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Abstract—In this paper, the task and user interface modules of a
multimodal dialogue system development platform are presented.
The main goal of this work is to provide a simple, application-in-
dependent solution to the problem of multimodal dialogue design
for information seeking applications. The proposed system archi-
tecture clearly separates the task and interface components of the
system. A task manager is designed and implemented that consists
of two main submodules: the electronic form module that handles
the list of attributes that have to be instantiated by the user, and
the agenda module that contains the sequence of user and system
tasks. Both the electronic forms and the agenda can be dynamically
updated by the user. Next a spoken dialogue module is designed
that implements the speech interface for the task manager. The di-
alogue manager can handle complex error correction and clarifica-
tion user input, building on the semantics and pragmatic modules
presented in Part I of this paper. The spoken dialogue system is
evaluated for a travel reservation task of the DARPA Communi-
cator research program and shown to yield over 90% task comple-
tion and good performance for both objective and subjective eval-
uation metrics. Finally, a multimodal dialogue system which com-
bines graphical and speech interfaces, is designed, implemented
and evaluated. Minor modifications to the unimodal semantic and
pragmatic modules were required to build the multimodal system.
It is shown that the multimodal system significantly outperforms
the unimodal speech-only system both in terms of efficiency (task
success and time to completion) and user satisfaction for a travel
reservation task.

Index Terms—Multimedia communication, natural language in-
terfaces, speech communication.

I. INTRODUCTION

DESPITE recent progress in the areas of speech recognition
and spoken language processing, building state-of-the art

multimodal dialogue systems requires large amounts of develop-
ment time and human expertise. Dialogue and multimodal man-
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agementalgorithmsoften have littlegeneralizationpower and are
not portable across application domains. Our main goal in this
work is to reduce prototyping time and effort by creating appli-
cation-independent tools andalgorithms that automate the design
process and can be used by non-expert application developers.

The majority of spoken dialogue systems in use today imple-
ment information seeking dialogue, i.e., the user is interacting
with the system trying to obtain information from the system
and perform a transaction, e.g., travel information, stocks infor-
mation/banking, movie information and voice portal systems.
Information seeking dialogues implement three main tasks: 1)
elicit the information goal and related attribute-value pairs from
the user, 2) perform database queries with the information sup-
plied by the user, and 3) present query results and allow the user
to navigate through the query results. In addition to these three
main tasks, the user can also constrain or expand the queries
interactively, correct errors, pose clarification questions, and at-
tempt to explicitly modify system beliefs and task definitions.
The majority of the system and user communication goals for in-
formation seeking systems are both application and interaction-
modality independent. The implementation of these commu-
nication goals, however, does depend on modality (and some-
times also on the application). Based on this observation we pro-
pose a system architecture for multimodal dialogue systems that
clearly separates the task and the interface. The task manager is
defined as a sequence of broad communication goals that can be
updated by the user; we call the sequence of goals along with the
interaction context an agenda (motivated by work in [33]). Fur-
ther, a modality-independent dynamic electronic form (e-form)
representation is introduced in the task manager, extending the
work of [8] and [15].

Recent work on rapid prototyping of dialogue systems and
application-independent dialogue management strategies can
also be found in [11]. An alternative approach to spoken di-
alogue system design is the use of an information state that
contains semantic, pragmatic and dialogue information as well
as update rules and dialogue strategies as discussed in [18],
[20], and [24]. The information state approach is powerful and
breaks free of the traditional graph-based dialogue manage-
ment. In this paper, for the purposes of designing information
seeking systems, we have found the use of generalized e-forms
and a graph-based agenda to be general enough, yet, simpler
and more modular.

Another goal of this work is to create an intelligent, effi-
cient and adaptive user interface for information seeking ap-
plications. The system should allow the user to explore data-
base information, modify task definitions and system beliefs,
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and use alternate (user-initiated) routes for completing a task.
Versatility, customizability, cooperation, and supervision (on a
need-only basis) are some of the features of a good interface de-
sign [30], [2]. Our work on spoken dialogue interface design for
information-seeking systems builds on previous work [1], [8],
[9], [45], [33], [22], [35]. In [1], a hierarchical semantic repre-
sentation is used for spoken dialogue systems design. In [33],
[22], dialogue managers are designed using a task definition or
a dynamic agenda (list of tasks). In [9], [8], adaptive initiative
tracking is introduced for spoken dialogue systems.

Multimodal dialogue interfaces [10], [27], [16], [26], [30],
[37] bring the best of two worlds to the user: the navigational
aspect of graphical user interfaces and the declarative aspect of
speech interfaces. Multimodal dialogue system design is not al-
ways done in a principled and efficient manner; often two sep-
arate unimodal systems are built and combined at the semantic,
pragmatic, task and interface level. In addition to inherent in-
efficiencies, building separate systems for each modality can
also lead to inconsistent user interface design across modalities.
In this work, a common semantic and pragmatic representation
across modalities is proposed and implemented. The general al-
gorithms and tools of the semantic and pragmatic modules in
[4] are used for this purpose. In particular, the input semantics
from various modalities are merged by the pragmatic scoring
algorithm introduced in [4]. Taken together, this approach pro-
vides a general process for designing multimodal dialogue sys-
tems for information seeking applications.

The main contributions of this paper are the introduction of
1) a task manager that is clearly separated from the dialogue
manager; the task manager uses dynamic electronic forms and
a dynamic task definition (agenda), 2) a simple and efficient
multimodal system design process that uses common semantic,
pragmatic and task representations across modalities, and 3) an
adaptive multimodal interface that focuses on the synergies be-
tween modalities. These claims are verified by implementing
and evaluating the unimodal and multimodal dialogue module
for a travel reservation application. The spoken dialogue eval-
uation was built and formally evaluated under the auspices of
the DARPA Communicator project. Specifically, the unimodal
(speech-only) system described in this paper is the one used by
Lucent Bell Labs in the 2001 DARPA Communicator evalua-
tion (travel reservation application) [42].

The organization of this paper is as follows: Section II
gives an overview of the system architecture and a review
of the semantic and pragmatic modules. Section III presents
the task manager, which consists of two main submodules,
respectively, described in Section III-A for the electronic forms
and Section III-B for the agenda. Section IV is dedicated to the
spoken dialogue interface which implements the task manager
agenda states. Section V details the multimodal dialogue system
along with the user interface design guidelines, as well as a
prototype implementation. Section VI presents the evaluations
of the algorithms and systems described: Sections VI-A and
VI-B are dedicated to the multimodal system and the spoken
dialogue travel reservation system, respectively. Finally, in
Section VII porting to other application domains and future
enhancements are discussed.

Fig. 1. Raw Data Tree illustrating value ambiguity (departure city Atlanta or
New York) and position ambiguity (New York).

II. ARCHITECTURE AND SYSTEM OVERVIEW

In order to fully illuminate the effects of the multimodal di-
alogue management system, we will first describe the system
context in which the dialogue manager operates. Here we sum-
marize the semantic and pragmatic representations that are de-
scribed more fully elsewhere [4].

The dialogue component of the system is comprised of three
modules (Fig. 2): the semantic module, pragmatic module
and multimodal dialogue module.1 The responsibility of un-
derstanding the user input is divided between the semantic
and pragmatic modules. In a multimodal dialogue setting, the
semantic module handles any modality-specific input (con-
verting either a spoken “September eighth” or typed “9/8” to
a common object format); the pragmatic module works with
modality-independent data structures.

