
Towel: Towards an Intelligent To-Do List

Kenneth Conley, James Carpenter

SRI International
333 Ravenswood Avenue, Menlo Park, CA, 94025-3493

conley@ai.sri.com, james.carpenter@sri.com

Abstract
In this paper we describe Towel, a task management
application that couples a user’s to-do list with a software
personal assistant. This to-do list provides a unified
environment for managing personal tasks, delegating tasks
to the software personal assistant, and collaborating with
other users. We use to-do list and instant messaging
metaphors to enable the user to initiate, manage, and modify
complex agent-executed tasks. Through simple operations
on to-do items and direct-manipulation chat, we envision
many seamless interactions between the user and various AI
technologies that ultimately result in saving the user work,
reducing cognitive load, and improving task performance.

Introduction
For the past three years we have been developing a Project
Execution Assistant (PExA) that combines various AI
technologies to assist a user in task and time management
(Myers et al. 2006). These AI technologies include a plan
execution agent, a time management agent, task
explanation, multiple task learning systems, procedure
modification, concept learning, and more. While these
components are too varied to expose entirely through one
interface, we sought an end-user application metaphor that
would allow us to present the core capabilities and
integrate many of the peripheral capabilities as well.
 For guidance on how to build a user interface for our
assistant, we looked to applications designed for human
task management, e.g. to-do lists. We wanted to create a
fluid relationship between tasks a user is doing and tasks
the assistant is doing on the user’s behalf. Bellotti et al.
have done extensive anthropological research on to-dos
have built multiple software prototypes, including e-mail-
based solutions (Bellotti et al. 2003) and a to-do list
application called TaskVista (Bellotti et al. 2004). A to-do
list application like TaskVista was appealing, as the to-do
list could be placed in the peripheral part of the user’s
display and provide status information on our assistant. We
easily envisioned dispatching tasks to our assistant by
simply adding an item to a to-do list. But to-do lists in
general do not have any affordances for communication:

Copyright © 2006, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

our assistant has to communicate with the user to solicit
parameters for tasks, convey status, support interactions,
and display results.
 The communication requirements for our task execution
are varied. At times tasks will be short in duration, such as
finding hotels for a user, where the assistant solicits
parameters immediately and quickly returns results to the
user. Our assistant is also capable of tasks larger and
longer in scope, such as arranging a client visit, that require
it to solicit parameters and guidance from the user over
time as the process becomes more defined; it might ask the
user a question hours, days, or evens weeks after the task
was initiated. We needed to select a style of digital
communication that would have the proper types of
affordances for these tasks.
 We explored several digital communication metaphors,
including e-mail, which handles long-term communication
well but makes rapid communication cumbersome, Web
pages, which are well-suited to short tasks but poor for
long-term monitoring, and spoken interfaces, which we felt
were too intrusive in a workplace. Instant messaging (IM)
seemed ideal: in normal human-to-human IM
communication, users regularly engage in rapid
conversations, but the other participants can take an
arbitrary length of time to respond. IM also provides a
model for interruption (opening a chat window and short
sounds), status information about contacts, and a peripheral
list similar to a to-do list application. We also liked that
users can hide interactions that aren’t currently active by
closing the chat window.
 We have developed a task management application
called Towel that builds on principles from to-do
management and instant-messaging communication to
provide a unified environment for both human- and agent-
based task management. Towel’s to-do list window is
isomorphic to a contact list window for Instant Messaging:
each contact is instead a to-do and double-clicking on a to-
do opens up a chat window about that to-do. The to-do list
window is a central view in which the user can enter her
own to-dos, delegate tasks to our assistant, and monitor
execution of delegated tasks. The chat windows are task-
specific views where the user and assistant can
communicate to refine, investigate and manipulate a task.
We are also integrating Towel with various AI
technologies to enable Towel to react to information about
the user’s current workload, such as reducing visual

overload, suggesting tasks our assistant can perform, and
providing intelligent notifications.
 The rest of this paper is organized as follows. We first
introduce the architecture of Towel and selected portions
of the underlying CALO system. We then discuss the to-do
list user interface and the chat user interface. This is
followed by a discussion of our delegation model and the
deployment of Towel. We conclude with a discussion of
future work.

