
532 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 3, APRIL 2007

Information Seeking Spoken Dialogue Systems—
Part I: Semantics and Pragmatics

Egbert Ammicht, Eric Fosler-Lussier, Senior Member, IEEE, and Alexandros Potamianos, Member, IEEE

Abstract—In this paper, the semantic and pragmatic modules
of a spoken dialogue system development platform are presented
and evaluated. The main goal of this research is to create spoken
dialogue system modules that are portable across applications
domains and interaction modalities. We propose a hierarchical
semantic representation that encodes all information supplied by
the user over multiple dialogue turns and can efficiently represent
and be used to argue with ambiguous or conflicting information.
Implicit in this semantic representation is a pragmatic module,
consisting of context tracking, pragmatic analysis and pragmatic
scoring submodules, which computes pragmatic confidence scores
for all system beliefs. These pragmatic scores are obtained by
combining semantic and pragmatic evidence from the various sub-
modules (taking into account the modality of input) and are used
to rank-order attribute-value pairs in the semantic representation,
as well as identifying and resolving ambiguities. These modules
were implemented and evaluated within a travel reservation
dialogue system under the auspices of the DARPA Communicator
project, as well as for a movie information application. Formal
evaluation of the semantic and pragmatic modules has shown
that by incorporating pragmatic analysis and scoring, the quality
of the system improves for over 20% of the dialogue fragments
examined.

Index Terms—Multimedia communication, Natural language in-
terfaces, speech communication.

I. INTRODUCTION

DESPITE THE significant progress that has been made in
the areas of speech recognition and spoken language pro-

cessing, building a successful dialogue system still requires large
amounts of development time and human expertise. In addition,
spoken dialogue systems algorithms often have little generaliza-
tion power and are not portable across application domains. Our
main goal in this paper is to reduce prototyping time and effort
by creating application-independent tools and algorithms to au-
tomate the design process of the semantic and pragmatic modules
for use by non-expert application developers.

Manuscript received November 16, 2005; revised August 10, 2006. This work
was performed in part while A. Potamianos and E. Fosler-Lussier were with
Bell Labs, Lucent Technologies, Murray Hill, NJ 07974 USA. This work was
supported in part by DARPA under the auspices of the Communicator Project.
The associate editor coordinating the review of this manuscript and approving
it for publication was Prof. Ryoichi Komiya.

E. Ammicht is with Bell Labs, Lucent Technologies, Whippany, NJ 07981
USA (e-mail: eammicht@lucent.com).

E. Fosler-Lussier is with the Department of Computer Science and En-
gineering, The Ohio State University, Columbus, OH 43210 USA (e-mail:
fosler@cse.ohio-state.edu; homepage: http://www.cse.ohio-state.edu/~fosler)/.

A. Potamianos is with the Department of Electronics and Computer En-
gineering, Technical University of Crete, Chania 73100, Greece (e-mail:
potam@telecom.tuc.gr; homepage: http://www.telecom.tuc.gr/~potam).

Digital Object Identifier 10.1109/TMM.2006.888011

Instate-of-the-artspokendialoguesystems, thesystemmustbe
able to cope with semantic ambiguity and dynamically changing
task definitions. Ambiguity might arise from system misrecog-
nitions or inherent ambiguity in the user utterances. The user can
alsochangehis/her mind and attempt to modify the semantic state
of the system by implicit or explicit requests. To cope with such
user and system behavior we introduce the concept of persistence
in the semantic representation of our system. The system collects
and argues with all available information that the user supplies
in the course of the dialogue. In addition, the semantic represen-
tation is augmented with a dynamic parameter that determines
the evolution of an attribute-value pair over time, i.e., the birth
and death of semantic values. This parameter, referred to as the
pragmatic confidence score, determines the system’s confidence
in a specific attribute-value based on all available information
up to the current dialogue turn. The pragmatic confidence of a se-
mantic value is determined from acoustic, semantic, pragmatic
and task-specific information sources.

The proposed algorithms build on recent efforts in dialogue
system design [7], [6], [35], [24], [19], [27], [23]. The system
uses a hierarchical semantic representation that is dynamically
constructed based on user input (see also [10], [24]), as well as
an agenda – an ordered list of tasks to be accomplished [24],
[19]. The pragmatic module presented in this paper builds on
prior work on semantic confidence scores [26], [14], pragmatic/
dialogue modeling [9], [36], [18] and extends context tracking
algorithms such as the Question Under Discussion paradigm
[17] to handle hierarchical task relationships. Additional fea-
tures of the dialogue system include the clear separation of ap-
plication-specific (e.g., the artificial intelligence module) and
application-independent components, a formal representation of
semantic ambiguity and application-independent dialogue man-
agement algorithms [20]. For recent work on rapid prototyping
of dialogue systems and application-independent system design,
see also [8].

