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For any activity, a wealth of information is available through public and private net-

works. Unfortunately, such information is distributed among many sites, with dif-

ferent data formats, schemas, and semantics. Moreover, information access per se is of

limited value. What is needed is a system that integrates and structures diverse information

to support user tasks and goals. The system must
gather the relevant information, evaluate trade-offs,
and suggest courses of action to the user.

For example, consider travel planning. Numerous
sites provide relevant information, such as

• flight schedules and fares (for example, www.
orbitz.com),

• hotel locations and rates (for example, www.itn.
com),

• car rental information (for example, www.hertz.
com),

• weather information (for example, http://weather.
yahoo.com),

• maps and routes (for example, www.mapquest.
com), and

• airport parking rates (for example, www.airwise.
com).

A travel planner must integrate this information with
user preferences, such as for airlines or flying times
(for example, avoid red-eye flights); cost constraints;
and company policies, such as allowable airlines,
expense caps, and per-diem or mileage reimburse-
ment rates. Although the user can visit these sites
and deal with all the constraints and preferences
manually, this is extremely tedious, error prone, and
time consuming. A system that queries the remote

sites, accesses local information, and enforces the
constraints and preferences is much more desirable.

The main requirements for such a system are plan-
ning support and interactivity. To support planning,
the system must

1. gather and integrate the information in a coher-
ent structure that captures the tasks needed for
the application domain,

2. evaluate trade-offs and select among alterna-
tive courses of action, and

3. let the user explore and override system sug-
gestions.

To provide flexible interaction, the system must

1. let the user input data or change choices any-
time during planning, and

2. handle information sources that return results
asynchronously.

To address these challenges, we have developed
Heracles II, a framework for mixed-initiative planning
and information gathering. Heracles II maps the hier-
archical task structure of the planning domain into a
conditional constraint network.1 It also ensures cor-
rect constraint propagation in the presence of cycles,
user interaction, and asynchronous sources. We have

The Heracles II

framework allows

planning in a mixed-

initiative fashion,

where the user can

explore alternatives

and override the

system suggestions 

as needed.



applied the Heracles II framework to several
domains including travel planning and geo-
spatial data integration.

The original Heracles
Our initial approach, the Heracles frame-

work, models each piece of information as a
variable in a constraint network and uses con-
straints to integrate such information.2 The
resulting constraint network provides a coher-
ent view of user activities and captures the rel-
evant information and user preferences.

Any nontrivial user activity involves a very
large number of variables and constraints.
So, Heracles partitions the network hierar-
chically corresponding to the task structure
of the application domain, in a manner sim-
ilar to hierarchical-task-network planning.3

The application designer groups variables
and constraints related to a distinct task into
a package we call a template.

For example, consider the templates in
Figure 1. Figure 1a shows the top-level tem-
plate of our travel planner, which includes
the most important information about the
trip such as the origin, destination, and dates
of travel. The next layer of decisions includes

• the alternative means of transportation, such
as flying, taking a train, renting a car, dri-
ving the user’s own car, or taking a taxi; and

• choices of accommodation at the destination.

Figure 1a shows that the system suggests fly-
ing. The variables and constraints related to
flying constitute another template (see Figure
1b). Heracles further decomposes each tem-
plate into more specific subtemplates. For
example, once the user chooses flying as the
main transportation mode, the system must
evaluate how to get to the airport: by taxi, by
driving a car and parking it at the airport, and
so on. Figure 2 shows the task/template hier-
archy for the travel planner.

In Heracles, the information gathered by
the system or input by the user is propagated
automatically in the constraint network. Her-
acles also lets the user override the values the
system suggests. For example, Figure 3
shows the changes to the Taxi template when
the user selects a different departure airport
in the Round Trip Flights template. Figure 3a
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Figure 2. The hierarchical organization of
templates for the travel planner.

Figure 1. Travel planner templates: (a) the top-level template; (b) the Fly template.
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shows the information relevant to going to
the airport by taxi, including cost, time esti-
mate, map, and route from the user’s loca-
tion (the University of Southern California)
to Los Angeles International Airport (LAX).
Figure 3b shows the user selecting Long
Beach Airport (LGB) instead of LAX.
Finally, Figure 3c shows the Taxi template
reflecting this change, including the new
cost, times, and maps.