Architecture
Towel is part of the CALO system (caloproject.sri.com/),
which is a large-scale effort to build a personalized
software assistant for the office domain. The CALO
system is very large with many changing components,
which has an important effect on the design of Towel:
rather than tightly integrate with the CALO system as a
whole, we have decided to do lightweight integrations on a
one-to-one basis with components. Features are selectively
enabled or disabled as other components change
availability. With no other components present, Towel is
just a to-do list application, but as more components are
made available to Towel, it increases in effectiveness. The
full subset of CALO components related to task execution
is called the Project Execution Assistant (PExA), which is
described in Myers et al. 2006.

 The most important component for Towel is the Task
Manager, which performs tasks within the CALO system.
The Task Manager regularly sends Towel information on
tasks being performed, which are then presented within the
Towel user interface. The Task Manager and process
models are built on top of SPARK (Morley & Myers
2004), which is a Belief-Desire-Intention framework
similar to PRS (Georgeff & Ingrand 1989).

Figure 1. PExA Architecture

To-do lists and Tasks
To-dos within the Towel are nothing more than textual
reminders: “walk the dog,” “groceries,” “meeting with
Bill.” On the Towel to-do list, users can perform
modifications on to-dos such as grouping, tagging,
checking (completing), delegating, setting deadlines,
hiding, star-ing, and adding attachments. Tasks represent
an action, something being done. There are also CALO
tasks, which are tasks that the CALO system can perform.
Although to-dos are a reminder of work and tasks are the
work being done, we represent both using an iCalendar-
VTODO-based ontology. To-dos and tasks share the same
properties such as deadlines, completion status, and
delegation history, but tasks are also linked to a task
ontology. The identical representations allow for to-dos to
become tasks and vice-versa.

The user can go beyond simple text to-dos by dragging
files and URLs onto the to-do list, where they can be
clicked on to open the resource. This allows the to-do to be
the thing that needs to be done or a pointer to how or
where it can be done. We also wish to add the ability to
drag any semantic object from the CALO application
environment (project, e-mail, person, etc…) onto the to-do
list, either as a resource for a to-do or as the to-do itself.

Figure 2. Towel To-Do List

Given the large number of to-dos a user might have, one
of our design goals for the to-do list was to enable the user
to hide to-dos. Contact lists for IM clients allow users to
group contacts together and also hide contacts that are
offline, and we similarly allow the user to organize to-dos
into collapsible groups and explicitly hide to-dos for a
period of time. We also allow the user to add tags and
deadline information that can be used to filter to-dos by
keyword or due date.

We are currently implementing a “Do it Now/Timecard”
view of the to-do list, in which the user would select a to-
do item that she is currently performing and track time
spent on it. In this enhanced view, more information about

the selected to-do would be displayed and less immediate
to-do items would be hidden. Data about which task the
user has selected is sent to the SEAR task estimator, which
can then make future predictions about which to-do the
user is performing. We hope to use this data from SEAR to
improve this view over time. For example, Towel could
recommend different CALO tasks to assist the user in the
completion of the task she is working on or it could delay
the display of less important chat messages if she is busy.

The perfect, telepathically enabled to-do list would show
you just one item: the next thing you are going to do. We
can’t implement such a system, but we hope to observe the
user’s behavior in hiding and performing to-dos, apply
learning components such as SEAR to reduce the visual
overload of a lengthy to-do list, and thus help the user
focus on what needs to be done.

Converting to-dos into tasks
One of the main goals of the CALO personal software
assistant is to save the user time and effort. Thus, a
principal goal of Towel is to convert user to-dos into
CALO tasks, i.e. to complete work on the user’s behalf.
Our model for converting user to-dos into CALO tasks is a
delegation model (Myers & Yorke-Smith 2005): the user
must tell CALO to take over a to-do. We provide a variety
of unobtrusive mechanisms for delegation in order to allow
delegation to occur at various points in a to-do’s lifecycle.

The first opportunity a user has to delegate is while the
to-do is being entered. At the top of the Towel to-do list is
a textbox in which the user can type in new to-dos as well
as search their to-do list. We have combined the operations
of adding and searching in order to reinforce the reminder
nature of to-do lists: a typical user may have as many as 70
electronic to-dos (Bellotti et al. 2004), so a to-do being
added may already be on the to-do list, or it may be similar
to one previously completed and reusable. Below the list of
matching to-dos, Towel also suggests possible CALO tasks
using a simple keyword-matching algorithm: the “Schedule
a Meeting” task will be listed if the user types “Schedule”
or “Meeting”; it will also match partial substrings like
“sch.” If she clicks on the suggestion, the new task is
delegated to the Task Manager. We believe that this sort of
opportunistic mechanism helps the user discover CALO
tasks, especially with task learning extending the
capabilities of the system.