The main contributions of this paper are the introduction
of: 1) a domain-independent semantic representation that can
efficiently represent ambiguity and compound attribute-values
of multimodal input; 2) a context tracking algorithm that is
application-independent, uses a semantic taxonomy and can
handle/produce confidence scores; and 3) a pragmatic analysis
and scoring algorithm that is application-independent, parsi-
monious and easy to train; the algorithm takes into account
all available acoustic, semantic and pragmatic information and
produces confidence scores that are attached to system beliefs.
The proposed algorithms are simple, easy to implement, yet
general and powerful enough to be applicable to numerous
applications of spoken dialogue system design.

1520-9210/$25.00 © 2007 IEEE

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on January 17, 2009 at 21:47 from IEEE Xplore. Restrictions apply.

AMMICHT et al.: INFORMATION SEEKING SPOKEN DIALOGUE SYSTEMS I 533

The organization of this paper is as follows. We first
present an overview of the system architecture in Section II.
In Section III, the semantic domain ontology and semantic
structures are reviewed. The pragmatic module is presented
in two parts, context tracking in Section IV and pragmatic
analysis/scoring in Section V. The proposed algorithms are
evaluated in Section VI and extensions to the algorithms are
proposed in Section V-D.

II. ARCHITECTURE AND SYSTEM OVERVIEW

The semantics and pragmatic modules were implemented
as part of the Bell Labs Communicator multimodal dialogue
system. The main application domain for the system is travel
reservation, i.e., flight booking, car rental and hotel booking.
The system was also ported to a movie information application
to verify portability and domain-independence claims; how-
ever, most of the examples presented in this paper are from the
flight reservation domain.

The system, designed and built under the auspices of the
DARPA Communicator project, utilizes a star hub architecture:
the MIT Galaxy hub provides the basic message routing,
logging and state maintenance capabilities for the various
application servers [27]. The multimodal dialogue system
(MDS) server is connected directly to the hub and comprises
of the semantic module, pragmatic module, multimodal dia-
logue module and the MDS subcontroller. The audio platform
(telephony control, audio input/output, speech recognizer,
text-to-speech synthesis) [37] and the database back-end are
also connected directly to the hub [35].

There are four major components to the multimodal dialogue
system.

• Semantic Module: Converts speech or graphical input into
a common internal semantic representation used by later
components. Included are the parsers and interpreters for
both the spoken language and visual (particularly textual)
input, as well as a module that interprets the intended dia-
logue action of the user.

• Pragmatic Module: Adds dialogue context to input se-
mantics, merges raw data into candidate beliefs, computes
the confidence for each candidate and detects semantic
ambiguities. These tasks are accomplished by the context
tracking, pragmatic analysis, pragmatic scoring, domain
knowledge and inference modules.

• Multimodal Dialogue Module: Performs internal actions,
e.g., database queries via the task manager. The sequence
of system actions and goals are stored in a dynamically up-
dated agenda; the corresponding task definition is stored
in electronic forms (e-forms). In addition, this module de-
termines the system communicative goals and implements
them for the spoken and visual output modalities (in the
natural language generation (NLG) and graphical user in-
terface (GUI), respectively).

• Controller Module: Handles communication with the
hub, audio platform, database server, multimodal input
and output devices using a multithreaded architecture.

The activation sequence of various MDS modules and sub-
modules in a typical multimodal interaction (dialogue) turn be-

tween the user and the system are shown in Fig. 1. A typical in-
teraction turn proceeds as follows. 1) User input is first analyzed
in the semantic module; the parser/interpreter extracts a set of
attribute-value pairs from the user utterance and the action in-
terpreter identifies the user’s communication goals. Parsing and
interpreting occurs separately for each input modality (allowing
for late integration). 2) Next, the context tracker augments the
semantic representation with dialogue context information. All
information supplied by the user via multiple interaction turns
and various input modalities is taken into account during prag-
matic analysis, permitting identification of semantic ambigui-
ties. The results are extended by the domain knowledge and in-
ference submodule and confidence scores are attached to the
system beliefs. 3) Finally, the task manager identifies internal
system actions that have to be taken and decides on the system’s
communicative goals. These are specified in the agenda and can
be dynamically updated in the course of an interaction; the spe-
cific type of information that will be requested from the user
is determined by the electronic form submodule. The realiza-
tion of the system communication goals is determined by the
multimodal interface submodule. The surface realization is then
determined by the natural language generation and the graph-
ical user interface submodules for the speech and graphical in-
terfaces, respectively. Finally, the system output information is
communicated to the devices and the audio platform by the con-
troller.