Heracles shows that a constraint-based
approach is well suited to support mixed-
initiative planning where user interaction and
asynchronous information gathering are cen-
tral requirements. However, the original Her-
acles has two serious limitations.

First, the template selection mechanism
is hard-coded into the implementation and
not integrated with the constraint network.
To perform template selection in Heracles, a
procedure inspects the values of expansion
variables. For example, the ModeToDestination
variable in Figure 2 (labeled Outbound
Mode in Figure 1a) is an expansion variable
that can take the values Fly, Drive, RentCar, or
Taxi. Whenever an expansion variable in a
parent template is set, Heracles adds the cor-
responding child template to the constraint
network and removes the alternative (child)
templates. This hard-coded behavior means
that most of the logic for selecting among
templates must appear in the parent tem-
plate, even if such information logically
belongs to the child templates. This dimin-
ishes template modularity and tends to cre-
ate large, monolithic templates. The prob-
lem becomes ever more acute the deeper the
task/template hierarchy.

The second limitation is that Heracles can-
not handle cycles in the constraint network.
So, the template designer must specify the
constraints sometimes in an unintuitive way
or forego some lines of reasoning altogether.

Heracles II
Heracles II provides solutions to these

limitations while preserving the advantages
of Heracles. First, Heracles II is uniformly
represented as a conditional constraint net-
work, and template selection follows natu-
rally from the evaluation of activity con-
straints. To ensure that Heracles II always
considers all information relevant to the
choice of tasks/templates, we introduce the
concept of a core network that is always
active. Second, we designed a new constraint
propagation algorithm that can handle cycli-
cal networks in the presence of user interac-

tion and asynchronous sources.
For a comparison of Heracles II to other

approaches to the problem of combining
planning, information gathering, and user
interaction, see the sidebar, “Related Work
in Interactive Planning.”

Conditional constraint networks
and hierarchical planning

As the complexity of a planning domain
grows, designing and maintaining a mono-
lithic network becomes infeasible. Similarly,
presenting a large network for the user to
interact with quickly becomes unmanage-
able and confusing. Templates help Heracles
II avoid these problems.

Template specification. A template consists
of a name, arguments, variables, constraints,
and expansions. The name uniquely identi-
fies the template. The arguments specify the
input variables, which receive values from
other templates or from the user, and the out-
put variables, whose values are used in other
templates. All other variables are internal to
the template. Each expansion specifies how
a template is elaborated into the appropriate
subtemplates on the basis of the value of the
expansion variable.

Figure 4 shows a fragment of the specifi-
cation of the Fly template focusing on the 
ModeToAirport decision. The input variables
include OriginAddress and DepartureDate. The out-
put variables are SelectedFlight and FlyCost. The
selectModeToAirport constraint selects the cheap-
est mode of transportation to the airport.

Heracles II receives as input a set of
declarative XML template definitions. Fig-
ure 4 shows some of the main constructs.
The values of variables can also be XML
objects that are processed using XQuery. A
template also includes a declarative specifi-
cation of the user interface. The constraint
network can control which widgets appear
in the interface depending on runtime values.
A full description of the XML syntax and the
constraint-based control of the interface is
outside the scope of this article.

Template hierarchy. The templates are orga-
nized hierarchically to model the task struc-
ture of the planning domain, to help the user
understand the planning process, and to facil-
itate presentation of the information. Figure 2
shows the (simplified) hierarchy of our travel
planner. Planning a successful trip requires
achieving two subtasks: determining how to
get to the destination and choosing an accom-

modation. These decisions are associated with
two expansion variables in the travel-planning
hierarchy: ModeToDestination and Lodging. Because
both subtasks must be achieved, we label the
subtask decomposition with an AND. Several
alternative means exist for achieving each sub-
task. The figure shows the choices as OR
branches. For example, recall the ModeToDestina-
tion expansion variable with the possible val-
ues of Fly, Drive, RentCar, or Taxi. The Fly template
further decomposes into three subtemplates

MARCH/APRIL 2005 www.computer.org/intelligent 27

Figure 3. User interaction and constraint
propagation for the travel planner: 
(a) the Taxi template; (b) the user changes
values in Round Trip Flights; (c) the changes
propagate to the Taxi template. Maps ©
2002 NAVTEQ All rights reserved.
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that handle ground transportation at the origin
and destination airports and the flight details.