We utilize a series of tree-based ontological structures to hold
information collected from the user, system beliefs and database
replies that match user constraints [3]. A sample tree for the
travel domain can be found in Fig. 1. The four classes of trees
utilized include:

1) Prototype tree (domain ontology): a tree that encodes all
of the is-a and has-a relationships for a domain (e.g., flights
have legs). The other three types of trees are all derived
from this tree.

2) Raw data tree: this tree contains all of the data collected
from user input over multiple dialogue turns. Each datum is
annotated with its collection turn and the modality-depen-
dent confidence score assigned by the semantic module.
It is the semantic module’s responsibility to populate this
tree; the pragmatic module marks items if they are posi-
tion-ambiguous or value-ambiguous.

1A fourth module, the controller module, handles telephony, speech recogni-
tion, text-to-speech, database server and message passing.
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Fig. 2. Architecture of the multimodal dialogue system. Arrows denote the sequence of modules activated in a typical interaction turn.

3) Candidate data tree: this tree encodes the current beliefs
of the system; it is computed from the information in the
raw data tree as well as pragmatic actions, such as im-
plicit confirmation, which increases confidence in an item
without explicit input from the user.

4) Database tree(s): this is a set of (partially instantiated)
trees that hold potential answers to database queries gen-
erated from the candidate tree; in the travel domain, we
might have one tree for each flight so that we can present
different options to the user.

The raw data, candidate data and database trees are similar data
structures to the so called frame representations or feature struc-
tures.

By keeping all of these data structures parallel throughout
the process, our tree-based algorithms can be reused in different
parts of the interaction (form filling versus database navigation).
An important feature of the semantic/pragmatic design is the
ability to hold multiple conflicting constraints within the knowl-
edge structure so that the ambiguities can be resolved. Value
ambiguities arise when conflicting information is gathered in
multiple turns (e.g., when a user corrects an erroneous system
belief) or when the particular input is ambiguous itself (e.g.,
Rochester – Minnesota or New York?). Position ambiguities
arise when the context tracker lacks the ability to place a datum
exactly in one place in the tree (e.g., if “from New York” is mis-
recognized as “for New York”). This ability has consequences
for both the spoken and graphical interfaces described below.

A. Pragmatic Analysis and Scoring

The pragmatic module performs three main tasks: context
tracking, domain-specific inference, and pragmatic analysis and
scoring. The context tracking algorithm is an application-in-
dependent algorithm for adding dialogue context (pragmatic
information in general) to the raw attributes and values ex-
tracted by the semantic module. The domain inference uses
domain specific rules to infer values about attributes (e.g.,
for a “round-trip” the first leg departure and the second leg
arrival city should be the same) and to update the task structure

(e.g., a “round-trip” has two legs). The pragmatic analysis and
scoring algorithm combines all the information supplied by the
user at the acoustic, linguistic, semantic and pragmatic levels,
and produces a rank-ordered list of candidate values for each
attribute along with confidence scores. Evidence for or against
candidate values come from two main sources: evidence de-
rived from the raw data, and evidence derived from pragmatic
considerations by analyzing the interaction. MYCIN style [36]
score update formulas are used to combine evidence from
multiple sources. Pragmatic confidence scores are normalized
to the range , where 1 denotes certainty for the value
correctness, 0 denotes ignorance and denotes certainty for
the value incorrectness. The pragmatic scoring algorithm is
used for combining evidence both in the unimodal and in the
multimodal input case as discussed in Section V. Based on
the confidence score values (and differences between scores)
the system can also detect and resolve semantic ambiguity as
discussed in Section IV-E.

Overall, the semantic and pragmatic representation and algo-
rithms are domain-independent and only use domain specific
data structures (e.g., tree domain ontology) to represent and
argue with task semantics/pragmatics. The representations are
also portable across modalities. For more details on the semantic
and pragmatic modules see [4]. Extensions of the semantic and
pragmatic modules to handle multimodal input are discussed in
Section V.

III. TASK MANAGER

Information seeking applications share a great deal of func-
tionality independent of the input/output modalities, the appli-
cation domain and the system interface design. The main com-
munication goals of an information seeking system are achieved
by the following tasks.

T1 elicit the information goal and the related attribute-
value pairs from the user.
T2 perform database queries using the information sup-
plied by the user.
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T3 present query results and allow the user to navigate
through the query results.

In addition to these main tasks the task manager performs the
following additional subtasks.2

S1 resolve value and position ambiguity interactively.
S2 allow the user to update system beliefs via correction/
clarification interactions.
S3 inform the user about updates of system beliefs.
S4 allow the user to constrain/expand the query (similar to
S2 but more explicit).
S5 allow the user to navigate among different applications
(change information goals) and application states.
S6 allow the user to dynamically update the task definition
(agenda).
S7 provide online help and inform the user about system
functionality.

The complexity and necessity of each of those tasks and sub-
tasks varies significantly from application to application and
from system to system. For example, in web search applica-
tions, there is more emphasis on T3, while for a flight informa-
tion application, T1 is more important. Even for the same ap-
plication, the dialogue manager emphasis may vary depending
on the designer philosophy and resources, e.g., for the travel
reservation application in [44] there is more emphasis on S4,
while in this work we mostly focus on S1-S3. In many spoken
dialogue systems, S5 and S6 functionality is limited or non-ex-
istent. For graphical user interface systems, S1 and S2 func-
tionality is limited because traditional graphical input modali-
ties (keyboard, mouse) rarely introduce ambiguities. The task
and subtasks presented above are not only application-indepen-
dent but also modality-independent; however, the communica-
tion strategy used to achieve these goals is very much modality-
dependent.

The simplest form of a task management algorithm is a graph-
based finite state machine [25]. The finite state machine for-
malism is powerful and is often used for application design inde-
pendent of the modality (interface). However, the traditional fi-
nite state machine formalism has no explicit task model and thus
has little generalization power. Motivated by work in graphical
user interface design, form-based dialogue management was
proposed [15], [8]; the task is described as a series of frames or
forms. The form formalism is powerful and portable across ap-
plication domains and modalities. However, forms and frames
are often too static to describe complex applications. A dynamic
form-based dialogue manager is presented in [33]; the dynami-
cally created and updated form sequence description is referred
to as an agenda.

In this paper, we extend the work on form-based and agenda-
based spoken dialogue management. A clear separation of the
task and interface management modules is proposed; the inter-
face implements agenda tasks. In addition, forms are augmented
with task relevance scores that are dynamically updated by the
user and the system; task relevance scores are used to rank-order
the importance of the attributes in the forms. The electronic
form machinery and agenda task definitions can be dynamically

2Note that these subtasks can be also automatically performed by the system
without a user request.

updated by the user and are application and modality-indepen-
dent.3 The two main components of the task manager the elec-
tronic form and the agenda modules are described next.

A. Electronic Forms

Electronic forms (e-forms) are collections of semantically
consistent attributes; the values of some or all of the e-form
attributes are needed by the system to construct or to constrain
database queries. Forms are commonly used in information
seeking systems with a graphical user interface front-end.
E-forms have been used in spoken dialogue system design
in [15], [9], [8]. In [9], [8], e-forms consist of two pieces of
information: 1) a list of attributes and 2) the “relevance” of
each attribute, i.e., an attribute can be “irrelevant”, “necessary”
or “optional” for a specific task.

In this work, e-forms are extended to include a continuous-
valued (interface-independent) score that is normalized between
0 and 1 and describes the importance of an attribute. We refer to
this score as the task-relevance score.4 An example of an e-form
from the travel reservation domain is shown next.