III. SEMANTIC REPRESENTATION

Hierarchical semantic representations have been extensively
documented in the artificial intelligence literature (ontologies)
[13], [25], as well as in the natural language and spoken dia-
logue research areas [5], [9], [23]. Advanced dialogue systems
typically use a tree representation to hold the current state of the
system’s belief. Each node has a type that represents a semantic
class; each type has a set of predefined features that define a se-
mantic class structure. Such semantic representations are some-
times referred to as typed feature structures [5]. There has been
substantial work in underspecified typed feature structures in the
artificial intelligence literature [9], [1] and some work in spoken
dialogue system design [9]. However, the bulk of these efforts
ignore important problems that appear in spoken dialogue and
multimodal systems, namely 1) how to represent and update se-
mantics in interactive systems, where semantics and system be-
liefs are dynamically updated and time plays an important role
and 2) how to combine or merge values from various informa-
tion sources or with different confidences.

Our goal is to create domain independent data structures that
hold all information supplied to the system by the user or by
the database back-end from the beginning of the dialogue up to
the current dialogue turn. Whenever new information becomes
available, the system can argue using the complete history in-
formation to produce the best interpretation, i.e., the optimal
system belief. We are looking for a data representation that is
simple but at the same time can represent user input in a persis-
tent manner. To achieve domain independence, the data struc-
tures and the semantic algorithms should apply across applica-
tion domains. We believe that a hierarchical semantic data struc-

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on January 17, 2009 at 21:47 from IEEE Xplore. Restrictions apply.

534 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 3, APRIL 2007

Fig. 1. Architecture of the multimodal dialogue system. Arrows denote the sequence of modules activated in a typical interaction turn.

ture provides advantages for spoken dialogue systems both in
terms of readability and improved pragmatic and semantic anal-
ysis.1

Domain semantics are captured in a prototype tree repre-
senting the domain ontology [2]. This ontological representation
enables our algorithms to operate in terms of the tree structure,
ignoring the particular labels on the tree; this is the key point in
ensuring domain independence. We also, for the same reasons,
maintain all data derived from user utterances and from data-
base queries in tree structures that mirror the prototype tree. In
particular, these are 1) the raw data tree that holds all values
elicited or directly inferred from user input, 2) the candidate
data tree that holds the candidate values derived from the raw
data, and 3) database trees that hold results established from one
or more database queries. These are described in depth below.

The prototype tree is the basic data structure for organizing
the semantics. It is constructed from the ontology of the do-
main: nodes encode concepts and edges encode the is-a or has-a
relationships in the ontology. A trip, for example, consists of
flights, hotel stays and car rentals. A flight, in turn, consists
of legs, with departure and arrival dates, times and airports.
Data are defined in terms of the path from the tree root to a
leaf (the attribute), and the associated value. These paths can
be uniquely expressed as a string consisting of a sequence of
concatenated node names starting from the root, with a suit-
able separator such as a period. The attribute for the departure
city “Atlanta” shown in Fig. 2, for example, is given by the
“trip.flight.leg1.departure.city” attribute. Thus, data values are
associated with the leaves of the prototype tree and are charac-
terized as attribute-value (AV) pairs.

1The necessity of a hierarchical representation to perform complex context
tracking tasks is demonstrated in Section IV.

During a dialogue, the system extracts data values from user
utterances and places them in a raw data tree, a tree structure
that mirrors the prototype tree. Values extracted from user input
usually contain incomplete references to attributes, e.g., “I want
to leave from Atlanta” yields the (“.departure.city”, “Atlanta”)
pair. The partial attribute “.departure.city” needs to be combined
with dialogue context, e.g., “trip.flight.leg1”, to form a complete
attribute “trip.flight.leg1.departure.city”. For details on the do-
main independent context tracking algorithm see Section IV. An
example of the raw data tree (after context tracking) is shown in
Fig. 2. Examples of value and position ambiguity are also shown
in this figure (and discussed in detail in the next section).

Frequently, the system has to operate on the raw data by
merging or conditioning on values, e.g., in Fig. 2, the two “At-
lanta” entries under “leg1.departure.city” should be merged into
a single candidate. The formulation of these raw data manipula-
tion algorithms is greatly simplified by maintaining candidates
for individual attributes in a candidate data tree structure that is
separate from the raw data extracted from individual user utter-
ances. As the dialogue proceeds, candidate values are added, re-
moved and otherwise modified, based on user inputs and system
rules. Candidate values for specific attributes are scored based
on all available evidence, including the raw data history as de-
scribed in Section V. The candidate data tree is a tree data struc-
ture with nodes that contain ordered (by score) lists of values.

Finally, the database tree is a semantic structure that holds
the database query results. The database tree uses the same do-
main ontology as the raw data and candidate trees, but the data-
base tree ontology is usually a superset of the candidate tree
ontology because database queries often return data values and
attributes that are not specified in the query proper (e.g., flight
numbers). Storing the database query results in the database tree

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on January 17, 2009 at 21:47 from IEEE Xplore. Restrictions apply.

