be used for this purpose. For example, the
exception in the previous example about money not being goods, even though
money is movable, could have been represented as an exclusionary rule as follows:

(rule §-9-105-h-i
(if (money ?c)

(excluded §-9-105-h (goods ?c))))

To illustrate the use of the validity property of rules, imagine a rule which
states that rules which have been repealed are no longer valid:

(rule repeal
(if (repealed ?r1)

(not (valid ?r1))))

This rule also exemplifies the use of negation in the conclusion (head) of this rule.

3 Syntax

This section presents a formal definition of an s-expression syntax for rules, in
Extended Backus-Naur Form (EBNF)1. This syntax is inspired by the Common
Logic Interchange Format (CLIF) for first-order predicate logic, which is part of
the draft ISO Common Logic standard.2 While inspired by CLIF, no attempt is
made to make this rule language conform to Common Logic standard.3

1 EBNF is specified in the ISO/IEC 14977 standard.
2 http://philebus.tamu.edu/cl/
3 Common Logic is a family of concrete syntaxes for first-order predicate logic, with

its model-theoretic semantics and classical, monotonic entailment relation. These
semantics are sufficiently different as to not make it useful to attempt to make the
syntax of our rule language fully compatible with CLIF.
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The syntax uses the Unicode character set. White space, delimiters, charac-
ters, symbols, quoted strings, boolean values and numbers are lexical classes,
not formally defined here. For simplicity and to facilitate the development of a
prototype inference engine using the Scheme programming language, we will use
Scheme’s lexical structure, as defined in the R6RS standard, which is based on
the Unicode character set.4

Variable and Constant Symbols

variable ::= symbol
constant-symbol ::= symbol

Variable and constant symbols are disjunct. As mentioned in the informal
overview, variables begin with a question mark character. Symbols are case-
sensitive. Constant symbols may include a prefix denoting a namespace. Some
mechanism for binding prefixes to namespaces is presumed, rather than being
defined here. The prefix of a constant symbol is the part of the constant symbol
up to the first colon. The part of the constant symbol after the colon is the local
identifier, within this namespace.

Here are some example variable and constant symbols:

?x
?agreement
contract-1
lkif:permission
event-calculus:event

Term

A term is either a constant or a compound term. A constant is either a variable,
constant symbol, string, number, or boolean value. A compound term consists
of a constant symbol and a list of terms.

constant ::= variable | constant-symbol
| string | number | boolean

term ::= constant | | ’´’ term |
’(’ constant-symbol term* ’)’

Quoted terms are used, as in Lisp, to denote lists. Here are some example
terms:

?x
contract-1
"Falkensee, Germany"
12.345
#t
(father-of John)
’(red green)

4 http://www.r6rs.org/
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Literal

Literals are atomic sentences or negations of atomic sentences.

atom ::= constant-symbol
| ’(’ constant-symbol term* ’)’

literal ::= atom | ’(’ ’not’ atom ’)’

Notice that constant symbols can be used as atomic sentences. This provides
a convenient syntax for a kind of propositional logic.

The following are examples of literals:

liable
(initiates event1 (possesses ?p ?o))
(holds (perfected ?s ?c) ?p)
(children Ines ’(Dustin Caroline))
(not (children Tom ’(Sally Susan)))
(applies UCC-§-306-1 (proceeds ?s ?p))

Rule

Since Horn clause logic is widely known from logic programming, it might be
helpful to begin the presentation of the syntax of LKIF rules by noting that
it can be viewed as a generalization of the syntax of Horn clause logic, in the
following ways:

1. Rules are reified with names.
2. Rules may have multiple conclusions.
3. Negated atoms are permitted in both the body and head of rules.
4. Rule bodies may include exceptions and assumptions.
5. Both disjunctions and conjunctions are supported in the bodies of rules.