The e-form is a subtree of the prototype tree, e.g., the e-form
above corresponds to the “trip.flight.leg1” branch shown in
Fig. 1 and contains as attributes all leaves under the “leg1”
attribute. Task-relevance scores are high for “necessary” at-
tributes (e.g., cities) and low for “optional” attributes (e.g.,
time).5 Task-relevance scores are normalized from 0 (“unnec-
essary”) to 1 (“necessary”). Continuously valued relevance
scores are the first step towards introducing dynamic e-forms
described next.

Dynamic e-forms are e-forms with dynamically varying
task relevance scores. The scores are updated based on a set
of system rules and user feedback. The main mechanism for
updating the e-form scores is by attribute-tying, i.e., when
the user specifies the value for one attribute in the e-form

3The implementation of the agenda tasks at the interface level is however
modality-dependent.

4Task relevance scores measure how important it is to instantiate an attribute
in order to perform a “successful” query. Since the success of a query is subjec-
tive (did the user find the information he/she was looking for?) task relevance
scores could be updated/adapted by a user preferences model.

5The notion of “irrelevant” attributes used in [8] refers to attributes that are the
subject of the user query, i.e., what the user is inquiring about, resulting in the
definition of multiple e-forms, one for each possible query subject (e.g., “Where
is X playing?” and “When is X playing” have separate e-form definitions). In
this paper, we avoid this problem: a single e-form is used for each branch of
the ontology tree; the subject of user queries is automatically identified and the
task-relevance of the corresponding attribute is dynamically updated to 0 (“un-
necessary”); the original score is restored once the user query is serviced by the
system.
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the relevance of the tied attribute is reduced. For example,
departure date and arrival date are tied; when the user specifies
the value of one attribute, the other is no longer required (and
thus has a score of 0.0). The user can also reduce or increase
the relevance of attributes in the e-form via the user profile.
The spoken dialogue interface can also update the relevance of
attributes based on user feedback and dialogue progress.6

When the task manager attempts to specify the context and
attribute of the next system-user interaction, the e-form sub-
module is consulted. This submodule rank-orders the relevance
of the attributes based on their (dynamically-updated) scores,
checks to see which is the next most important attribute with an
unspecified or underspecified value and passes it on to the task
manager. When the values for all attributes with task relevance
score greater or equal to a fixed threshold have been specified
(our system uses the value 0.5), the e-form submodule informs
the task-manager that the e-form has been filled.

B. Agenda

The agenda contains the task description and the sequence
of tasks in the system. As in [33], [32], the sequence of tasks in
the agenda can be updated by the task manager. By designing
the agenda tasks to correspond to the main communication
goals of our system we can create a simple agenda state graph
that is application- and modality-independent. As discussed
in Section III, the three main tasks that information seeking
systems perform are elicitation of attribute-value pairs and
e-form filling (T1), database querying (T2), and presentation,
navigation and selection of database query results (T3). These
tasks correspond to three main agenda states labeled “fill”
(T1), “dbQuery” (T2), and “navigate” (T3), respectively, in our
system. In addition, the agenda contains the dialogue context
for each of these agenda “states”. An example of the agenda for
a flight reservation system is shown next.

In addition to the tree main states, the agenda also contains the
generic “start” and “summary” states, along with the “verify”
and “create” states for e-form values verification and new form
creation, respectively. In the travel reservation example above,

6For example the spoken dialogue system will reduce the relevance of an
attribute by a fixed amount if the user replies “I don’t care” or does not provide
a value to an explicit prompt eliciting the value of this attribute. The motivation
for this strategy is to avoid the user getting “stuck” trying to provide values for
optional attributes. The score update rules are empirically defined and no formal
evaluation has been performed.

form creation refers to the optional (user-initiated) creation of
a “trip.flight.leg2” return flight leg e-form. The agenda entries
describe the sequence of tasks that have to be performed by the
system to service an information query. The tasks are encoded
in the agenda in time-of-service order; top states get serviced
first by the system. However, the user has the option to alter
the sequence of states or transition between states. For example,
the task manager allows for transitions from the “navigate” to
the “fill” state, i.e., the user is allowed to change the e-form at-
tribute values and pose a new query. The implementation of each
of the agenda states is interface dependent. For example, the
“verify” state is not implemented for GUI interfaces; “verify” is
implemented as an explicit confirmation prompt in the spoken
dialogue interface. Although the implementation of the agenda
states is modality-dependent, the list of agenda states is both ap-
plication- and modality-independent.

The agenda can be dynamically updated by the user when
the “create” agenda state is reached (system-initiated) or at
any point in the interaction (user-initiated). For example, the
user might say “one-way trip”, in which case the agenda items
(“trip.flight.leg2”,“fill”) and (“trip.flight.leg2”,“verify”) will be
deleted (i.e., “round-trip” restores the agenda to its previous
state). These application-specific user actions on the agenda are
“hidden” in the application-dependent “domain knowledge and
inference” submodule, which is part of the pragmatic module
[4].

An example of how the sequence of agenda states is used to
define the interaction flow, along with the conditions for transi-
tions between agenda states is shown in Fig. 3. From the generic
“start” state the application passes to the “fill” state where the
values of the attributes in the e-form are “filled” by the user.
Once all the required e-form values have been unambiguously
filled, the system passes on to the e-form “verify” state. When
the e-form values are confirmed by the user, the next e-form is
created (at the “create” state) if applicable. Once all e-forms are
filled and confirmed, the system transitions to the “dbQuery”
state where a database query is constructed and serviced. The
results from the database query are presented to the user at the
“navigate” state. The user is allowed to view and select results,
or modify the query. A “summary” of the selected results is also
given to the user. The explanation for each of the conditions in
the state transitions is given in the table shown next.

The implementation of the agenda states described above is
modality dependent. For example, as discussed in Sections IV,
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Fig. 3. Dialogue flow using Agenda States. Conditions for transitions between
states are also shown, e.g., “isFormFull() = T” when the e-form values for
the specific agenda context are unambiguously specified by the user (T = true,
F = false).

V the “verify” state is implemented with an explicit confirma-
tion prompt in the unimodal speech interface, while the state is
skipped in the multimodal “click-to-talk” interface implemen-
tation (i.e., “isFormCorrect()” is always true). Note that in addi-
tion to the agenda states there is a list of system actions and user
requests that are interface-dependent, e.g., information requests
and change requests. These modality-dependent actions along
with the speech interface implementation of the agenda states
are discussed in the next section. The multimodal interface im-
plementation is discussed in Section V.

IV. SPOKEN DIALOGUE SYSTEM

The spoken dialogue manager promotes mixed-initiative
system-user interaction. All types of user requests and user
input are allowed at any point in the dialogue, i.e., the full
application grammar is active throughout the interaction. The
system prompts are focused and try to elicit specific infor-
mation from the user, e.g., the value of an attribute. Explicit
confirmation is used only to confirm the elicited attribute-values
at the e-form confirmation state (“verify” state in Fig. 3); im-
plicit confirmation is used in all other cases throughout the
interaction. We have found this combination of system-initiated
and user-initiated dialogue to provide a good balance for both
naive and experienced users.

In the next subsections, we present the spoken dialogue man-
ager submodules in detail. The following submodules (labeled
with the corresponding task/subtask identifiers from Section III)
are described: e-form filling (T1), database result navigation
(T3, S4), information/change requests (S2, S3), focus change

requests (S5), ambiguity resolution strategies (S1), and natural
language generation.