Conditional constraint network. Heracles II
reads the set of declarative template specifi-
cations for a given application and automat-
ically constructs a conditional constraint net-
work based on them.

Figure 5 shows a fragment of the con-
straint network for travel planning that
addresses the selection of the method of
travel from the user’s initial location to the
airport. The choices under consideration are
driving a car (which implies parking it at the
airport during the trip) or taking a taxi. Fig-
ure 5a shows the constraint network that the
original Heracles system would evaluate to
make this decision. This network would need
to be in the same template although some
variables naturally should appear in subtem-

plates. Figure 5b shows the same network in
Heracles II. The variables and constraints are
partitioned across several templates in a more
modular way that corresponds more closely
with the task structure of the domain.

Variables. Each distinct piece of information
in an application is represented as a variable in
the constraint network. These values are set
by the system by constraint propagation or
directly by the user from the graphical inter-
face. In a conditional constraint network, each
variable has not only a value, as in the classi-
cal case, but also an activity status. If a variable
is inactive it does not participate in the net-
work. Figure 5 shows the variables as dark rec-
tangles and the values as white rectangles next
to them. For example, DepartureAirport has the
value LAX (Los Angeles International), which
the system assigns because LAX is the clos-

est airport to the user’s address.

Classical constraints. A constraint is a sub-
set of the Cartesian product of the domains of
the participating variables. A constraint is a
computable component that can be imple-
mented by a local table look-up, by the com-
putation of a local function, by retrieving a
set of tuples from a remote source, or by call-
ing an arbitrary external program.

Figure 5 shows the constraints as rounded
rectangles. For example, the computeDuration
constraint involves three variables (Departure-
Date, ReturnDate, and Duration) and is imple-
mented by a function that computes the dura-
tion of a trip given the departure and return
dates. To implement the getParkingRate con-
straint, Heracles II calls a wrapper that
accesses a Web site containing parking rates
for US airports (www.airwise.com).
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Here we compare Heracles to other approaches for combin-
ing planning, information gathering, and user interaction.

Travel planning
The SmartClients system uses constraint satisfaction to sup-

port the user in planning and information gathering.1 The
SmartClients system has also been applied to travel planning.
When the user inputs a trip’s origin, destination, and dates,
SmartClients automatically compiles a constraint network to
explore the possible trips. To function, SmartClients must be
able to access a remote database with flight information such
as Sabre, so that it can retrieve all the flights between the
selected cities in the given dates and populate the appropriate
variables and constraints in the network. Once the network
has been initialized by calling such a database, SmartClients
searches for a solution trip that satisfies all the constraints,
using classical constraint satisfaction algorithms.

Heracles (see the main article) and SmartClients have several
crucial differences. First, SmartClients retrieves all information
beforehand, assuming that the size of the relevant sections of
the flight database can be compactly encoded and efficiently
transmitted to the user client. However, this approach cannot
scale to larger problems that incorporate a broader range of
information sources. Retrieving all the relevant information,
such as flight schedules, hotel locations and rates, rental cars,
and maps, before the search starts is not feasible. In contrast,
Heracles accesses the external sources only during planning, for
only those values that are already part of a consistent partial
solution. The more focused search of Heracles is more scalable
and allows for an arbitrary exploration of the information space.

Second, the user can interact with Heracles at any point dur-
ing planning and can change the values of variables through-
out the network, resulting in arbitrary retrievals of external
information. In SmartClients, the domains of the variables 
in the constraint network are fixed initially, so the user can
explore only solutions within such a space (or must restart the

whole constraint network construction and search process).
Finally, SmartClients performs full constraint satisfaction, so

it finds optimal solutions according to the user preferences.
However, it does this in the smaller search space defined at ini-
tialization time. Heracles performs constraint propagation and
does not attempt to find an optimal solution. However, in Her-
acles the user can explore the full solution space with the lat-
est information obtained in real time from external sources
and understand the different trade-offs. In our experience, let-
ting the user interactively guide the process toward a desirable
plan yields better results.