Here is the formal definition of the syntax of rules:

condition ::= literal
| ’(’ ’unless’ literal ’)’
| ’(’ ’assuming’ literal ’)’

conjunction ::= condition
| ’(’ ’and’ condition condition+ ’)’

disjunction ::= ’(’ ’or’ conjunction conjunction+ ’)’

body ::= condition | conjunction | disjunction

head ::= literal
| ’(’ ’and’ literal literal+ ’)’
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rule ::= ’(’ ’rule’ constant-symbol
’(’ ’if’ body head ’)’ ’)’

| ’(’ ’rule’ constant-symbol
literal literal* ’)’

The second rule form is convenient for rules with empty bodies. These should
not be confused with Prolog ‘facts’, since they are also defeasible. Conditions
which are not assumptions or exceptions are called ordinary conditions .

Here are a few examples of rules and facts, reconstructed from the Article
Nine World of the Pleadings Game [17]:

(rule §-9-306-3-1
(if (and (goods ?s ?c)

(consideration ?s ?p)
(collateral ?si ?c)
(collateral ?si ?p)
(holds (perfected ?si ?c) ?e)
(unless (applies §-9-306-3-2

(perfected ?si ?p))))
(holds (perfected ?si ?p) ?e)))

(rule §-9-306-2a
(if (and (goods ?t ?c)

(collateral ?s ?c))
(not (terminates ?t

(security-interest ?s)))))

(rule F1 (not (terminates T1
(security-interest S1))))

(rule F2 (collateral S1 C1))

Reserved Symbols

The following predicate symbols have special meaning in the semantics, as ex-
plained in Section 4, and are thus reserved:prior, excluded,valid, and applies.

4 Semantics

We now proceed to define the semantics of the LKIF rules language. Due to space
limitations, knowledge of the Carneades model of argument [19] is presumed. A
rule denotes a set of argumentation schemes, one for each conclusion of the rule,
all of which are subclasses of a general scheme for arguments from legal rules.5

5 We do not claim that argumentation schemes can be modeled as or reduced to rules.
Here we go in the other direction: each rule is mapped to a set of argumentation
schemes.
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Applying a rule is a matter of instantiating one of these argumentation schemes
to produce a particular argument. Reasoning with rules is viewed as a process
of applying these schemes to produce arguments to put forward in dialogues.

The scheme for arguments from legal rules is based on the rule language we
developed for the Pleadings Game [17], but has also been influenced by Verheij’s
reconstruction of Reason-Based Logic in terms of argumentation schemes [36].
The scheme can be defined informally as follows:

Premises
1. r is a legal rule with ordinary conditions a1, . . . , an and conclusion c.
2. Each ai in a1 . . . an is presumably true.

Conclusion. c is presumably true.
Critical Questions

1. Does some exception of r apply?
2. Is some assumption of r not met?
3. Is r a valid legal rule?
4. Does some rule excluding r apply in this case?
5. Can some rule with priority over r be applied to reach an contradictory

conclusion?

Our task now is use this scheme to define the semantics of the formal language
of Section 3, by mapping rules in the language to schemes for arguments in
Carneades. We begin by mapping rule conditions to argument premises.

Definition 1 (Condition to Premise). Let p be a function mapping condi-
tions of rules to argument premises, defined as follows:

p(c) =

⎧
⎨

⎩

c if c is a literal
•s if c is (assuming s)
◦s if c is (unless s)

If a conclusion of a rule is an atomic sentence, s, then the rule is mapped to
a scheme for arguments pro s. If a conclusion of the rule is a negated atomic
sentence, (not s), then the rule is mapped to a scheme for arguments con s.

Definition 2 (Scheme for Arguments from Rules). Let r be a rule, with
conditions a1 . . . an and conclusions c1 . . . cn. Three premises, implicit in each
rule, are made explicit here. The first, ◦υ, where υ = (not (valid r)), excepts
r if it is an invalid rule. The second, ◦ε, where ε = (excluded r ci), excepts
r if it is excluded with respect to ci by some other rule. The third, ◦π, where
π = (priority r2 r), excludes r if another rule, r2, exists of higher priority
than r which is applicable and supports a contradictory conclusion.

For each ci in c1 . . . cn of r, r denotes an argumentation scheme of the follow-
ing form, where d is ‘pro’ if ci is an atomic sentence and ‘con’ if ci is a negated
atomic sentence:

p(a1) . . . p(an), ◦υ, ◦ε, ◦π

d ci
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To construct an argument from one of these argumentation schemes, the vari-
ables in the scheme need to be systematically renamed and then instantiated
using a substitution environment , i.e. a mapping from variables to terms, con-
structed by unifying the conclusion of the argumentation scheme with some goal
atomic statement, as in logic programming.