A. Form Filling Implementation

In this section, we discuss the spoken dialogue implementation
of three agenda states namely “fill”, “verify” and “create” that
correspond to the filling (adding values), the verification and
the creation of e-forms, respectively. The implementation of
the “fill” agenda state in the spoken dialogue system uses the
machinery of the electronic form submodule introduced in
Section III-A. Specifically, the spoken dialogue system elicits
the values of the attributes in each e-form one by one, in
sequence of “task-importance” by asking explicit questions
for the value of an attribute, e.g., “What is the arrival city?”.
At any point in the interaction, the user is allowed to specify
attribute-values that are not explicitly requested by the system
or to correct/modify the values of attributes (i.e., update system
beliefs). At each turn the spoken dialogue system also informs
the user of updated system beliefs (implicit confirmation).
Ambiguity is resolved via explicit disambiguation questions
posed by the dialogue manager during the “fill” agenda state,
e.g., “Was the arrival city Boston or New York?” (see also
Section IV-E).

Examples of “fill” agenda state interactions are shown in the
three examples of Table I from the June 2000 DARPA Commu-
nicator evaluation. In the first example, an experienced user en-
ters all information in one turn; there are no speech recognition
errors. The second and third examples are more typical exam-
ples where there is ambiguity (due to user input or recognition
errors). The explicit and implicit ambiguity resolution mecha-
nisms are shown. In addition, the task manager strategy for ac-
quiring the values of attributes in order of importance is shown:
first the system elicits information about cities, then about dates
and times (as specified in the e-form example of Section III-A)
using explicit requests. At any point in the interaction, the user
can specify values for additional attributes, e.g., “I wanna depart
from La Guardia [uh] next Saturday in the early morning” or
modify attribute-values, e.g., “no, not Portland Oregon, Frank-
furt Germany”.

Once all the required attributes in the e-form have been un-
ambiguously instantiated, the task manager moves on to the
“verify” agenda state, as shown in Fig. 3. The “verify” state is
implemented in the spoken dialogue system as an explicit yes/no
confirmation question on all the elicited attribute-value pairs.
An example is shown in the first dialogue fragment of Table II
from the 2001 DARPA Communicator evaluation. In the ex-
ample, the user replies “no” to the explicit confirmation and
the system enters into an error correction subdialogue where the
user is requested to change the value of one or more attributes.
When the attribute-value is successfully updated via a change
request (see Section IV-C) the system asks the explicit confir-
mation question again with the updated attribute-values.

Once the values of an e-form are verified by the user the
system moves on to the “create” agenda state. The “create”
agenda state is implemented in the spoken dialogue interface as
an explicit e-form creation “yes”/“no” question, e.g., “Would
you like a hotel in Orlando” or as an explicit question eliciting
an attribute-value from the new e-form, e.g., “Where would
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TABLE I
THREE DIALOGUE FRAGMENTS FROM THE JUNE 2000 DARPA COMMUNICATOR EVALUATION. S = System Utterance, U = Recognized User Utterance.

THE AGENDA STATE, AGENDA CONTEXT AND SYSTEM COMMUNICATION GOALS ARE SHOWN FOR EACH UTTERANCE. THE FIRST EXAMPLE

SHOWS AN EXPERIENCED USER INTERACT WITH THE SYSTEM. THE SECOND EXAMPLE DEMONSTRATES VALUE AMBIGUITY RESOLUTION. THE THIRD

EXAMPLE DEMONSTRATES ERROR CORRECTION USING A CHANGE REQUEST

you like to go next?” as shown in the two examples of Table II.
Note that the “create” agenda state can be skipped based on
user input, e.g., in the first dialogue fragment of Table I the
user specified “one-way trip” in which case the second and
third flight leg entries are deleted from the agenda. This agenda
modification actions are domain dependent and are “hidden”
in the “Domain Knowledge and Inference” submodule of the
pragmatic module.

B. Database Results Navigation Implementation

The implementation of the “navigate” state for the spoken di-
alogue interface allows the user to browse through a rank-or-
dered list of database results or to modify the query constraints.
In addition, the user is allowed to request information or select
an item in the result list. Given the limited interaction bandwidth
of spoken dialogue interfaces and the large amount of informa-
tion that has to be communicated to the user (typically there
are many database hits), special care was taken to present re-
sults to the user in order of importance, i.e., results that better
fit the query constraints and the stereotypical user model pref-
erences are presented first. Database query results are ordered

(and re-ordered on the fly based on user input) using the fol-lowing
cost function:

(1)

where is the cost of selecting the th database query result,
is the value of the th attribute of the th database query

result, is the user specified value of the th attribute,
is the distance between the two values and is the weight
(importance) assigned to attribute by the user. Both and

can be implicitly or explicitly modified by the user. can
be specified by the user at the user profile. Note that and
are application specific.

Typical user requests for the “navigation” agenda state of the
travel reservation application are “next flight” or “get me an ear-
lier flight”. The “next flight” request presents the database query
result with the lowest cost that has not yet been presented
to the user. The “earlier flight” request updates the query con-
straints and causes a “re-order database results” operation; the
best match (lowest cost) in the result list based on the new con-
straints is presented to the user. An example interaction is shown

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on January 17, 2009 at 21:48 from IEEE Xplore.  Restrictions apply.



POTAMIANOS et al.: INFORMATION SEEKING SPOKEN DIALOGUE SYSTEMS II 557

in the second dialogue fragment of Table II where the user re-
quests a “later flight”. The user can also request a new flight
search or modify the travel cities or travel dates; in both cases
the system goes back to the “fill” agenda state as shown in Fig. 3
(see also Section IV-D).

C. Error Correction and Information Requests

In addition to the basic functionality described in the pre-
vious sections, the spoken dialogue system user interface was
enhanced with the following (interface-specific) request types:

• Information requests: requesting the value of a specific at-
tribute, e.g., the user requests “what is the departure city?”,
to ascertain the value of the departure city attribute. These
requests were available both in “fill” and in “navigate”
agenda states.

• Clear requests: deleting the values for a specific attribute,
e.g., “clear the departure city”, forces the removal of all
candidate values for a given attribute.

• Freeze requests: inhibiting the system from further
changing the value of a particular attribute, e.g., “freeze
the departure city”.

• Change requests: explicitly requesting to change the value
of an attribute to a new value, e.g., “change Atlanta to New
York”, “change the departure city to New York”, or “not
Atlanta, New York”. The system clears all previous values
for the specific attribute and creates a new candidate value.
Change requests are mostly used in the “verify” and “fill”
agenda states.

In practice, the clear and (especially the) freeze requests were
not used much by the users. However, the information and (es-
pecially the) change requests were used often and significantly
enhanced the spoken dialogue interface. Information requests
were especially useful in the “navigate” state. Change requests
were a useful tool in the “fill” state for resolving value ambiguity
and in the “verify” state to correct the values of attributes. Naive
users, however, did not expect these advanced system capabili-
ties; the features had to be advertised in the system tutorial.

Information, clear, freeze and change requests are serviced
within a single dialogue turn by the system. Semantic and prag-
matic analysis of change requests is especially challenging. The
application-independent implementation of these request types
in the semantic and pragmatic modules is presented in [4].

Examples of change requests are shown in the third dialogue
fragment of Table I and first dialogue fragment of Table II. The
first example is an indirect change request: “No, not Portland
Oregon, Frankfurt Germany” that happens during the “fill”
agenda state. The second example is an explicit change request:
“Change the date September 27th” that happens during the
“verify” agenda state. In both cases, the user is able to quickly
update system beliefs without entering in a long error correction
subdialogue.