The Trip-planner agent framework employs a different
approach to collaborative planning and information gathering.2

Trip-planner is also based on a constraint network that integrates
different sources related to travel planning. The user specifies
his or her preferences at the start of planning. During the con-
straint network evaluation, the system calls different sources,
guided by the user preferences. It consults the user again at
predefined points during planning. For example, after Trip-
planner has found the 10 cheapest flights, it prompts the user
to select one. However, the user cannot interact with the con-
straint reasoner at any point during constraint evaluation,
unlike with Heracles.

Travel Web sites such as Expedia, Travelocity, and Orbitz pro-
vide good support for information gathering and user interac-
tion. However, they lack support for an integrated view of the
(travel) planning process that satisfies complex constraints and
preferences of the user.

As Table A shows, other approaches do not meet our require-
ments for a uniform framework that combines user interaction,
information gathering, and planning and constraint-reasoning
capabilities.

Other interactive-planning research
The research on collaborative3 and mixed-initiative4–6 plan-

ning is related in spirit to our research on Heracles. A central

Related Work in Interactive Planning



In Heracles and Heracles II, most con-
straints have an implementation in only one
direction. For example, we can find out the
parking cost at a given airport, but not which
airports have parking lots that cost less than
$7 a day. This is one reason why Heracles
performs only constraint propagation instead
of full constraint satisfaction.

Activity constraints. An activity constraint
controls the activity status of a variable given
the values of other variables. For example,
consider an activity constraint ac(v1, ..., vn�1,
vn) that is computed by the rule

(v1 = k1) � ... � (vn�1 = kn�1) � active(vn)

That is, the activity constraint will make vari-
able vn active whenever the variables [v1, ...,
vn�1] take the values [k1, ..., kn�1], respectively.

Template selection using activity con-
straints. Heracles II uses activity constraints
and expansion variables to select among
alternative templates. It automatically gen-
erates activity constraints based on the
expansion section of each template specifi-
cation. For each expansion variable, it adds
an activity constraint that acts as a multi-
plexor, making the selected template active
and making the alternative templates inac-
tive. To achieve this effect, Heracles II uses
no special mechanism other than the normal
evaluation of the activity constraints in the
conditional network.

For example, in Figure 5b, the expansion
variable ModeToAirport in the Fly template selects
between the Drive and Taxi subtemplates. The
activity constraint, represented in the figure
by the dashed lines from the ModeToAirport vari-
able to the Drive and Taxi subtemplates, is

Fly.ModeToAirport = “Taxi” �
active(Taxi.TaxiFare) � active(Taxi.Distance) �
¬active(Drive.Map) � ¬active(Drive.Directions)

The core network. To ensure that template
selection is responsive to changing user inputs
or new information from asynchronous
sources, Heracles II maintains the subset of
the network that affects the computation of
the expansion variables, called the core net-
work, always active. Otherwise, when a tem-
plate becomes inactive its variables cannot
affect the rest of the network and the choices
would lack relevant information.

For example, in Figure 5b, all variables and
constraints, except Map, Directions, and getMapDi-
rections, belong to the core network because
they contribute to the computation of the 
ModeToAirport expansion variable. This is why
the activity constraint we just mentioned does
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goal in these systems is to help the user develop a plan inter-
actively. Although each system employs different planning tech-
nology, in each case the user interactively modifies the planning
process. In James Allen and George Ferguson’s system, the user
can perform actions such as refining a goal or rejecting an op-
tion.3 Karen Myers and her colleagues devised a framework
where the user can drop or modify constraints and tasks.4 Man-
uela Veloso and her colleagues developed a system that uses a
case-based planner to propose modifications to an initial plan.5

Unlike these systems, our Heracles framework uses a prede-
fined set of templates that define the space of possible plans,
and it uses constraint propagation instead of a general-purpose
planner to reason about plans. This supports combined plan-
ning, user interaction, and information gathering, unlike the
other systems, which focus only on integrating user interaction
and planning.