The valid and excluded relations used in the argumentation scheme are to
be defined in the models of legal domains, as explained in Section 2. Rules can be
used to define the priority relation, as in the Pleadings Game [17] and PRATOR
[28]. Legal principles for resolving rule conflicts, such as lex posterior, can be
modeled in this way, as illustrated in Section 2.

The applies predicate is a ‘built-in’, meta-level relation which cannot be
defined directly in rules. It is defined as follows:

Definition 3 (Applies). Let σ be a substitution environment and G be an
argument graph. Let r be a rule and S be the set of argumentation schemes
for r, with all of the variables in these schemes systematically renamed. There
are two cases, for atomic literals and negated literals. The rule r applies to a
literal P in the structure 〈σ, G〉, if there exists a pro argumentation scheme s in
S, if P is atomic, or a con argumentation scheme, if P is negated, such that the
conclusion of s is unifiable with P in σ, and every premise of s, with its variables
substituted by their values in the σ, holds in G.

Given a set of rules and an argument graph, this definition of the applies
predicate enables some meta-level reasoning. It allows one to find rules which can
be used to generate defensible pro and con arguments for some goal statement
or to check whether a particular rule can be used to generate a defensible pro or
con argument for some statement.

The semantics of negation is dialectical, not classical negation or negation-as-
failure. Exceptions do not have the semantics of negation-as-failure. The closed-
world assumption is not made. In Carneades, a negated sentence, (not p), is
acceptable just when the complement of the proof standard assigned to p is
satisfied, where the complement of a proof standard is constructed by reversing
the roles of pro and con arguments in the standard. See [19] for details.

5 A German Family Law Example

Let’s now illustrate LKIF rules using a small, toy legal domain, roughly based
on German family law. The question addressed is whether or not a descendent of
some person, typically a child or grandchild, is obligated to pay financial support
to the ancestor.
§1601 BGB (Support Obligations). Relatives in direct lineage are obligated
to support each other.

(rule §-1601-BGB
(if (direct-lineage ?x ?y)

(obligated-to-support ?x ?y)))
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§1589 BGB (Direct Lineage). A relative is in direct lineage if he is a descen-
dent or ancestor. For example, parents, grandparents and great grandparents are
in direct lineage.

(rule §-1589-BGB
(if (or (ancestor ?x ?y)

(descendent ?x ?y))
(direct-lineage ?x ?y)))

§ 1589 BGB illustrates the use of disjunction in the body of a rule.

§1741 BGB (Adoption). For the purpose of determining support obligations,
an adopted child is a descendent of the adopting parents.

(rule §-1741-BGB
(if (adopted-by ?x ?y)

(ancestor ?x ?y)))

§1590 BGB (Relatives by Marriage). There is no obligation to support the
relatives of a spouse (husband or wife), such as a mother-in-law or father-in-law.

(rule §-1590-BGB
(if (relative-of-spouse ?x ?y)

(not (obligated-to-support ?x ?y))))

§ 1590 BGB illustrates the use of negation in the head of a rule.
§1602 BGB (Neediness). Only needy persons are entitled to support by family
members. A person is needy only if unable to support himself.

(rule §-1602a-BGB
(if (not (needy ?x))

(not (obligated-to-support ?y ?x))))

(rule §-1602b-BGB
(if (not (able-to-support-himself ?x))

(needy ?x)))

(rule §-1602c-BGB
(if (able-to-support-himself ?x)

(not (needy ?x))))

In § 1602 we see examples of negation in both the head and body. This example
also illustrates that it is not always possible to represent a section of a piece of
legislation as a single LKIF rule. Thus, although LKIF brings us closer to the
ideal of “isomorphic modeling”, this goal remains illusive, at least if one takes
the view that each section of legal code always expresses a single rule.
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§1603 BGB (Capacity to Provide Support). A person is not obligated to
support relatives if he does not have the capacity to support others, taking into
consideration his income and assets as well as his own reasonable living expenses.