D. Focus Change Request Implementation

Focus change requests are implicit or explicit user requests
that attempt to change the dialogue context, i.e, navigate among
different application states. Examples of explicit focus change
requests in our spoken dialogue system are: “start over”,
“modify query”, “go back to the first leg”, “let’s first make a car

reservation”. Once the system detects a focus change request
it first acknowledges the request and then either 1) services the
request immediately, e.g., “Going back to the first leg … ”, 2)
requests explicit confirmation, e.g., “Are you sure you want to
start over?”, and 3) acknowledges the request and informs the
user that it will not be serviced, e.g., “Let us first complete your
flight reservation …”. Servicing a focus change request consists
of a change of agenda context and agenda state (note that for all
of the above examples the new agenda state is “fill”). The most
common focus change request in the 2000/2001 evaluation data
is “start over”; the rest of the focus change requests were rare.

E. Ambiguity Resolution Strategies

As discussed in [4], pragmatic confidence scores are used to
detect value ambiguity, i.e., when the value of an attribute is
not known with certainty. Pragmatic confidence scores are de-
termined based on user input, dialogue history and pragmatic
analysis. The pragmatic and context tracking modules attempt
to resolve value and position ambiguity (respectively) using al-
gorithms and rules discussed in [4]; if this fails, ambiguities are
passed on to the dialogue manager for resolution. In our system,
we consider the value of an attribute to be unambiguously
known if its pragmatic score 1) is the highest among all
candidate values of attribute , 2) is above a threshold , and
3) the difference between and the next best candidate score
is above a threshold . Our current system uses the settings

, .
Once ambiguity is detected, it is up to the dialogue manager

to decide when and how to best resolve the ambiguity. Typically
the dialogue manager will attempt to resolve it as early as pos-
sible, either using implicit confirmation, explicit confirmation or
direct disambiguation subdialogues. The selected disambigua-
tion method depends on the “degree” and “importance” of the
existing ambiguity, i.e., how close are the pragmatic scores and
score differences to the thresholds and and how impor-
tant are the attribute-values in question for the successful com-
pletion of the task. Specifically, in the “fill” or “verify” agenda
state and a value or position ambiguity is detected the system
will attempt to resolve the ambiguity in the next dialogue turn
by asking an explicit disambiguation question. An example is
shown in the second turn of the second dialogue fragment of
Table I. However, for the “navigate” agenda state the system
does not try to resolve value and position ambiguity; instead the
system re-orders the database query results based on all avail-
able input from the user and presents the best result to the user
(see Section IV-B). Ambiguity resolution can also be initiated
by the user, e.g., by a change request (see Section IV-C).

F. Natural Language Generation

The natural language generation submodule is template
based. For each type of prompt (e.g., explicit confirmation,
implicit confirmation, value disambiguation) a template is built.
Most templates are application and attribute dependent (e.g.,
information request prompts). Others (e.g., value disambigua-
tion, implicit confirmation) are more general. The detailed
discussion of the natural language generation module used
in the 2000/2001 DARPA evaluation system does not present
much research interest and is beyond the scope of this paper.
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TABLE II
TWO DIALOGUE FRAGMENTS FROM THE 2001 DARPA COMMUNICATOR EVALUATION. S = System Utterance, U = Recognized User Utterance.

THE FIRST FRAGMENT IS AN EXAMPLE OF A CORRECTION SUB-DIALOGUE WHERE CHANGE REQUESTS ARE USED TO QUICKLY UPDATE SYSTEM BELIEFS.
THE SECOND DIALOGUE FRAGMENT IS A DATABASE RESULT NAVIGATION EXAMPLE

Examples of prompts can be seen in the dialogue fragments
of Tables I and II. However, a novel experimental natural
language generation system that is application independent
was independently tested with the Communicator system and
is presented in [14].

G. Dialogue Flow Examples

The sequence of agenda states and the conditions for tran-
sitions between states used in the spoken dialogue system are
shown in Fig. 3 and are illustrated in Tables I and II, which list
dialogue fragments from the 2000 and 2001 DARPA Commu-
nicator evaluation campaigns. The dialogue fragments are la-
beled with agenda state and context information that identify
the agenda states shown in Fig. 3. For a formal evaluation of the
spoken dialogue interface for the travel reservation application,
see Section VI.

V. MULTIMODAL DIALOGUE SYSTEM

The Communicator task manager and the spoken dialogue
system have been designed to be domain and modality-indepen-
dent: consequently, adding the visual modality required only a
few enhancements that proved easy to design and implement.
We describe next how the semantic and pragmatic modules were
updated and how the graphical user interface (GUI) was built.
The visual input modalities are keyboard and mouse input in a

desktop environment, or pen and graffiti input in a personal dig-
ital assistant (PDA) environment. The visual output modalities
are text and graphics.

A. Semantic and Pragmatic Modules

The semantic representation used for both the visual and
speech interfaces is identical. The semantics of the application
(encoded in the prototype tree) are unchanged since the visual
interface has the same functionality as the speech interface. The
raw data and candidate data trees now encode the instantiated
joined semantics of the visual and speech modalities. The GUI
parser is the recursive finite-state parser used in the unimodal
Communicator with an augmented grammar. In addition to
spoken forms the GUI parser understands abbreviations such
as “10/3/02” for date or “15:00” for time. For details see [4].

The context tracking, domain act classification and prag-
matic analysis algorithms developed for the speech modality
are also used for graphical input, although, in practice only a
small subset of their functionality is exercised. The pragmatic
scoring algorithm introduced in [4] is also unchanged. It has
been designed to allow integration of any type of evidence for
or against candidate values and thus provides a very useful
framework for merging often conflicting information collected
from the two input modalities: given multiple candidates for a
given attribute, we update the pragmatic confidence score for
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Fig. 4. (a)-(b) “GUI-only” interaction mode screen-shot examples for flight/hotel tab panes. (c)-(e) “open-mike” and “click-to-talk” interaction modes examples
(user input: “From New York to Chicago on April 25”).

each candidate using MYCIN style formulae as in the single
modality case [36], [4]. The only difference is that now the
initial confidence scores for values entered via the GUI are
much higher than corresponding values provided by the speech
recognizer. Similarly, the ambiguity detection, representation
and resolution algorithms are identical for both the unimodal
and the multimodal Communicator.

For example, consider two pieces of information supplied
by the user: speech input “July fifth” and GUI input “7/10”
(both for interaction context “trip.flight.leg1.departure.date”).
The speech and GUI parser/interpreter processes the input
and produces two raw attribute-value pair candidates, namely
(“date”, “July 5, 2005”) and (“date”,“July 10, 2005”). The
context tracker and pragmatic scoring modules are then applied
to produce the pairs (“trip.flight.leg1.departure.date”, “July 5,
2005”) and (“trip.flight.leg1.departure.date”, “July 10, 2005”),
with pragmatic confidence scores 0.4 and 0.85, respectively.7

Both candidates are placed on the candidate data tree along
with their updated scores. Based on the (large) difference
of the pragmatic scores the system argues that the attribute
“trip.flight.leg1.departure.date” is unambiguously instantiated
with value “July 10, 2005”. Future speech or GUI user input
can alter the values of the attributes and their corresponding
pragmatic scores.

7The pragmatic scoring algorithm assumes that the original modality-depen-
dent confidence scores for speech and GUI input are 0.5 and 0.9, respectively,
where 1 denotes certainty and 0 ignorance of the true value. Due to the con-
flicting nature of the evidence, the scores are then updated to 0.4 and 0.85, re-
spectively, (assuming that no other evidence exist for the attribute “trip.flight.
leg1.departure.date”). The algorithm for updating the pragmatic scoring algo-
rithm is described in detail in [4].