Figure 3. Active Matching in To-Do List

The keyword-matching algorithm can provide quick
feedback for partial to-do phrases, but it is not very robust
as it misses synonyms and alternate phrasings. We pass the

complete text of new to-dos to the BEAM concept learning
component. BEAM learns alternate phrasings for tasks
based on volunteer-entered paraphrases (Chklovski & Gil
2005) and can find task parameters in to-do text, though
we have not yet integrated the latter functionality. If
BEAM is able to map the to-do text to the task ontology,
Towel will annotate the to-do with a suggestion to invoke
the CALO task. This suggestion is passive and the user
may delete it.

The keyword- and concept-learning-based approaches
will often fail as to-dos are often semantically opaque —
even to other people — so we also enable the user to
delegate to-dos to CALO using a chat dialog. If the user
double-clicks on one of her to-dos or if she selects
“Delegate to->CALO” on the right-click menu, Towel
opens a chat window that starts with CALO asking, “How
can I help you with ‘name of task’?” The user can then
select a CALO task from a menu to have it delegated to
CALO.

We are exploring other approaches for improving the
ease with which tasks can be delegated to CALO. One
hope is that users will enter sufficient to-do metadata to
narrow down a list of CALO tasks to suggest to a user. For
example, if the user drags a PowerPoint presentation onto a
to-do item, Towel can assume that the to-do is
presentation-related. Similarly, if the user drags multiple
people onto a to-do item, Towel might offer to schedule a
meeting with those people or send them a file that is also
attached to the to-do.

Chat-based Task Communication
We implemented our own chat system as a direct-

manipulation, instant-message client, where each chat
window represents a to-do item or CALO task. Direct-
manipulation and contextualizing each chat window went
hand-in-hand: the contextualized chat windows limited the
number of possible operations, which favors a direct-
manipulation approach; using direct-manipulation instead
of natural language prevented the user from entering
commands outside the context of the task, such as
attempting to purchase a laptop in a chat window about
scheduling a meeting.

Although the previous versions of our CALO
communication architecture were chat-based, this was the
first version to explicitly emulate IM clients and their
semantics: the chat windows are designed to look similar
to iChat (www.apple.com/ichat/), with alternating chat
balloons emanating from a user icon; notification of new
messages opens a new chat window or the task bar icon for
the window; chat windows can be closed without losing
the state of the chat. The main difference between our chat
and an actual IM client is that we do not allow free-form
text to be entered.

In designing our direct-manipulation IM client, we were
heavily influenced by MERL’s Diamond Help (Rich et al.
2006). Diamond Help is a direct-manipulation interface for
managing home appliances. The Diamond Help screen is
divided into two halves: the top half resembles an iChat
instant messaging application, but with direct-manipulation
input instead of free-form text input. The bottom half of
the screen displays an appliance-specific control panel that
allows entering of more complex input, such as scheduling
settings for a VCR. Towel’s chat windows are generally a
single window, with input forms appearing inside of chat
balloons, but we decided to adopt the DiamondHelp’s
split-screen approach for input forms that were too
complex to fit in a chat balloon.

Task explanation and modification
We also adopted Diamond Help’s approach of including
several standard buttons within each active chat balloon.
For our system, we chose “what are you doing right now?”
and “why?” as our buttons, which we hope will improve
the user's trust in the agent by allowing the user to
investigate the agent's actions.

The “what” button prompts the agent for status on what
it is currently doing; we found in our previous dialogs, the
process models were was sending status updates too often
and caused frequent interruption. The "why" button
integrates with ICEE, a task explanation component based
on Inference Web (McGuinness and Pinheiro da Silva
2004; McGuinness et al. 2006). ICEE explains both
provenance and execution information associated with
SPARK process models. The “why” button is a natural
extension to the “what” button: for example, the user asks
what is being done about the task, the agent responds with
what it is doing, and then the user asks “why” because she
is uncertain why the agent has chosen to take that
particular course of action.