Evelina Lamma and her colleagues propose a framework for
interactive constraint satisfaction problems (ICSP) that interleaves
the acquisition of values for each variable with constraint enforce-
ment.7 The interactive behavior of our constraint reasoner can be
seen as a form of ICSP. However, our approach includes a notion
of hierarchical decomposition and task orientation.
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not make inactive the core variables ParkingRate
and ParkingTotal of the Drive template. This is
also why we did not include the case for
Fly.ModeToAirport = Drive in the activity constraint,
because all the variables of the Taxi template
are core variables. We call those variables not
in the core network information variables
because their values do not affect task choices
but provide additional information to the user.

Heracles II determines the core network
automatically by reachability analysis. It
searches the constraint network, starting
from the expansion variables and traversing
constraints from output to input variables
until it reaches the “source” variables (that
is, those variables that are not the output of
any constraint and must be set by the user).
The variables and constraints visited in this
search constitute the core network.

Analysis. To understand the savings that the
conditional constraint network and the tem-
plate selection mechanism provide, consider
a task hierarchy of depth d where each task
has a single decision point (expansion vari-
able) with two possible alternatives (subtem-

plates). This hierarchy induces a binary OR
tree with 2d � 1 nodes. Further assume that
each template has c core constraints and i
information constraints. After Heracles II
evaluates the core network and decides on the
top-level choice, all the information variables
and constraints in one of the top two subtrees
remain inactive. Moreover, this behavior
repeats at each level of the selected subtree.
So, the only information constraints (and vari-
ables) that become active are those of the
selected course of action, a total of (d + 1)i.
This saves the evaluation of an exponential
number, (2d � d)i, of information constraints.
In practice, the core network is often a small
subset of the constraint network. So, the Her-
acles II template selection mechanism con-
siderably reduces constraint evaluation effort.

Interactive constraint propagation
The basic constraint propagation algo-

rithm proceeds as follows. When either the
system or the user assigns a value to a vari-
able, the algorithm fires all constraints that
have that variable as an input. This might
cause the output variables to change their

value (or activity status), and the process con-
tinues recursively until no more changes
occur in the network.

For example, consider the network in Fig-
ure 5. First, the constraint that finds the air-
port closest to the user’s home address
assigns the value LAX to the variable Depar-
tureAirport. Then, the constraint getParkingRate,
which is a call to a Web wrapper, produces
the rate $16.00 a day. The algorithm multi-
plies this value by the duration of the trip to
compute the ParkingTotal of $64.00 (using the
simple local constraint multiply). A similar
chain of events results in the computation of
TaxiFare, based on the distance between the
origin address and the airport. Once the algo-
rithm has computed ParkingTotal and TaxiFare,
the selectModeToAirport constraint compares the
costs and chooses the cheapest means of
transportation, which in this case is a taxi.

Constraint propagation in Heracles II can
be seen as following a cyclic directed graph.
Since the user can change the value of a vari-
able in the network at any time and remote
sources return data asynchronously, Heracles
II must take special care to prevent infinite
loops, to ensure that all the appropriate con-
straints are fired and the values propagated,
and to disregard obsolete values.

To address these requirements, Heracles
II’s constraint propagation algorithm in-
cludes a time-stamping mechanism. The
algorithm annotates each variable with a
user-time, an integer incremented every time
the user inputs a new value or changes a
value. In addition, it annotates each variable
with the set of variables that have contributed
to its value (that is, those variables that were
visited in the chain of constraints that set the
variable in the current user-time). This vis-
ited set is necessary to prevent cycles. Both
these annotations are propagated as the algo-
rithm evaluates the constraints along with the
actual values assigned to the variables.

The algorithm for time-stamped constraint
propagation follows these rules:

R1 Whenever the user changes some value
in the interface, the user-time of the cor-
responding variable is incremented and
the visited set is set to empty.

R2 A constraint fires whenever any of its
inputs changes.

R3 When a constraint fires, each output
variable inherits the latest user-time of
the input variables and gets an updated
visited set consisting of the union of the
input variables and their visited sets.
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Figure 4. A fragment of the Fly template specification.