As originally intended, the Communicator pragmatic module
design proved to be a natural and efficient way of combining
information from different input modalities.

B. Graphical User Interface

The GUI forms are generated automatically from the proto-
type tree, the e-form definition and the agenda in the Commu-
nicator task manager. The e-form that generates the GUI form
shown in Fig. 4(a) was given in Section III-A.

Note that the fields in the GUI are ordered automatically ac-
cording to the e-form score that encodes the “task-relevance” of
an attribute.8 Flight reservation, hotel reservation and car rental
forms are accessible as separate tab panes (see Fig. 4).9 Nav-
igation to different flight legs is implemented with buttons at
the bottom of the form. Selected attribute fields, e.g., “depar-
ture time”, “airline” and “car rental company” are implemented
as a combo box, i.e., a pull-down menu that contains all possible
values. The combo box automatically pops up when it comes
into focus, i.e., when the application manager expects that the
user is going to provide information about this attribute. Only
attribute fields that have less than ten value options were imple-
mented as combo boxes.

8It is arguable whether the grouping should be derived from the e-form score
or determined from semantic coherence, e.g., all “date” fields grouped together.
To give more freedom to the designer the system allows for a manual re-ordering
of the fields. This option was used in Fig. 4 to bring the “airline” field to the
bottom of the form.

9In general, parent nodes of forms in the domain ontology tree are now im-
plemented as tab panes. This is consistent with GUI design principles and with
the formalism that parents of forms represent different domains within an appli-
cation. This information is extracted and dynamically updated from the agenda.
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Value ambiguity is shown as a pull-down box with a list of
choices and highlighted in red; position ambiguity and error
messages as represented in the GUI as pop-up windows. Fields
and buttons that become inaccessible in the course of the inter-
action are “grayed out”. Finally, the context (or focus) of the
interaction is highlighted in yellow.

In Fig. 4(a)-(b), GUI screen-shots for “GUI-only” interac-
tion mode are shown, highlighting the flight and hotel reserva-
tion tab panes, respectively. Note that for consistency with the
multimodal user interfaces we have added a speech activation
button at the bottom of the GUI; this button is disabled in the
“GUI-only” interaction mode. In Fig. 4(a) note the combo box
automatically pops up when “ trip.flight.leg1.departure time”
comes into interaction focus. Additional information about the
design of the multimodal user interface can be found in the next
section.

C. Multimodal User Interface

A fundamental issue when designing multimodal systems is
the choice, integration and appropriate mix of input and output
modes in the user interface [5], [27], [26], [30]. Few guidelines
exist for selecting the appropriate mix of modalities [5], [6]. It
is clear, however, that a spoken language interface is not always
the best choice. This is especially true for system output, where
speech plays a secondary role to visual input (with the excep-
tion of hands-free, eyes-busy applications). It is often the case
when designing multimodal user interfaces, that the developer
is biased either towards the speech or the visual modalities. Our
goal is to follow an approach that respects both modalities, cre-
ating an interface that is both natural and efficient. The first
step towards the seamless integration of the input and output
modalities is a consistent user interface: the GUI represents
system state and possible actions (including those specific to the
speech-modality). A second important step towards a truly mul-
timodal experience is creating a user interface that utilizes the
synergies between the input and output modalities, e.g., using
visual feedback from the speech recognizer (including possible
ambiguities).

Consistency is maintained via: 1) a common semantic rep-
resentation, 2) the use of e-forms as the building block for the
application manager for both modalities, 3) a multimodal prag-
matic scoring algorithm (as described in the previous section),
and 4) common system functionality via the speech or the vi-
sual modalities. More importantly, the modalities have been in-
tegrated in a way such that the user has the freedom to pick and
choose the modality of preference. A short list of synergies be-
tween the speech and visual modalities as manifested in the mul-
timodal Communicator follows: 1) the system semantic state is
represented visually, 2) speech prompts are thus significantly
shorter, mostly used to emphasize visual information, 3) speech
recognition errors are easily corrected via the GUI, 4) position
and value ambiguities are displayed visually and are easily re-
solved via the GUI, 5) the focus (or context) of the dialogue is
highlighted visually and can easily be changed via the GUI, 6)
the GUI takes full advantage of speech-interface “intelligence”,
and 7) conflicting GUI and speech input are seamlessly inte-
grated via the pragmatic scoring algorithm.

Examples of the seamless integration between the visual
and speech modalities are shown in Fig. 4. In Fig. 4(a), the
semantic state is displayed visually; attribute-value pairs (“de-
parture city”, “New York City”), (“arrival city”, “Chicago”)
and (“departure date”, “7/18/05”) are derived from the user
input. In addition, the “arrival date” field is disabled since the
“departure date” is specified by the user (using the intelligence
of the speech interface) and the focus of the next dialogue turn,
i.e., “departure time”, is highlighted.

D. Multimodal Interaction Modes and Systems

Two different multimodal (MM) interaction modes have been
implemented for combining the visual and speech modalities,
namely: “click-to-talk” and “open-mike”. “Click-to-talk” mode
assumes that visual input is the default input modality and al-
lows users to switch to the speech modality by clicking on a
speech activation GUI button. “Open-mike” mode assumes that
speech is the default input modality and allows the user to switch
to visual input by clicking on the GUI.

Next we discuss the implementation of the MM modes in de-
tail. The output interface is common for each interaction mode
to allow us to better investigate the effectiveness of the “op-
timum” input modality mix. The visual output is identical to
the “GUI-only” mode output. Audio output prompts were sig-
nificantly shortened compared to the unimodal “speech-only”
case. Specifically, implicit confirmation prompts were not used
in the MM case where confirmation was efficiently done via the
visual modality. In addition, form creation prompts and explicit
confirmation prompts were significantly shortened or not used
at all depending on the interaction context. Finally, information
request prompts were shortened (typically to the name of the at-
tribute requested, e.g., “Departure city?”).

Note that in all multimodal modes only one modality is active
at a time, i.e., the system does not allow for concurrent multi-
modal input.10 In our current MM implementation, visual input
is not allowed (GUI is “greyed-out”) while speech input is se-
lected and speech activity is detected.

1) Click-to-Talk Mode: By default the system expects input
via the GUI; the user can provide spoken input by pressing the
“Speech Input” button on the GUI. Upon being pressed, the
“Speech Input” button turns red (indicating that the speech rec-
ognizer is active), the speech prompt is stopped (barge-in event)
and the GUI is disabled (“grayed-out”) for the duration of the
speech recognition event. At the end of the speech input turn the
system returns to the default GUI input state.

2) Open-Mike Mode: By default the system is listening for
spoken input (“Speech Input” button is yellow). When voice ac-
tivity is detected (a simple voice activity detector (VAD) algo-
rithm is used for this purpose) the “Speech Input” button turns
red, the GUI is disabled and the speech recognizer is activated.
Upon completion of the speech recognition event the system re-
turns to the “waiting for speech input” state. The user can pro-
vide visual input by clicking on the GUI area. Once GUI input is
completed the system returns to the default “waiting for speech
input” state.

10For many information-seeking/form-filling MM applications this is not a
major limitation, but see Section VII for some thoughts on how concurrency
may be achieved with modest extensions.
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In Fig. 4(c)-(e), examples of the MM modes are shown. Ini-
tially the interaction focus is on “departure city”, the speech
modality is selected and the system goes to the “waiting for
speech input state” state. The speech user input “from New York
to Chicago on Monday” activates the speech recognizer (VAD
event) and the GUI becomes disabled. The ASR event completes
and the GUI is updated with the recognized information. For the
next turn, visual input is selected by the user and the system goes
to the GUI input state.