In the future, we wish to push the interaction one step
further by coupling task explanation with procedure
modification. For example, if the explanation component
reports that a procedure is blocking on a condition, the user
can automatically be offered the option of removing or
modifying that condition.

Task duration prediction
One of the simplest, most useful, and most problematic
features we implemented is an animated thought balloon to
indicate that their agent will be sending more messages
about that task to the user. This is also an indicator of
whether or not a task is ongoing or completed. While this
feature was initially appreciated by users, we found that an
unintended dependence formed: people used this to tell
whether or not the underlying CALO system had crashed
(many of our users were developers or testers working on
unstable versions). Extra frustration resulted if Towel
failed to detect a crash and continued to display the thought

balloon. A more important problem for all of our users was
that the thought balloon didn’t provide any indication when
the next message would arrive, which could be seconds,
minutes, or even longer away.

These problems have arisen in part because there are
gaps in our IM metaphor: an agent is always present and
IM chats don’t complete like tasks; it is more appropriate
to say that they are suspended until a later time. Instant
messaging has several conventions, provided by both the
chat application and people chatting, to help build
expectations as to when the next message will arrive. IM
applications generally inform you when the other person is
typing and the iChat application, in particular, uses a
thought balloon to convey this. IM clients can also set a
contact to “away” status if the person’s computer is idle. A
person in a chat can suspend the conversation themselves
by saying “be right back” or “in a meeting.” An agent
doesn’t type, never leaves its computer, and is never
interrupted, so those IM conventions do not map easily.

We are working on refining our feedback to provide
better expectations as to when the agent will respond. We
now use a task and to-do duration predictor to inform the
user how long the overall task is expected to take. We hope
to make this prediction more specific in the future and
provide the user an estimate of how long until CALO next
communicates about that task. If it is expected to be a long
time, the user would know that she can close the chat
window and work on other things.

Forms, Custom Forms, and Automatic Forms
In order to solicit input for tasks within a chat dialog, we
needed to support both pre-engineered and learned tasks.
To best support both, we developed a generic form-
rendering component called SwingFormRenderer but also
allow pre-engineered tasks to provide custom form
renderers. Most forms are displayed inline within a chat
balloon, though custom forms and forms too large for a
chat balloon are displayed in the bottom half of a split
window.

When a task is learned by a CALO component and
added to the task ontology, we automatically generate
forms to solicit input parameters and display results. Thus,
task learning components are not required to specifically
implement or encode user interactions.

Figure 4. Auto-generated Form for Learned Task

Some tasks have more challenging interaction
requirements and can override these default forms. For
example, two custom input forms have been developed for

PTIME (Berry et al. 2006), which provides the scheduling
component of CALO. These forms make it easier to handle
the many optional parameters that scheduling can use and
also help the user visualize scheduling alternatives and
other participants’ schedules.

Figure 5. PTIME Schedule Selection Form

Delegation
Our delegation-based model enables the user to delegate
tasks to her CALO or to other users. Although the
underlying technology for these two types of delegation are
different, we present them identically to the user as we
wish for the transition between human-executed and agent-
executed tasks to be seamless. A user may delegate a task
to another person, who then delegates that task to her
CALO. From the perspective of the user, all that changes is
what or who is executing the task, which we indicate with
an icon next to the to-do item: a checkbox for the user’s
items, a 'C' icon for CALO, or another user’s personal icon.
We also change the type of chat that opens when the user
double-clicks on the item:

• User’s to-do: opens the “How may I help you
with…” delegation chat described in the
“Converting to-dos into tasks” section.

• CALO task: opens a task-contextualized chat as
described in the “Chat” section.

• Delegated to another person: in the future this
will open an IM chat with the other person.

User-to-user delegation. Delegating a to-do to another
user transports the entire metadata for the to-do to the other
user; changes to the metadata by the delegatee are then fed
back to the delegator. Thus, when the delegatee marks the
to-do as complete, the delegator immediately sees the to-do
on her own to-do list marked as complete. We don't expect
a to-do-list-based delegation mechanism will supplant e-

mail as the primary mechanism for users delegating tasks
to other users, but the to-do list mechanism does have its
advantages: users get immediate feedback on changes to
the state of the to-do, the delegation is directly linked to the
delegator's own to-do list, a user can use their to-do list to
plan a task prior to delegation (e.g. a user might plan a trip
by creating to-dos for "book flight", "book hotel", "pack
luggage", and then delegate those as appropriate), and to-
do metadata is explicitly transported to the delegatee.