<template name=“Fly”>
<args> <in>OriginAddress</in> <in>DepartureDate</in> ...

<out>SelectedFlight<out/> <out>FlyCost</out></args>
<vars>

<var name=“OriginAddress”/> <var name=“FlyCost”/>
<var name=“TaxiFare”/> <var name=“ParkingCost”/>
<var name=“ModeToAirport”/> ... </vars>

<constraints>
<constraint name=“selectModeToAirport” type=“XQueryConstraint”>

<args> <in>TaxiFare</in> <in>ParkingCost</in>
<out>ModeToAirport</out> </args>

<output><xquery><![cdata[
<row> <TaxiFare>{$TaxiFare}</TaxiFare>

<ParkingCost>{$ParkingCost}</ParkingCost>
<ModeToAirport>{ if ($TaxiFare >= $ParkingCost)

then “Drive”
else “Taxi”}</ModeToAirport>

</row>]]></xquery></output></constraint> ... </constraints>
<expansions>

<expansion><var name=“ModeToAirport”/>
<template-call name=“Drive” printname=“Drive and Park”>

<in>DepartureAirport</in> <in>Duration</in>
<out>ParkingCost</out> </template-call>

<template-call name=“Taxi” printname=“Take a Taxi”>
<in>OriginAddress</in> <in>DepartureAirport</in>
<out>Taxifare</out> </template-call>

</expansion> ... </expansions> </template>



R4 A constraint blocks (does not fire) if
there exists a variable Vo in the con-
straint’s outputs and a variable Vi in 
the constraint’s inputs such that user-
time(Vo) � user-time(Vi) and Vo � vis-
ited(Vi).

Figure 6 shows sample simulations of the
constraint propagation algorithm. Con-
straints are shown as rectangles and variables
as simple nodes. Arcs denote the direction of
constraint propagation. Each variable anno-
tation has the syntax “simulation-step) user-
time / visited variables [ value”. For exam-
ple, the annotation “1 ) 1 / � [ LA” of
variable v1 means that at simulation step 1
the user-time was 1, no other variables were
used in the computation of its value (that is,
the user set the value), and its value was
“LA” (Los Angeles).

Figure 6a shows a simulation of con-
straint propagation in a cyclic network that
picks the geocoordinates of interest (v3) in
one of our applications. The network has
three constraints:

• C1, which given the name of a city (v1),
produces the geocoordinates of the city
center (v2);

• C2, which copies the geocoordinates into
v3; and

• C3, which finds the closest city (v1) to the
given latitude and longitude (v3).

This network aims to give the user flexibility
in selecting a geopoint of interest by either
entering a city (v1) and getting the city cen-
ter as the coordinates of interest (v3) or enter-
ing a latitude and longitude (v3) and deter-
mining the closest city (v1). The intention of
C2 is to copy its input to its output only when
doing so is consistent. The time-stamping
algorithm helps enforce those semantics even
though the implementation of C2 can be a
simple copy.

The simulation starts with the user enter-
ing LA in v1. The algorithm then propagates
the corresponding city center coordinates
(34N118W) to v3 (step 3). Because v3 has a
new value, C3 is scheduled to fire. However,
rule R4 blocks such firing because v1 had
already been visited for the computation of
v3 during the same user-time phase (step 4).
This prevents the possible infinite cycle of
propagation. With such state of the network,
the user now inputs the latitude and longitude
40N70W in v3 (step 5). C3 fires normally
because the user input resets the visited vari-

ables of v3. Propagation continues, setting v1

to New York (NY) and v2 to its city center
(40N73W), but R4 prevents the firing of C2,
again blocking a possible infinite cycle.

The algorithm requires both the user-time
and visited-set annotations. Consider the
acyclic network in Figure 6b, where con-
straint propagation reaches a given variable

through different paths. When the user inputs
a value in v1, C1 fires, and the values of both
v2 and v3 change. This causes both C2 and
C3 to fire. So, by step 3, v5 obtains a new
value. However, by step 5, the updated value
of v4 makes C3 fire again. This correctly
changes v5 a second time even though v5 has
the same user-time (1) as v3 and v4 (the inputs
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Figure 5. Driving versus taking a taxi: (a) The original Heracles evaluates a flat constraint
network; (b) Heracles II evaluates a hierarchical conditional constraint network.



of C3). Since v5 � visited(v4) and v5 � vis-
ited(v3), the propagation through C3 is not
blocked. Only propagating the user-time or
only keeping track of visited variables would
not produce the correct propagation. Further
user inputs occur at steps 6 and 9 and pro-
duce correct propagation.