VI. EVALUATION

In this section, we present the results of the spoken dialogue
and multimodal system evaluation. The spoken dialogue system
was evaluated for a travel application under the auspices of the
DARPA Communicator program in the 2001 evaluation [42].
The multimodal (speech and GUI) systems were implemented
and evaluated (independently) also for the travel reservation
task. The “click-to-talk” and “open-mike” multimodal systems
were evaluated and compared with the unimodal speech-only
and GUI-only systems. Both objective and subjective evalua-
tion criteria were used.

A few notes on the audio platform used in the spoken dialogue
and multimodal evaluation campaigns. 1) The automatic speech
recognizers (ASR) employed both for the spoken dialogue and
the multimodal evaluation were identical. The Bell Labs ASR
[47] was used with state-of-the-art tied triphone acoustic models
and a class-based trigram language model (a single grammar
was used for the whole application).11 Because the ASR en-
gine did not produce word level confidence scores, default con-
fidence values of 0.5 and 0.9 were assigned for speech and
graphical input, respectively, by the pragmatic scoring algo-
rithm [4]. 2) The text-to-speech synthesizer (TTS) employed in
the spoken dialogue evaluation used concatenated pre-recorded
prompts and when such prompts were unavailable the Bell Labs
TTS system was used instead [47]. The FreeTTS system [13]
was used throughout the multimodal evaluation experiments.

A. Spoken Dialogue System Evaluation

In this section, we present evaluation results for the travel
reservation system based on data collected during the DARPA
Communicator 2001 evaluation campaign. The evaluation was
performed over a period of six months; during this period 215
calls were made by 28 paid subjects. Callers were also asked
to judge whether the task was successfully completed and to
answer a set of five user satisfaction survey questions on the
system usability based on the NIST-derived Likert paradigm
[19], [38]. Among the 215 dialogues collected, we present
results for 139 dialogues for which user survey data exists. For
the assigned task of finding a suitable travel itinerary 115 out
of the 139 interactions examined were judged successful by the
user; a 83% perceived task completion (PTC) rate. Note that
about half of the task failures were due to database back-end

11Note that the much worse ASR performance in the multimodal evaluation
compared to the spoken dialogue evaluation (Communicator) was due to the
different speaker population used: native speakers for the Communicator vs.
non-native speakers for the multimodal evaluation.

TABLE III
OBJECTIVE AND SUBJECTIVE DIALOGUE METRICS

failures,12 excluding database failures the task completion rate
was 91%.

Objective dialogue metrics computed for each dialogue
included dialogue duration, the number of user turns, the
number of user words, the number of user words per turn, the
number of user concepts and the number of user concepts per
turn. Additionally, accuracy metrics, such as word and concept
error rates, were computed both at the word and sentence
level. Each metric was computed directly from corresponding
log files with the exception of concept accuracy. The concept
accuracy error rate (CER) was computed by comparing the
output of the semantic parser for the recognized and transcribed
user utterances, respectively. Sentence CER was computed as
the percentage of sentences with at least one concept error.
Mean value and standard deviation of each objective dialogue
metric are shown in Table III as a function of (perceived)
task completion. As expected, task-completed dialogues have
a longer dialogue duration and a larger number of user turns.
However, the number of user words and user words per
turn is larger for task-incomplete dialogues. In [40], it was
shown using the PARADISE evaluation framework across all
Communicator systems that user satisfaction correlated best
with task completion, task duration, turn duration and word
accuracy.

In the second part of Table III, the mean and standard varia-
tion of the Likert scores in the user survey are shown as a func-
tion of perceived task completion. The user survey consisted of
the following five questions which were rated from 1 to 5 (5
being strong agreement):

1) “In this conversation, it was easy to get the information that
I wanted” (Easy to Get Info),

2) “I found the system easy to understand in this conversa-
tion” (Easy to Understand),

3) “In this conversation, I knew what I could say or do at each
point of the dialogue” (Know What to Say/Do),

12The database back-end used live data obtained from the internet;
back-end failures were due to internet service outages or unavailable data
feed.
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TABLE IV
OBJECTIVE AND SUBJECTIVE METRICS FOR UNIMODAL AND MULTIMODAL SYSTEMS

4) “The system worked the way I expected it to in this con-
versation” (Know What to Expect), and

5) “Based on my experience in this conversation using this
system to get travel information, I would like to use this
system again” (Future Use).

All subjective scores are significantly higher when the task is
completed.

Overall, the dialogue system was judged favorably by
evaluation users despite the relatively high word and concept
error rates (24% and 18%, respectively). The (perceived) task
completion rate was satisfactory at 83% (91% when database
failures were excluded) but low compared to commercial
systems that use system-initiated dialogue for simpler tasks.
Our system also performed comparably to the rest of the travel
reservation systems in the DARPA Communicator project 2001
evaluation (see [39], [41], [42]). Overall, the evaluation results
show that our system based on general application-independent
algorithms for task and dialogue management can achieve
state-of-the art performance. For more details on system eval-
uation see [21] and for the DARPA Communicator evaluation
in general see [39], [41], [42].

B. Multimodal Dialogue System Evaluation

In this section, we evaluate the multimodal dialogue system
performance of both the click-to-talk and open-mike systems,
and compare it with the unimodal systems (speech-only,
GUI-only). This evaluation is not part of the official DARPA
Communicator evaluation and was performed by ten non-na-
tive English-speaking users that were asked to complete
five travel reservation scenarios of varying complexity:
one/two/three-legged flight reservations, round-trip flight with
hotel reservation, round-trip flight with car reservation. Eval-
uation took place in an office environment with all software
(spoken dialogue system, speech platform, visual interface)
running on a desktop P4 computer. The ten users evaluated all
four systems on all five scenarios (a total of 20 runs per user).
Users did not have prior experience using spoken dialogue
systems. Systems were evaluated in random order.

Each user was given a short introductory document ex-
plaining the task, the scenarios, the four systems that were

being evaluated and the subjective evaluation questions. The
user was then asked to complete a simple demo scenario using
all four different systems. The demo scenario included example
phrases that could be used to interact with the speech interface
and examples of how to use the system barge-in capability.
The 15 minute introduction, was followed by the 20 evaluation
runs. The user was asked to fill out a questionnaire (used for
subjective evaluation) after each run. The user survey used was
identical to the one used in the official DARPA Communicator
evaluation. Upon completion of all experiments an exit inter-
view was conducted. The results from the evaluation objective
and subjective measures for all four systems are shown in
Table IV.

Objective evaluation metrics are shown in the top part of
Table IV. For each interaction mode we measure percentage of
scenarios completed, percentage (of number of turns) of usage
of the speech and visual input modalities, task and turn dura-
tion statistics. Note that duration statistics are computed only
for completed scenarios. In terms of task completion, all modes
are equivalent (no statistical significant difference) with the ex-
ception of the “speech-only” mode which performs significantly
worse. In terms of task and turn duration, the “GUI-only” mode
is the fastest, followed by the multimodal modes (no significant
difference among them) and the much slower “speech-only”
mode. Note that the lack of efficiency of the “speech-only” in-
terface is partially due to the large (over 40% word error rate)
speech recognition error rates for the non-native speakers eval-
uation population. Compare the 62% task completion result for
this experiment with 91% task completion for DARPA Com-
municator evaluation in the previous section (we have excluded
database errors to make a direct comparison).