(rule §-1603-BGB
(if (not (capacity-to-provide-support ?x))

(not (obligated-to-support ?x ?y))))

§1611a BGB (Neediness Caused By Immoral Behavior). A needy person
is not entitled to support from family members if his neediness was caused by his
own immoral behavior, such as gambling, alcoholism, drug abuse or an aversion
to work.

(rule §-1611a-BGB
(if (neediness-caused-by-own-immoral-behavior ?x)

(excluded §-1601-BGB (obligated-to-support ?y ?x))))

Here we have interpreted § 1611a BGB to be an exclusionary rule. If one in-
stead takes the view that it states conditions under which there is no obligation
to provide support, independent of the general obligation to provide support
stated in § 1601 BGB, then the following LKIF rule would be a more faithful
representation:

(rule §-1611a-BGB
(if (neediness-caused-by-own-immoral-behavior ?x)

(not (obligated-to-support ?y ?x))))

§91 BSHG (Undue Hardship). A person is not entitled to support relatives
if this would cause him undue hardship.

(rule §-91-BSHG
(if (undue-hardship ?x (obligated-to-support ?x ?y))

(excluded §-1601-BGB (obligated-to-support ?x ?y)))))

As with § 1611a BGB, we have interpreted § 91 BSHG as an exclusionary rule,
mainly to illustrate how statements are reified in LKIF and can be quoted in other
statements. Here the statement (obligated-to-support ?x ?y) is quoted in the
statement (excluded s1601-BGB (obligated-to-support ?x ?y)).

6 XML Syntax

The Legal Knowledge Interchange Format (LKIF) defines two ways to represent-
ing arguments, rules, ontologies and cases in XML. One uses OWL, the Ontology
Web Language [26], to define concepts and relations for the structure of argu-
ments, rules and cases. Particular arguments, rules and cases are represented in
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OWL as instances of these classes. LKIF ontologies are defined directly in OWL.
This approach offers the advantage of uniformity. An entire knowledge base
can be represented using a single, widely supported existing standard, OWL,
and be developed, maintained and processed using existing OWL editors and
other tools.

As it turns out, however, rules and arguments cannot be conveniently written
or maintained using generic OWL editors, such as Protege [14] or TopBraid
Composer [35], at least not without first extending them with ‘plug-ins’ for
special purpose editors, along the lines of the Protege plug-in for the Semantic
Web Rule Language [24].

Moreover, OWL is not, strictly speaking, an XML format. Rather, OWL is
defined at a more abstract level. OWL documents can be ‘serialized’ using a
variety of concrete syntaxes. Some of these are XML-based, for example using
RDF/XML [7]. Other serializations of OWL, some based on the Notation 3 [8]
language, aim to be compact and more readable and thus do not use XML. For
this reason, implementing a translator for LKIF documents encoded in OWL
requires the document to first be preprocessed into some canonical concrete
syntax, using for example Jena [23], a Java library for the Semantic Web.

For these reasons, LKIF offers an alternative, more compact, XML syntax.
This syntax is defined using the XML Schema Definition Language [13]. An
eqivalent definition of the grammar using Relax NG [10], an ISO standard schema
definition language (ISO/IEC 19757), is also available. One advantage of Relax
NG is that it offers a compact, readable language for schema definitions, in
addition to an XML language. Here is the Relax NG version of the compact
syntax of LKIF Rules:

start = element lkif Statement*, Rule*, ArgumentGraph*

Rule = element rule
attribute id xsd:ID ?,
attribute strict "no" | "yes" ?,
(Literal+ | Implies)

Literal = Statement | Not
Statement = element s

attribute id xsd:ID ?,
attribute src xsd:anyURI | xsd:string ?,
((text* & Statement*)*)?

Not = element not Statement
Implies = (Head, Body) | (Body, Head)
Head = element head Literal+
Body = element body Or | Condition+
Or = element or (Condition | And)+
And = element and Condition+
Condition = Literal
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| element if attribute role text ?, Literal
| element unless attribute role text ?, Literal
| element assuming attribute role text ?, Literal

The specification of the compact syntax for argument graphs has been omitted,
since the focus of this article is LKIF’s rule language.