HeraclesMaps: Geospatial-data
integration

To build a new application in Heracles, the
designer just needs to specify a set of tem-
plates that represent the hierarchical task struc-
ture of the application along with constraints
that access the relevant sources. To facilitate
development, our framework includes prede-
fined constraint types for the most common
types of sources, including wrappers, data-
bases, and XML files, and of data manipula-
tion operations, including XQuery processing
and arbitrary Java functions.

We used the Heracles II framework to
rapidly build and maintain HeraclesMAPS,

an application that integrates multiple geospa-
tial and online sources. HeraclesMAPS lets
a user gather information about a specific
area, including satellite images, maps, topog-
raphy, hydrography, transportation networks,
points of interest, airport and seaport data,
and weather information. HeraclesMAPS has
been deployed to US Special Operations
Forces.

In the top-level template of HeraclesMAPS,
the user selects a location by drilling down
to a continent, country, and city (populated
place) or by entering latitude and longitude.
This initial location triggers constraint com-
putation. The constraint network keeps all
the information consistent. For example, if
the user recenters a map in a subtemplate, the
application will recompute all the related
maps, images, and vector and point data to
match the new area of interest. Heracles II
issues the corresponding information-gath-
ering constraints that retrieve such data as the
user navigates the information space.

Figure 7 shows two sample templates of
HeraclesMAPS. Figure 7a shows a satellite
image and the corresponding map of the port
of Umm Qasr in Iraq. Vector data of trans-
portation features such as roads and railroads
appears overlaid on the image. Figure 7b
shows an elevation map (the upper-left
image), the area visible (yellow) and not vis-
ible (red) from a given point (upper right),
and the altitude profile (lower right) between
two given points (from the origin specified
in the upper-right image to the target in the
lower-left image). The altitude profile ex-
plains why the target point is not visible from
the origin.

Despite the breadth of research in plan-
ning and constraint programming, the

interplay between planning, information
gathering, and user interaction that many
important applications require presents a sig-
nificant challenge. The Heracles II frame-
work and the techniques we have presented
in this article bring us closer to meeting this
challenge.

We plan to formalize the Heracles II plan-
ning and information-gathering approach,
combining ideas from conditional1 and inter-
active4 constraint satisfaction. Also, we plan
to explore the trade-offs between performing
constraint propagation and satisfaction in
such systems. Although our experience is that
full constraint satisfaction tends to confuse
users as they interact with the system, local
constraint satisfaction might be valuable.

Acknowledgments
This material is based on research supported

partly by DARPA, through the US Department of
the Interior, National Business Center,Acquisition
Services Division, under contract NBCHD030010;
partly by DARPA and the US Air Force Research
Laboratory under contract/agreement numbers
F30602-01-C-0197 and F30602-00-1-0504; partly
by the US Air Force Office of Scientific Research
under grant FA9550-04-1-0105; partly by the US
Air Force under contract F49620-02-C-0103; and
partly by a gift from Microsoft. The US govern-
ment is authorized to reproduce and distribute
reports for governmental purposes notwithstand-
ing any copyright annotation thereon. The views
and conclusions contained herein are those of the
authors and do not necessarily represent the offi-
cial policies or endorsements, either expressed or
implied, of any of the above organizations or any
person connected with them.