AMMICHT et al.: INFORMATION SEEKING SPOKEN DIALOGUE SYSTEMS I 535

structure allows us to use the existing semantic and pragmatic
modules for processing user requests that refer to database re-
sults, e.g., “What time is flight 314 leaving Atlanta?”.

The raw data, candidate data and database trees are data
structures similar to frame representations or feature struc-
tures. However, the proposed data structures respect the
hierarchical nature of the domain semantics and efficiently
represent ambiguity.

A. Semantic Ambiguity

While interacting with the system, data values are extracted
from user utterances, interpreted and added to the raw data tree.
When the system attempts to derive candidates from these raw
data values, two cases of ambiguity arise.

1) A value ambiguity occurs when the system creates mul-
tiple candidates for a particular attribute from the user
input. The cause may be system errors, (e.g., recognizer
and parsing errors), or attempts by a user to modify pre-
vious (possibly erroneous) input. In Fig. 2, “leg1.depar-
ture.city” could be either “New York” or “Atlanta”.

2) A position ambiguity occurs when the context does not
uniquely identify the attribute associated with a given
value (Recognizer: “I want New York”).
Most position ambiguities are automatically resolved
by the context tracking, pragmatic analysis and prag-
matic scoring algorithms. An example of a position
ambiguity is shown at Fig. 2: “New York” could be
the arrival or the departure city for the first flight leg.
Ambiguities that cannot be resolved by the system are
passed on to the dialogue manager. For more details on
ambiguity resolution see Section V-A1 and [22].

B. Values and Candidates

The notion that a given attribute is associated with a given
value must be broadened in the case of an information seeking
spoken dialogue system. When constructing queries, a user does
not necessarily specify an exact value, but rather constraints on
possibly compound values. This observation leads to the gener-
alization of a value to a value expression, with syntax and se-
mantics that are domain dependent and specific to each attribute.
Consider the following example concepts from the travel reser-
vation application.

• CITY: When reduced to canonical form (e.g., the airport
code JFK), a city should have a single, unique value. How-
ever, users often specify a constraint, e.g., the city “New
York” in the utterance “I want to leave from New York” sig-
nifies a constraint on nearby airports “

”.
• DATE: Date is a compound data structures that typically

consists of day, month and year. Dates are usually associ-
ated with a single value, but date constraints or intervals
are also possible, e.g., “before June first”, “any day next
week”.

• TIME: Time is a compound data structure (hours and min-
utes) that is usually constrained to belong to a time interval,
as for example in the utterance: “I want to leave after 5
p.m.”.

Note that concepts such as DATE and TIME appear in other con-
texts and in many other applications as well, but may have dif-
ferent associated value expressions. Further, each type of value
expression associated with a specific attribute has an associated
calculus, i.e., different manipulation and combination rules as
explained in the following paragraphs.

In addition to being able to represent constraints and com-
pound values, value expressions can also represent ambiguous
interpretations of a user utterance, e.g., “next Friday”, may often
be interpreted as one of two possible dates. Thus, value ex-
pressions have the following uses: 1) compound values, 2) con-
straints on values or compound values, and 3) a representation
of ambiguous interpretations.

In the course of a dialogue, users may add and modify spe-
cific AV pairs over a number of utterances. Users may implicitly
or explicitly specify how values are to be modified or combined,
e.g., “change the departure time to 7 p.m.” Refinements of ex-
isting constraints can also be specified by the user, e.g., reducing
or expanding a time interval. Establishing new candidate values,
or merging raw values with previously defined candidates is usu-
ally predefined and attribute specific. For example, our travel
reservation system provides a predefined default operation for
time interval merging: when a user specifies a new time or time
interval, it is compared to the existing candidates (for that at-
tribute). If the two intervals overlap, they are merged to form a
new, longer time interval.

In general, the modification of candidate values by com-
bining raw data values is an attribute specific problem. For sets
of values (enumerations) and for intervals, operations such as
unions, intersections and differences are readily conceivable.
The specific calculus will however depend on the actual at-
tribute, even for similar concepts. A detailed description of how
to create new candidate values from raw data, which we have
expressed as a calculus for value types, is beyond the scope
of this paper. The candidate value creation problem remains
an important research area that has been largely ignored in the
natural language and artificial intelligence literature. In our
experience, creating the appropriate abstraction that enables a
general and domain independent solution is a hard problem.