The results from the subjective evaluation of the four sys-
tems are shown in the bottom part of Table IV. The mean and
standard deviation of the Likert scores are shown for each of
the five questions in the evaluation questionnaire. Results are
shown only for the successfully completed tasks. Note that the
95% confidence interval of the mean subjective metric value
is for individual questions and

for the overall score. In terms of subjective scores, the
“GUI-only” system significantly outperforms all other systems.
The multimodal systems outperform the “speech-only” system
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in terms of subjective measures. Note that the “speech-only” in-
terface subjective scores are similar to the scores of the DARPA
Communicator evaluation in the previous section.13

Overall, we have found that 1) “GUI-only” was the most ef-
ficient interaction mode in terms of task completion and task
duration, 2) the multimodal systems clearly outperformed the
“speech-only” systems both in terms of objective and subjec-
tive measures, and 3) among the multimodal modes there was
no statistical significance in terms of objective measure perfor-
mance. Given the low speech recognition accuracy and the avail-
ability of the very efficient keyboard input in the GUI interface
the above results are not surprising.

Note that the evaluation results presented above are only a
single measurement point for the given application task, inter-
face implementation and efficiency of the speech and GUI input
modalities. The results could be very different (for the same sys-
tems) implemented on a personal digital assistant (PDA) rather
than the desktop, where the efficiency of the GUI modality is
reduced due to more cumbersome keyboard input. Improved
recognition accuracy could also improve the efficiency of the
speech input, thus changing the objective and subjective mea-
sures of the four systems.

VII. DISCUSSION

In this section, our experience from porting the multimodal
dialogue system to a movie information application is discussed,
limitations of the current system are pointed out and future work
opportunities are proposed. In addition to the movie information
domain, porting to various other applications was investigated
(yellow pages, corporate directory information system) but not
fully implemented.

The list of implementation steps for porting the system to a
new application domain, e.g., movie information system, were
the following: (1) application semantics: design the prototype
tree and the database semantics, (2) parser: design parser rules
and map parser concepts to prototype tree attributes, (3) inter-
preter: define mapping from spoken/written form to internal
value representation for each attribute in prototype tree; de-
fine application-dependent user requests in “User Action In-
terpreter”, (4) pragmatics: define application-dependent con-
text ambiguity resolution rules; implement “Domain Knowl-
edge and Inference” rules, (5) task manager: define agenda and
e-forms, (6) generation: define prompts and prompt templates;
define mapping from internal value representation to spoken
form for each attribute, (7) database: design and implement
database back-end; define database results navigation informa-
tion.

Note that only the application-dependent interpreter, domain
knowledge/inference, natural language generation and database
module code-base had to be modified in order to port the system
to the movie information application domain. Most of the time
and effort went into designing and implementing the database
back-end; designing the parser grammar rules and writing inter-
preters for new concepts also required significant effort. Note

13The scores for the “Easy to Understand” question are not directly compa-
rable because different text-to-speech systems were used in the two evaluation
campaigns.

that the pragmatic and multimodal dialogue interface modules
required little or no modification. Overall, we were able to port
the system to a new application domain with relatively little ef-
fort (with the exception of the database back-end implemen-
tation) and were thus able to verify the domain-independence
claims for our system.

Despite the success of the porting exercise, there were some
limitations in the resulting movie information system both in
terms of system functionality and user interface. These limita-
tions are a starting point for future research and are detailed
next: 1) Spoken dialogue (SD) implementation of “database
navigation”: presenting the database results one by one was not
appropriate for the movie information system; a more flexible
algorithm is needed that can group/summarize database results
and presents them in a single interaction turn to the user, 2) SD
implementation of “focus change”: the current implementation
of focus change requests in the spoken dialogue system (SDS)
is too rigid for the movie application; a flexible version of focus
change request that allows the user to “abandon” an e-form and
start a new one should also be implemented; the designer should
decide on the flavor of the focus change request implementation
that should be used, 3) SD implementation of “verify” agenda
state: in most cases the explicit confirmation of e-form values
was not appropriate for the movie application; to remedy the
problem a “light” version of the “verify” agenda state should
be implemented in the SDS; the designer can select the appro-
priate flavor of “verify” state in the agenda definition, (4) se-
mantic persistence: in the current system, it is only possible to
reset system beliefs explicitly with a “start over” or a “clear” re-
quest; we have found semantic persistence to be a problem in the
movie application domain where users often implicitly start a
new query; adding an implicit semantics forgetting mechanism
to the system is a hard problem that requires further research,
(5) complex queries: the system is currently unable to service
“follow-up” queries, e.g., “Where is x playing?” followed by
“Where is the movie theater located?”, and compound queries,
i.e., user requests that require a “join” operation between two or
more databases in the back-end. In addition to these limitations,
the automatic algorithm for the design of the graphical user in-
terface does not always produce the expected results. More re-
search is needed to improve on the interface design and system
functionality.

We conclude this section with some thoughts on how to ex-
tend the proposed system to handle simultaneous speech and
GUI input (concurrent multimodality) as well as to other input
modalities. To handle concurrent multimodality the finite-state
machine (FSM) speech/GUI parsers and interpreters [4] have to
be extended to be able to cope with simultaneous speech and
GUI input, e.g., “draw a line from here [mouse click] to there
[mouse click]”. For this purpose, an extension of the traditional
two-tape (input/output) FSM semantic parser to a three-tape
(two input/one output) FSM parser can be used as proposed in
[17]. In addition to the parser and interpreters, no other mod-
ification to the semantic and pragmatic modules is necessary
to handle concurrent multimodal input. Similarly, integration
of other input modalities, e.g., gestures, in the current system
can be achieved by adding appropriate semantic parsers and in-
terpreters. For each new modality the parser/interpreter should
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map user input to attribute-values as specified in the domain on-
tology (prototype tree). No other modification in the semantic or
pragmatic modules is necessary.

VIII. CONCLUSIONS

In this paper, we have developed a new application- and
modality-independent framework for task and multimodal di-
alogue management of information seeking dialogue systems.
The proposed framework clearly separates the task module
and the user interface module. Three user interface modules
were implemented as part of a travel reservation application:
speech-only, GUI-only and multimodal (speech and GUI)
which all share the same task manager. The user interface
modules are an implementation of the task manager methods
and agenda states. The spoken dialogue interface was shown to
handle complex user input including error correction and refer-
ences to attributes. The spoken dialogue system was evaluated
and it was shown to compete favorably with state-of-the-art sys-
tems. Task completion was higher than 90% for the speech-only
interface (ignoring database failures). Average subjective user
rating was 3.5 out of 5 in a Likert scale (note that during the
last two months of the six month evaluation campaign the user
ratings were 4 out of 5).

Introducing multimodality into our system required a small
development effort; the (unimodal) semantic, pragmatic and
task module were shown to be portable to the visual modality.
The multimodal interface was designed to emphasize consis-
tency and synergies between modalities. It was shown that
the desktop multimodal system compared favorably to the
speech-only system both in terms of objective and subjective
evaluation criteria. The desktop GUI system outperformed the
multimodal systems for a population of non-native speakers.
Some of these results might be biased due to low speech recog-
nition accuracy; more experimentation is needed to verify these
results for PDA environments (see also [48]).

The unimodal and multimodal systems were also ported to the
movie information domain to verify application-independence
claims. Overall, we have shown that the proposed multimodal
dialogue module is both portable across applications and modal-
ities and can produce state-of-the-art performance. We have also
shown that application-independent and modality-independent
algorithms can significantly reduce prototyping time with no or
little loss in system performance. This work is a first step to-
wards creating general and portable algorithms for multimodal
dialogue systems.
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