The German family law example of the previous section can be represented
in XML using the compact syntax as follows:

<?xml version="1.0" encoding="UTF-8"?>
<lkif>
<rule id="s1601-BGB">
<body><s>direct-lineage ?x ?y</s></body>
<head><s>obligated-to-support ?x ?y</s></head>

</rule>

<rule id="s1589a-BGB">
<body><s>ancestor ?x ?y</s></body>
<head><s>direct-lineage ?x ?y</s></head>

</rule>

<rule id="s1589b-BGB">
<body><s>descendent ?x ?y</s></body>
<head><s>direct-lineage ?x ?y</s></head>

</rule>

<rule id="s1741-BGB">
<body><s>adopted-by ?x ?y</s></body>
<head><s>ancestor ?x ?y</s></head>

</rule>

<rule id="s1590-BGB">
<body><s>relative-of-spouse ?x ?y</s></body>
<head><not><s>obligated-to-support ?x ?y</s></not></head>
</rule>

<rule id="s1602a-BGB">
<body><not><s>needy ?x</s></not></body>
<head><not><s>obligated-to-support ?y ?x</s></not></head>
</rule>

<rule id="s1602b-BGB">
<body><not><s>able-to-support-himself ?x</s></not></body>
<head><s>needy ?x</s></head>

</rule>
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<rule id="s1602c-BGB">
<body><s>able-to-support-himself ?x</s></body>
<head><not><s>needy ?x</s></not></head>

</rule>

<rule id="s1603-BGB">
<body><not><s>capacity-to-provide-support ?x</s></not></body>
<head><not><s>obligated-to-support ?x ?y</s></not></head>

</rule>

<rule id="s1611a-BGB">
<body>
<s>neediness-caused-by-own-immoral-behavior ?x</s>

</body>
<head>
<s>excluded s1601-BGB <s>obligated-to-support ?y ?x</s></s>

</head>
</rule>

<rule id="s91-BSHG">
<body>
<s>undue-hardship ?x <s>obligated-to-support ?x ?y</s></s>

</body>
<head>
<s>excluded s1601-BGB <s>obligated-to-support ?x ?y</s></s>

</head>
</rule>

</lkif>

7 Reasoning with LKIF Rules Using Carneades

‘Carneades’ is the name of both a compuational model of argumentation [19] and
an implementation of this model in PLT Scheme [30]. The ESTRELLA Reference

Foundation

Statements

LKIF

Rules

Arguments

Ontologies Cases

Fig. 1. Module Layers
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Inference Engine for LKIF rules is being built using this implementation of
Carneades.

This ESTRELLA platform, of which the LKIF rules inference engine is a part,
has the layered architecture shown in Figure 1

Each layer consists of one more modules, where a module may make use of
the services of another module in the same layer or any layer below it in the
diagram. Conversely, no module depends on the services of any module in some
higher layer.

Since the higher layers build upon the lower layers, we will describe the lowest
layers first:

Foundation. The foundation layer consists of modules for configuring the sys-
tem for a particular installation (config), managing possibly infinite se-
quences of data generated lazily (stream), and for heuristically searching
problem spaces (search).

Statements. The statement layer provides a module for comparing and decom-
posing statements (statement), abstracting away syntactic details which are
irrelevant for the higher layers, and a module implementing a unification algo-
rithm (unify), needed for implementing inference engines for logics with vari-
ables ranging over compound terms, such as first-order logic and LKIF rules.

Arguments. The argument layer provides modules for constructing, eval-
uating and visualizing argument graphs, also called ‘inference graphs’
(argument,argument-diagram). It also provides modules (argument-state,
argument-search) for applying argumentation schemes to search heuristi-
cally for argument graphs in which some goal statement is acceptable (i.e.
presumably true) or not acceptable. An argument-builtinsmodule provides
an argument generator for common goal statements about arithmetic, strings,
lists, dates and so on.

Rules. The rule layer implements LKIF rules. It provides a rulemodule for rep-
resenting defeasible legal rules and generating arguments from sets of rules.

Ontologies. The ontologies layer provides a module for defining and reasoning
with concepts, using Description Logic [4].