P l a n n i n g  w i t h  T e m p l a t e s

32 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

(b)

(a)

1 )  1 / ∅  [ LA
4 )  Blocked! t (v3) = t (v1) ^ v1 ∈ visited(v3)
6 )  2 / v3  [ NY

2 )  1 / v1  [ 34N118W
7 )  2 / v3 v1 [ 40N73W

3 )  1 / v1 v2  [ 34N118W
5 )  2 / ∅  [ 40N70W
8 )  Blocked! t (v3) = t (v2) ^ v3 ∈ visited(v2)

1 )  1 / ∅
C1 C3v1

v2

v3

v4

v5

2 ) 1 / v1
6 ) 2 / ∅

  3 )   1 / v1 v3 v4
  5 ) 1 / v1 v2 v3 v4
  not blocked because
 v5 ∉ visited(v4) ^
 v5 ∉ visited(v3)
  8 ) 2 / v2 v3 v4
10 ) 3 / v3 v4

2 ) 1 / v1
9 ) 3 / ∅

4 ) 1 / v1 v2
7 ) 2 / v2

C1: Find
city center

C2: Copy 
(if not inconsistent)

City (v1)

City center (v2)

Latitude &
longitude (v3)

C3:
Closest city

C2

Figure 6. Interactive constraint propagation: (a) a cyclic network; (b) an acyclic
network (race condition).



References

1. S. Mittal and B. Falkenhainer, “Dynamic
Constraint Satisfaction Problems,” Proc. 8th
Nat’l Conf. Artificial Intelligence (AAAI 90),
AAAI Press, 1990, pp. 25–32.

2. C.A. Knoblock et al., “Mixed-Initiative,
Multi-source Information Assistants,” Proc.
10th Int’l World Wide Web Conf. (WWW 10),
ACM Press, 2001, pp. 687–707.

3. K. Erol, J. Hendler, and D. Nau, “HTN Planning:
Complexity and Expressivity,” Proc. 12th Nat’l
Conf. Artificial Intelligence (AAAI 94), vol. 2,
AAAI Press/MIT Press, 1994, pp. 1123–1128.

4. E. Lamma et al., “Constraint Propagation and
Value Acquisition: Why We Should Do It
Interactively,” Proc. 16th Int’l Joint Conf.
Artificial Intelligence (IJCAI 99), vol. 1, Mor-
gan Kaufmann, 1999, pp. 468–477.

For more information on this or any other com-
puting topic, please visit our Digital Library at
www.computer.org/publications/dlib. 

MARCH/APRIL 2005 www.computer.org/intelligent 33

T h e  A u t h o r s
José Luis Ambite is a senior research scientist at the University of South-
ern California’s Information Sciences Institute. His research interests include
information integration, automated planning, databases, and knowledge rep-
resentation, and his current focus is on automatic Web service composition.
He received his PhD in computer science from USC. He is a member of the
AAAI and ACM SIGMOD. Contact him at USC Information Sciences Inst.,
4676 Admiralty Way, Marina del Rey, CA 90292; ambite@isi.edu;
www.isi.edu/~ambite.

Craig A. Knoblock is a senior project leader at the University of Southern
California’s Information Sciences Institute and a research associate profes-
sor in computer science. He’s also the chief scientist for Fetch Technologies.
His research interests include information agents, information integration,
automated planning, machine learning, and constraint reasoning. He received
his PhD in computer science from Carnegie Mellon University. Contact him
at the USC Information Sciences Inst., 4676 Admiralty Way, Marina del Rey,
CA 90292; knoblock@isi.edu; www.isi.edu/~knoblock.

Maria Muslea is a research programmer at the University of Southern Cal-
ifornia’s Information Sciences Institute. Her research interests include infor-
mation integration and constraint programming. She received her MS in com-
puter science from West Virginia University. Contact her at USC Information
Sciences Inst., 4676 Admiralty Way, Marina del Rey, CA 90292;
mariam@isi.edu; www.isi.edu/~mariam.

Steven Minton is the chief technology officer of Fetch Technologies. His
research interests include machine learning, planning, and constraint satis-
faction. He received his PhD in computer science from Carnegie Mellon Uni-
versity. He founded the Journal of Artificial Intelligence Research and served
as its first executive editor. He has also served as an editor of Machine Learn-
ing. He’s a fellow of the AAAI. Contact him at Fetch Technologies, 2041
Rosecrans Ave., Ste. 245, El Segundo, CA 90245; minton@fetch.com;
www.fetch.com.

Figure 7. HeraclesMaps: (a) satellite image, vector data, and map; (b) line-of-sight computation using elevation data.
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