C. Semantic Parser and Interpreters

In order to fill the raw data tree, user input (either from nat-
ural language input or spoken input) is parsed using a recursive
finite-state parser [21] that acts as a semantic island parser.
The parser iteratively builds up semantic phrase structures
by transducing string patterns in the input into their semantic
concepts (e.g., “Atlanta” is rewritten as ; “arriving
in ” is subsequently transformed into).
Parser concepts are mapped to application concepts that cor-
respond to branches of the prototype tree, e.g., is
transformed to “arrival.city”. Thus, the output of the parser is a
set of tree branches (islands) with their corresponding values,
e.g., (“arrival.city”,“Atlanta”), (“time”, “five pm”). The values
are then transformed by a set of application-dependent routines
in an interpreter, yielding a canonical form that can be used by
the raw data tree. For example, in the travel domain, cities are
changed into airport codes, date strings (e.g., “Tuesday”) are

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on January 17, 2009 at 21:47 from IEEE Xplore. Restrictions apply.

536 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 3, APRIL 2007

Fig. 2. Raw data tree illustrating value ambiguity (departure city Atlanta or New York) and position ambiguity (New York).

converted to the relevant date, and phrases like “first class” are
modified into corresponding fare codes.

D. User Action Interpreter

The allowed range of user requests is not limited to specifying
attribute-value pairs: it goes beyond the basic system function-
ality (query formulation and database results navigation) and
offers the user the ability to dynamically update application se-
mantics, navigate through the application and correct erroneous
system beliefs.

User requests are categorized based on the result they have
on the interaction and semantic state. They are classified by the
user action interpreter into one or more of the following domain
acts based on cues extracted from the parser.

• Fill requests (the default actions), e.g., “I want to leave
from Atlanta” to create candidate values;

• Information requests, e.g., “what is the departure city?”,
to ascertain the value for a specific attribute;

• Clear requests, e.g., “clear the departure city”, to force the
removal of all candidate values for a given attribute;

• Freeze requests, e.g., “freeze the departure city”, to inhibit
the system from further changing the value of a particular
attribute;

• Change requests, e.g., “change Atlanta to New York”,
“change the departure city to New York”, or “not Atlanta,
New York!”, to change the value of a specific attribute;

• Focus Change requests, e.g, “let’s first make a car reser-
vation” to go to the car reservation application;

• Tree/Agenda transformation requests, e.g, “let’s add a
side-trip to Chicago here”, resulting in the insertion of
a new subtree in the raw/candidate data trees and a new
agenda item;

• Database result navigation requests, e.g, “next flight” or
“get me an earlier flight”;

• User Interface requests, e.g, “help” or “repeat”.
As the above examples show, the user is allowed to refer to

attributes directly, modify or replace attribute-value pairs, refer
to the tree structure, request specific information or modify the
structure itself. Given the user’s ability to specify attributes, the
parser output was extended to include focus information pro-
viding additional context or context modification parameters.
A focus consists of additional partial paths and/or values and
may further contain iterators that formalize position modifi-
cation in an ordered set. For example, consider the utterance
“When are we leaving New York?”: the parser outputs an infor-
mation request action with the focus “.time”, as well as a partial
path and value that constrain the query (“.departure.city”,“New
York”). A more complex example is provided by the user ut-
terance “What is the departure time in the first leg?” where an
information request has two focus directives: one with path “.de-
parture.time” and a second with path “.leg” and associated iter-
ator2 “begin”.

Overall, the semantic representation is domain-independent
and uses only domain specific data structures (e.g., prototype
tree) and attribute-specific interpreters to represent and argue
with task semantics. The typical output of the semantic module
consists of the following information: 1) the type of action the
user is requesting, 2) (optional) focus information, 3) a list of

2To illustrate the concept of an iterator, consider the concept leg for the travel
application. There are one or more flight legs in a trip, forming an ordered set
numbered 1; . . . ; N . Users typically refer to individual legs by their absolute
or relative position (e.g., “the last leg”, or “the next leg”). The parser extracts a
partial path “.leg” and an iterator with a position parameter as part of the focus
information. Iterators have the standard semantics begin, current and end with
offsets as appropriate: “the next leg” refers to a partial path matching “.leg”, with
an associated iterator “current+1” used to specify the actual flight leg desired.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on January 17, 2009 at 21:47 from IEEE Xplore. Restrictions apply.

AMMICHT et al.: INFORMATION SEEKING SPOKEN DIALOGUE SYSTEMS I 537

TABLE I
CONTEXT TRACKING EXAMPLES FOR DIFFERENT MATCH TYPES. POSITION AMBIGUITY IS RESOLVED USING THE DISAMBIGUATION RULES

IN TABLE II FOR “INTERPOLATED MATCH” AND THE “USER OVERRIDE” RULE FOR “OVERLAPPING MATCH”

values, and 4) a list of partial attributes, e.g., “I want to fly to
New York” results in the action “fill request”, the value “New
York” and the partial attribute “.departure.city”. The raw at-
tribute-value pairs are then passed on to the pragmatic module
for context tracking, pragmatic scoring and merging of pro-
cessed attribute-value pairs onto the candidate data tree. The de-
tails of these operations are presented in the next sections.