Cases. The cases layer provides a module for representing legal precedents and
constructing arguments from these precedents using argumentation schemes
for case-based reasoning.

LKIF. TheLegalKnowledge InterchangeFormat (LKIF) layer provides amodule
for importing and exporting arguments, rules, ontologies and cases in XML.

Ontologies are represented in LKIF using the OWL Web Ontology Language
[11]. The ESTRELLA module for reasoning with ontologies is still being de-
signed. It may communicate with an external description logic reasoner, for
example via the DIG interface [6], or translate ontologies into LKIF rules, us-
ing the description logic programming intersection of description logic and Horn
clause logic [20]. However, since LKIF rules is more expressive than Horn clause
logic, it may be possible to translate a larger subset of description logic into
LKIF rules.



Constructing Legal Arguments with Rules in the LKIF 177

A first prototype of an implementation of case-based argumentation schemes,
based on a reconstruction [38] of schemes modeled by HYPO [3] and CATO [1]
has been completed and is currently being evaluated.

Some people have expressed surprise at the ordering of these layers, per-
haps because of familiarity with Berners-Lee’s vision of the Semantic Web [9],
which has a similar architecture, consisting of the following layers, from bottom
to top: Unicode and URI, XML, RDF, ontology, logic, proof and trust. State-
ments are expressed using the RDF layer. Rules are represented in the logic
layer. One difference between these architectures is that the proof layer, which
seems closely related to argument, is above the logic layer where rules reside
in Berners-Lee’s model, whereas rules are built on top of the argument layer in
our system. Another difference is that ontologies form a foundation for logic and
proof in Berners-Lee’s model, whereas ontologies, rules and cases are all at the
same layer in our system, as they are all interpreted as knowledge representa-
tion formalisms from which arguments can be constructed, using argumentation
schemes appropriate for each type of knowledge.

We close this section with an example showing how to use Carneades to load
the Germany family law example rule base, ask a query, and visualize the result.
To simplify the example, let’s suppose the rule base has been extended with
rules defining ‘direct-lineage’ in terms of common-sense family relations, along
with some facts about a case, for example that Gloria is needy and an ancestor
of Dustin, but Dustin does not have the capacity to provide support. We will
omit the definitions of family relations (such as ancestor, descendant, parent,
grandparent, sibling, and relative) to keep this short. The facts of the case can
be represented in LKIF rules as follows.

(rule* facts
(ancestor Dustin Tom)
(ancestor Tom Gloria)
(needy Gloria)
(not (capacity-to-provide-support Dustin)))

Let’s suppose the XML file for the rule base is stored in a file named
"family-support.xml".This file can be imported to create a rule base as follows:

(define family-support
(add-rules empty-rulebase

(import "family-support.xml")))

This code defines family-support to be the rule base created by importing the
"family-support.xml" LKIF file. Now we can pose a query, about whether
Dustin is obligated to support his grandmother, Gloria, as follows:

> (define s1 (initial-state ’(obligated-to-support Dustin Gloria)
default-context))

> (define g1 (generate-arguments-from-rules family-support null))
> (define r (make-resource 50))
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> (define results (find-best-arguments depth-first r 1 s1 (list g1
builtins)))

> (define s2 (stream-car results))
> (view* (state-arguments s2)

(state-context s2)
(state-substitutions s2) #t)

We begin by defining a problem space. The first command defines the root,
initial state of the problem state. The query, (obligated-to-support Dustin
Gloria), is part of this initial state. The next command defines the transitions
available between states in the search space. These transitions are induced by
the rules available in the family-support rule base. Since the search space can
be infinite, we use resources to limit the amount of searching done and assure
the search process terminates. The (make-resource 50) constructs a resource
with 50 units. Each state visited during the search for a solution consumes one
unit of this resource. The find-best-arguments command in this example looks
for arguments for Dustin being obligated to support Gloria, in this case using
a (resource-limited) depth-first search strategy. A few others search strategies
are also available, including breadth-first, and iterative-deepening. A stream of
solution states is returned, where a stream is conceptually a sequence of states,
where each member of the sequence is computed as needed. Thus, to backtrack
and search for further solutions, one only needs to access subsequent members
of the stream. If the search process fails, finding no state satisfying the query,
the resulting stream will be empty. Each state in the search space contains
an argument graph. The goal of the search, using the find-best-arguments
command, is to find the best arguments pro and con the statement in the query,
given the resources supplied and the number of turns to alternate between the
roles of proponent and opponent of the statement. That is, in the terminology of
the Carneades model of argument, we are interested in finding argument graphs
which provide sufficient grounds, or reasons, for ‘accepting’ the statement of the
query, presumptively, as true, when taking the perpective of the proponent, and
finding extensions of these argument graphs which succeed in countering these
arguments, making the statement of the query no longer acceptable, when taking
the perspective of the opponent.