Research by Okamoto showed that agent-assisted
contingency management could potentially result in large
gains in organizational performance; there were also small
gains for increased communication speed (Okamoto et al.
2006). We are exploring both of these potentials by with a
task delegation learning component. Based on
organizational relationships, current workload, task type,
and other features, this component can learn whether or not
a user will accept or reject a task delegated by another
person. We are currently testing a feature that enables a
user to have tasks automatically accepted or rejected on her
behalf, which can reduce interruptions during a period of
high workload and improve response times to the person
delegating the task. In the future we might also use
delegation learning to proactively help a user find someone
who can perform the task.
User-to-CALO delegation. User-to-CALO delegation is
one of the primary goals of Towel and in the "Converting
to-dos into tasks" section we discussed the several to-do-
list-based and chat-based mechanisms we have
implemented.
CALO-to-User delegation. We have not modeled this
type of delegation, but, in the future, we envision that it
will be necessary for the user and CALO working together
towards a shared goal (Allen, Blaylock & Ferguson 2002).
In a reimbursement process, for example, a CALO can
perform many of the tedious tasks of filling out and
submitting forms, but it cannot fulfill legal requirements
such as signing a document. We also envision that CALO
could perform many of the preparatory actions for a task,
such as gathering information for the user to review and
attaching this information to a to-do.
CALO-to-CALO delegation. We also wish to expand the
capabilities of our Task Manager to better support CALO-
to-CALO delegation. Instead of one CALO requesting that
another CALO commit to a meeting on behalf of its user,
we wish to model it as one CALO delegating the "commit
to meeting" task to another CALO. This difference, while
subtle, would enable several improvements to our overall
system: Towel could allow the user to mediate whether or
not the delegated task is accepted, the user would gain
additional privacy, and we could also integrated in
adjustable autonomy technology to control the level of
interruption.

Deployment
Towel has been successfully deployed on several users’
desktops for several months as a to-do list application. It
was also deployed in September 2006 as part of a CALO
evaluation effort lasting two weeks with sixteen test users.
During this deployment, users have been able to use Towel
to manager their to-dos, delegate scheduling and
purchasing tasks to CALO, and run many new tasks
learned during the data collection period. Preliminary
interviews with users have offered some insights into how
to improve Towel, such as providing better feedback than
the thought balloon and rounding out our to-do list
features, and we expect to gain further insight once we are
able to interview these participants after the conclusion of
the data collection effort.

Conclusion and Future Work
We have described Towel, a user interface for task
management that seamlessly incorporates agent-executed
tasks with a user’s own to-do management and leverages
instant-messaging metaphors for communication. We have
described how we have modeled to-dos and tasks to enable
to the user to easily delegate their work to a software
personal assistant and we have shown how the flexibility
of the to-list and instant messaging metaphor has allowed
for the integration of many AI-based components: task
manager, task ontology, task state estimation, calendar
scheduling, task learning, concept learning, task
explanation, duration predication, and task delegation
learning. Although Towel still requires further
development, it has already been deployed for use within
the CALO project.

We have already mentioned several directions of the
future directions for Towel and our task-execution
platform, including more specific task duration
predications, procedure modification within chats, user-to-
user instant messaging, and allowing a broader range of to-
do types (e-mail messages, calendar events, semantic
objects). There are also several other directions based on
current research within the CALO project as well as
feedback we have received from users:

• Sharing knowledge via delegation: We would like
be able to transport any data from the user’s
knowledge base when delegating a to-do. For
example, if Alice wishes for Bob to go over some
interview candidates, all the data about those
candidates, such as e-mail addresses and resumes,
could be transferred to Bob’s knowledge base.

• Understanding to-dos: Using BEAM to map to-do
text into the task ontology has already been useful
for task delegation learning and task state
estimation, and it makes it easier for users to
convert their to-dos into tasks. We hope to
enhance this in the future by using BEAM to

parse parameters within the free-form text so that
they are included when the to-do is delegated to
CALO.