IV. CONTEXT TRACKING

The pragmatic module mainly consists of the context
tracking, pragmatic analysis and pragmatic scoring submodules.
The function of the context tracking algorithm is to incorporate
the dialogue context information into the parser/interpreter
output to obtain complete attributes, and where appropriate, to
infer attribute-value pairs. For example, suppose that the parser
returns the pair (“.departure.city”, “Atlanta”) and the dialogue
context (provided by the dialogue manager) is “trip.flight.leg1”,
i.e., the user is providing information about the first leg of a
flight. In this example, the attribute provided by the parser
“.departure.city” is partially (or ambiguously) defined; by
adding the dialogue context “trip.flight.leg1” the fully defined
attribute-value pair is obtained (“trip.flight.leg1.departure.city”,
“Atlanta”). Note that the resulting attribute corresponds to a full
path from the root to a leaf of the prototype tree (see Fig. 2).

The context tracking algorithm is specific to the request type.
For fill requests, the context tracking algorithm finds the ap-
propriate attribute for a value extracted from a user utterance,
given a single associated partial attribute. For information re-
quests and change requests, where user utterances often contain
explicit references to values, (e.g., “When are we leaving New
York”) context tracking is a harder problem. The matching al-
gorithms must construct full attributes from a number of con-
straints on the set of possible attributes. These constraints arise
from user focus information, from the dialogue context and from
partial attributes and values that the parser is able to extract
from a user utterance, and may further involve iterators. In gen-
eral, context tracking is formulated as a set of successive (string
matching) filters applied to a set of possible attributes. The con-
text tracking algorithm is detailed next.

A. Attribute for a Given Value

First, consider the simple case of establishing an attribute for
a given data value for fill requests. The system maintains an ex-
pected dialogue context for every dialogue turn. This context is
expressed as a path from the root to some node of the pro-
totype tree, e.g., “trip.flight.leg1”. Values extracted from a user
utterance by the semantic parser/interpreter are associated with

a partial attribute, i.e., a path from some prototype tree node to
a leaf. Derivation of the full attribute for a given value requires
combining the dialogue context and the partial attribute to
form a complete path from the root of the tree to the leaf. In
the following discussion, we use the operator to express con-
catenation.

A succinct formulation of the context tracking algorithm is to
specify a set of possible (fully defined) attributes , i.e., paths
from the root to a leaf of the prototype tree and to consider a
set of filter constraints of the form and , where denotes
any sequence of concepts from the prototype tree. In general,
we need to consider three types of matches.

1) Exact match: the context and partial attribute can be di-
rectly concatenated to form a full path, i.e., ex-
ists in the prototype tree. For example, given the context

“trip.flight.leg1” and a datum with partial attribute
“.departure.city”, the complete path “trip.flight.leg1.de-
parture.city” is seen to exist in the tree in Fig. 2.

2) Interpolated match: the context and/or partial attribute
need to be extended to form a full path, i.e., for some
paths , the attribute exists in the prototype
tree. For example, a context “trip.flight” and a datum
with partial attribute “.departure.city” may be completed
with the choice , or

.
3) Overlapping match: the context and partial attribute

overlap and need to be truncated to form a full path, i.e.,
there exists a path such that for which

exists in the prototype tree. In this latter case,
the general strategy chosen is to minimize the length of
the path , i.e., to maximize the overlap. The overlap-
ping substrings may not necessarily agree. For example,
the context “trip.flight.leg1.departure” may have to be
shortened to “trip.flight.leg1” so as to combine with “.ar-
rival.city” to form a possible attribute. By shortening the
dialogue context, we essentially allow the user to over-
ride the system’s context.

In Table I, context tracking examples are shown; note the
position ambiguity for the cases of “interpolated match” and
“overlapping match”. The list of candidate attributes is shown
for each case. The “Selected Full Attribute” and “Confidence”
columns refer to the context disambiguation algorithms dis-
cussed next.

To resolve (or reduce) the context ambiguity in the case of
“interpolated match”, we introduce a set of prioritized rules.
Each rule maps a partial attribute to an extended partial at-
tribute . The rules are in the form of tuples where

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on January 17, 2009 at 21:47 from IEEE Xplore. Restrictions apply.

538 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 3, APRIL 2007

is the dialogue context, is the partial attribute, is
the extended partial attribute and in [1] is the normalized con-
fidence (probability) attached to this specific rule. Examples of
context tracker disambiguation rules are shown in Table II.

Rules fire only in the case of “interpolated match”, with
dialogue context or, in general, , and par-
tial attribute . Consider the “interpolated match” context
tracking example where ; and .
Using the rules in Table II for in the context of

, is extended to either “.departure.city”
or “.arrival.city” each with probability3 0.5. Next the set of
rules for and
fire. The result of the context tracking algorithm is a set of
two full attributes and

each with probability
0.45 (other options also exist but with very low probability).4

In the example above, position ambiguity (while not fully
resolved), is significantly reduced to two possible attributes.
In Table I, a similar example is shown where the “interpolated
match” case ambiguity is fully resolved using the rules in
Table II. The confidence attached to this context disambigua-
tion decision is 0.9.