The (view* ...) command displays a diagram of an argument graph, us-
ing GraphView [12]. Figure 2 shows the argument graph found first by the
find-best-arguments command above.

One way to look for a counterargument is to repeat the find-best-arguments
command, but this time with 2 turns. In the second turn the system takes the
perspective of the opponent.

> (define results
(find-best-arguments depth-first r 2 s1

(list g1 builtins)))
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(ancestor Dustin Gloria)

s1589a-BGB

(ancestor Dustin Tom)

r2

(ancestor Tom Gloria)

(direct-lineage Dustin Gloria)

s1601-BGB

(obligated-to-support Dustin Gloria)

facts facts

Fig. 2. An argument pro the obligation to support

In this example, a counterargument was found, as shown in Figure 3. Since
find-best-arguments returns the best arguments for both sides, it would have
returned the first argument graph again, shown in Figure 2, had it been unable
to find a counterargument to this argument on the second turn.
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(ancestor Dustin Gloria)

s1589a-BGB

(ancestor Dustin Tom)

r2

(ancestor Tom Gloria)

(capacity-to-provide-support Dustin)

s1603-BGB

(direct-lineage Dustin Gloria)

s1601-BGB

(obligated-to-support Dustin Gloria)

facts facts

facts

Fig. 3. A counterargument

8 Discussion

LKIF rules builds on the results of about 20 years of research in Artificial Intelli-
gence and Law. Edwina Rissland, Kevin Ashley and Ronald Loui published a good
summary of the field of Artificial Intelligence and Law, as of 2003, in a special is-
sue of the Artificial Intelligence Journal [32]. A recent treatise on AI and Law is
Giovanni Sartor’s “Legal Reasoning: A Cognitive Approach to the Law” [34].

A major lesson from research on Artificial Intelligence and Law is that legal
reasoning cannot be viewed, in general, as the application of some deductive
logic, such as first-order predicate logic, to some theory of the facts and relevant
legal domain. In fact, no one in the field ever seriously took the position that
legal reasoning in its entirety could be viewed this way, although some critics
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have misunderstood or misrepresented the field by assuming this to be the case.
As pointed out by Rissland et al. [32]:

Contrary to some popular notions, law is not a matter of simply
applying rules to facts via modus ponens, for instance, to arrive at a
conclusion. Mechanical jurisprudence, as this model has been called, is
somewhat of a strawman. It was soundly rejected by rule skeptics like
the realists. As Gardner puts it, law is more “rule-guided” than “rule-
governed.”

The reference to Gardner here, is to Anne Gardner’s thesis “An Artificial Intelli-
gence Approach to Legal Reasoning” [15], one of the first books to be published
in the field. Legal reasoning is not only deductive, because legal concepts cannot
be defined by necessary and sufficient conditions. Better, one can define legal
concepts this way, but such definitions are only hypotheses or theories which
will not be blindly or “mechanically” followed, using deduction, when one tries
to apply these concepts to decide legal issues in concrete cases. Legal concepts
are, as the legal philosopher H.L.A. Hart put its, “open-textured” [22]. Whether
or not a legal concept applies in a particular case requires the interpretation, or
reinterpretation of the legal sources, such as statutes and case law, in light of such
things as the history of prior precedent cases, the intention of the legislature,
public policy, and evolving social values.

The process of determining whether the facts of a case can be “subsumed”
under some legal concept is one of argumentation. Legal argumentation is a
dialogue, guided by procedural norms, called “protocols”. Which protocol applies
depends on the particular type of dialogue and the task at hand.