• Task cancellation: We wish to add a “pause” or
“cancel” button as one of our standard chat
buttons for tasks. This will first require
implementing more robust task-cancellation
mechanisms in our Task Manager.

• Location-based to-do lists: We are looking into
implementing location-aware to-do lists using
wireless signal tracking. Some to-dos can only be
performed in a particular location, so Towel
would be able to hide to-dos that are not relevant
to a particular location, provide map-based views
of to-dos, or suggest location-specific tasks. We
are already providing some location-based
reminders, which have been shown to be useful
for mobile phones (Sohn et al. 2005).

Acknowledgements
This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA), through
the Department of the Interior, NBC, Acquisition Services
Division, under Contract No. NBCHD030010. The authors
would like to thank Karen Myers, Aaron Spaulding, Gus
Prevas, Neil Yorke-Smith, David Morley, Victoria Bellotti,
Jim Thornton, Pauline Berry, Bart Peintner, Thomas Lee,
Chris Brigham, Shahin Saadati, Tim Rauenbusch, Tim
Chklovski, Alyssa Glass, Michael Wolverton, Mei Marker,
Josh Levy, Hung Bui, Bill Deans and Cory Albright.

References
Allen, J.; Blaylock, N.; and Ferguson, G. 2002. A Problem
Solving Model for Collaborative Agents, In Proc. of
AAMAS’03.
Bellotti, V.; Dalal, B.; Good, N., Bobrow, D.; and
Ducheneaut, N. 2004. What a to-do: studies of task
management towards the design of a personal task list
manager, In Proc. of CHI 2004, 735-742.
Bellotti, V.; Ducheneaut, N.; Howard, M. A.; and Smith, I.
E. 2003. Taking email to task: the design and evaluation of
a task management centered email tool, In Proc. of CHI
2003, 345-352.
Berry, P.; Conley, K.; Gervasio, M.; Peintner, B.; Uribe,
T.; Yorke-Smith, N. 2006. Deploying a Personalized Time
Management Agent, Proc. of AAMAS’06.
Berry, P.; Gervasio, M.; Uribe, T.; Pollack, M.; and
Moffitt, M. 2005. A Personalized Time Management
Assistant, AAAI Symposium on Distributed and Schedule
Management.
Blythe, J. 2005. Task Learning by Instruction in Tailor, In
Proc. of the Intl. Conf. on Intelligent User Interfaces.

Chklovski, T. and Gil, Y. 2005. An Analysis of Knowledge
Collected from Volunteer Contributors, In Proc. of AAAI-
05.
Georgeff, M., Ingrand, F. 1989. Decision-Making in an
Embedded Reasoning System, In Proc. of IJCAI-89.
McGuinness, D.L. and Pinheiro da Silva, P. 2004.
Explaining Answers from the Semantic Web: The
Inference Web Approach. Journal of Web Semantics 1(4):
397-413.
McGuinness, D.L., Ding, L., Glass, A., Chang, C., Zeng,
H., and Furtado, V. 2006. Explanation Interfaces for the
Semantic Web: Issues and Models. Workshop on
Semantic Web User Interactions, International Semantic
Web Conference. to appear.
Morley, D., and Myers, K. 2004. The SPARK Agent
Framework, In Proc. of AAMAS’04.
Myers, K., and Yorke-Smith, N. 2005. A Cognitive
Framework for Delegation to an Assistive User Agent, In
Proc. of the AAAI Fall Symposium on Mixed-Initiative
Problem Solving Assistants.
Okamoto, S.; Scerri, P.; Sycara, K. 2006. Toward an
Understanding of the Impact of Software Personal
Assistants on Human Organizations, In Proc. of
AAMAS’06.
Rich, C., and Sidner, C. 1998. COLLAGEN: A
Collaboration Manager for Software Interface Agents,
User Modeling and User-Adapted Interaction 8(3/4): 315-
350.
Rich, C.; Sidner, C.; Lesh, N.; Garland, A.; Booth, S.; and
Chimani, M. 2006. DiamondHelp: A New Interaction
Design for Networked Home Appliances, Personal and
Ubiquitous Computing 10(2): 187-190.
Sohn, T.; Li, K.; Lee, G.; Smith, I; Scott, J.; Griswold, W.
2005. Place-Its: A Study of Location-Based Reminders on
Mobile Phones, In Proc. of UbiComp 2005.