The proposed mechanism for context resolution allows the
exclusion of undesirable paths and the reduction of the prob-
ability of others. In cases where position ambiguity persists
after the application of the context resolution rules, multiple
attributes are kept in the raw and candidate data trees. An ex-
ample of position ambiguity representation in the raw data tree
is shown in Fig. 2. Position ambiguity affects the confidence
that the pragmatic module attaches to attribute-value pairs. The
context tracking confidence score (normalized in [0, 1]) is
used as a weight in the pragmatic scoring algorithm described
in Section V.

To resolve ambiguity in the “overlapping match” case, pri-
ority is given to the partial path obtained from user input, i.e., in
case of disagreement the user overrides the system context. In
practice, we have found this to be a good choice for our spoken
dialogue system that uses a mixed initiative dialogue manager.
More research is needed to determine the best way to resolve
context conflicts between the system expectation and the user
input.5

A further refinement of the context-tracking system is to
allow for context changes while analyzing data from a given
user utterance. These changes can be made unconditionally, or
may be pushed on a stack, with previous contexts searched if
the current context should fail within the current utterance. For
example, the user can provide information for both flight and
car reservation in the same sentence. In this case, the context
switch is detected; the “trip.flight” context is used to analyze
the first part of the sentence and the “trip.car” context is used
for the second part.

3Note that the “.stopover.city” extension is excluded as undesirable by setting
its confidence to 0.

4Note that when two rules fire in succession the confidences of the rules are
multiplied.

5In any case, it is easy to modify the context tracking algorithm by distributing
the probability between the two options: one that favors the system’s expecta-
tions (i.e., dialogue context wins) and one that favors the user’s input (i.e., partial
attribute wins).

TABLE II
APPLICATION DEPENDENT EXAMPLE RULES USED FOR CONTEXT

DISAMBIGUATION IN THE CONTEXT TRACKER FOR THE

CASE OF “INTERPOLATED MATCH”

B. Attribute With Additional Constraints

Allowing users to explicitly refer to attributes gives rise to
more complex attribute matching problems than those consid-
ered above. The data values, partial paths, and focus information
extracted from a user utterance each serve to constrain the pos-
sible set of attributes. The context tracking algorithms are gen-
eralized as a set of constraints that are applied to an initial set of
possible attributes or attribute-value pairs, thereby filtering out
a subset of attributes that meets the constraints.

To motivate the algorithmic formulation, consider the fol-
lowing example for the information request query “When are
we leaving New York?” and its solution. The parser returns a
focus that consists of a partial path “.time” and an associated
partial attribute-value pair (“.departure.city”, “New York”). The
context tracking problem in this case consists of two subprob-
lems that have to be solved in order: 1) determine the context for
the attribute-value pair(s) that constrain the query, i.e., “.depar-
ture.city,” and 2) determine the context for the focus (or subject)
of the query, i.e., “.time”.

To solve problem 1) we search in the candidate (or data-
base) tree for full paths that end in “.departure.city” for which
the leaf node “.city” has the associated candidate value “New
York”. Suppose that the candidate tree contains two “.city” leaf
nodes with specific values “New York” (“trip.flight.leg1.arrival.
city”, “New York”) and (“trip.flight.leg2.departure.city”, “New
York”). Given that “New York” is a “.departure.city” the correct
context is “trip.flight.leg2.departure.city”, i.e., the user is refer-
ring to the second leg of the flight.

Note that the context tracking algorithm for informa-
tion requests is very different compared to fill requests (see
Section IV-A). Dialog context is not used here6; the context is
found by comparing the partial attribute-value pair with (full)
attribute-value pairs found in the candidate or database trees,
that is, instead of looking for attribute matches in the prototype
tree we are looking for value matches in the candidate tree or
database tree.

Continuing the example, the focus context tracking problem
2) is solved by applying two filters sequentially. First we
find the set of attributes that end in “.time” (the target con-
cept of the information request) from the prototype tree,
i.e., “trip.flight.leg1.departure.time” … “trip.flight.leg3.ar-
rival.time”. Next, we select the subset of attributes ending
in “.time” that share the longest possible path (starting from

6In general, the dialogue context plays a secondary role in context tracking
for information requests.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on January 17, 2009 at 21:47 from IEEE Xplore. Restrictions apply.