Although argumentation has always been at the heart of work on modeling
legal reasoning in the field of AI and Law, it wasn’t until two papers on com-
putational models of legal argumentation in a special issue of the International
Journal of Man-Machine Studies on AI and Law [16,33] that argumentation
became a hot topic in AI and Law and efforts began in earnest to use argu-
mentation theory to integrate case-based, rule-based and other approaches to
legal reasoning. The procedural aspects of argumentation, i.e. as a dialogue and
not just a way of comparing pros and cons, began to come into focus [17]. A
dialogical approach to integrating arguments from rules and cases was presented
not much later [29].

The rule language developed here is much like the one the author devel-
oped for the Pleadings Game [17]: rules are reified and subject to exceptions;
conflicts between rules can be resolved using other rules about rule priorities;
the applicability of rules can be reasoned about and excluded by other rules;
and the validity of rules can be questioned. The rule language of the Pleadings
Game is similar to other systems developed independently at about the same
time [21,28]. All of these systems viewed reasoning with legal rules as argumen-
tation, but unlike in our semantics for LKIF rules, none of them interpreted
legal rules as argumentation schemes. Rather, these prior systems either repre-
sented legal rules as sentences in a nonmonotonic logic [21,28] or compiled rules
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to a set of such sentences [17].6 Verheij was the first to explicitly discuss the
modeling of legal rules using argumentation schemes [36] but like the Pleadings
Game interprets rules as abstractions of sets of formulas in a nonmonotonic logic,
rather than interpreting rules as abstractions of arguments, i.e. as argumenta-
tion schemes in Walton’s sense [37]. With the exception of the Pleadings Game,
all of these prior systems model argumentation as deduction in a nomonotonic
logic, i.e. as a defeasible consequence relation. In the Pleadings Game, argumen-
tation was viewed procedurally, as dialogues regulated by protocols, but this was
accomplished by building a procedural layer on top of a nonmonotonic logic. In
LKIF, the relational interpretation of rules is abandoned entirely, in favor of a
purely procedural view, and is thus more in line with modern argumentation
theory in philosophy [37] and legal theory [2]. Argumentation cannot be reduced
to logic.

The rule language presented here is syntactically similar to the rule languages
of the Pleadings Game [17] and the PRATOR system [28]. Our main original
contribution is the particular argumentation-theoretic semantics we have given
these rules, by mapping them to argumentation schemes using the Carneades
model of argument. This approach has at least two advantages:

1. The system can be extended with comparable models of other argumentation
schemes. Argumentation schemes provide a unifying framework for building
hybrid reasoners. The ESTRELLA platform will make use of this feature
to support legal reasoning with ontologies, rules and cases, in an integrated
way.

2. Despite the expressiveness of the rule language, which would result in an
undecidable logic using the relational approach, since the semantics of LKIF
rules is purely procedural, argumentation protocols can be defined for us-
ing these rules in legal proceedings which are guaranteed to terminate with
procedurally just legal conclusions [31,2,5]

The ESTRELLA reference inference engine for LKIF rules has been fully
implemented, in PLT Scheme [30]. Our work in the near future, together with
our colleagues in the European ESTRELLA project, will focus on completing
the modules for reasoning with cases and ontologies and validating LKIF in pilot
applications, for example in the domain of European tax directives.

Our primary goal with LKIF rules has been to develop a knowledge represen-
tation formalism for legal rules which is theorectically well-founded, reflecting the
state-of-the-art in AI and Law, and practically useful for building legal knowledge-
based systems. Rule-based systems have been commercially successful, also for le-
gal applications, but all of the products currently available on the market, to our
knowledge, interpret rules either as formulas in propositional or first-order logic or
as production rules. Legal rules are neither material implications nor procedures
for updating variables in working memory, but rather schemes for constructing
6 Technically speaking, the rules in PRATOR also may be viewed as domain-

dependent inference rules, since they may not be used contrapositively, but nonethe-
less they are formulated as sentences in the object language.
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legal arguments. There are many kinds of rules and correspondingly many kinds
of formalisms for modeling rules. LKIF rules is designed to be better suited for
modeling legal rules than existing alternatives on the market.
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