AMMICHT et al.: INFORMATION SEEKING SPOKEN DIALOGUE SYSTEMS I 539

the root) with the attribute(s) that constrain(s) the query,
in our example “trip.flight.leg2.departure.city”, resulting in
“trip.flight.leg2.departure.time”, i.e., the user is asking about
the departure time of the second flight leg.7

In general, the context tracking algorithms are implemented
using the following filters:

• : find all attributes in the prototype
tree that contain the partial path , e.g.,

• : select from a list of attributes
those sharing the longest possible path with the given

partial path , e.g.,

selects all the “time” attributes containing “arrival”.
• : select from a list of attributes

those that contain the specified leaf value in the
candidate or database trees, e.g., (

”.city”), “Chicago”) returns the subset
of “city” attributes that have been instantiated with the
value “Chicago”.

• : same as Attribute Constrain
only here the longest overlapping path between members
in and is returned,8 e.g.,

The context tracking algorithm applies these filters in se-
quence to obtain a set of possible full attributes. The initial set
chosen critically depends on the user request type. The starting
set of attributes is drawn from the following.

• Prototype tree: in the case of fill requests, focus change and
tree/agenda transformation requests (using the Attribute
Match, Attribute Constrain, and Attribute Truncate filters).

• Candidate data tree: in the case of information requests,
clear, fill and change requests (using the Value Constrain
filter).

• Database tree: in the case of the database result navigation
request (using the Value Constrain filter).

As shown in the additional examples below, the exact se-
quence of application of these filters further depend upon the
actual data supplied.

The context tracking example for the user query “When are
we leaving New York?” shown in Table III, is formulated in

7Note that we were able to find the overlapping context “trip.flight.leg2.depar-
ture” thanks to the hierarchical semantic data structures used, i.e., the hierarchy
in semantics makes it possible to solve such complex context tracking problems.

8Note that ’.leg1’ (i.e., the intersection of ’.leg1.arrival.city’ and ’.leg1.depar-
ture.time’) is not returned since it is shorter than ’.leg1.departure’.

TABLE III
CONTEXT TRACKING EXAMPLE FOR THE INFORMATION REQUEST

“WHEN ARE WE LEAVING NEW YORK?”

terms of the context filters. For attribute-value context tracking
the Attribute Match and Value Constrain filters are applied in
sequence. For focus context tracking the Attribute Match and
Attribute Constrain filters are applied. Note that Attribute Con-
strain filter takes as input the output of the Value Constrain filter.
Context tracking for other types of information requests is sim-
pler, e.g., for the user query “What is the departure time?”, the
context tracker applies the filter

where is the dialogue context. Note that this is the same filter
used in Section IV-A.

The most complex set of filters in our system occurs for
the change request, due to its many variations. Consider
two examples “Change the time to 3 p.m.” and “Change 3
p.m. to 4 p.m.”. In the first case, the context tracker runs the
filter ,
where is the dialogue context. In the second case, the filter

is
used. If that fails to produce a unique result the filter

is used in sequence.
Overall, the context tracking algorithm proposed here can ef-

ficiently handle a variety of user requests including complex re-
quests where users refer to or constrain attributes and values di-
rectly, e.g., for information and change requests. In addition, the
proposed context tracking algorithm can use sentence focus and
dialogue context information to resolve position ambiguity in
user requests. Most importantly, the proposed context tracking

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on January 17, 2009 at 21:47 from IEEE Xplore. Restrictions apply.

540 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 3, APRIL 2007

algorithm is application-independent; only the domain-depen-
dent context resolution rules need to be specified by the system
developer.

V. PRAGMATIC ANALYSIS AND SCORING

In spoken dialogue systems, it is often the case that multiple
candidate values exist for a particular attribute. These (often
conflicting) candidate values may be supplied by the user over
multiple dialogue turns or can be due to misrecognitions or mis-
interpretations of user input. In this work, we propose a general
framework for dealing with the semantic ambiguity in spoken
dialogue systems. The proposed pragmatic analysis and scoring
algorithm combines all the information supplied by the user at
the acoustic, linguistic, semantic and pragmatic levels, and pro-
duces a ranked order list of the multiple candidate values for
each attribute along with a confidence score attached to each
value. The proposed algorithm takes into consideration all the
relevant dialogue history, i.e., all user-system interaction up to
that point in the dialogue. The proposed framework extends
work on acoustic confidence scores and (more recent work on)
semantic confidence scores [14], [26], to produce pragmatic
confidence scores.

The main steps of pragmatic analysis and scoring are the
following: 1) confidence scores are attached to each candidate
value by the speech understanding system as described in [26];9

2) scores are updated using the application independent prag-
matic analysis rules described in Section V-B2, e.g., if the user
answers “yes” to an explicit confirmation question the prag-
matic score of the candidate in question increases, 3) scores of
all the candidate values for a specific attribute are updated based
on the similarity between the recently supplied candidate value
and the preexisting candidate value(s), e.g., if the user gives two
conflicting values for an attribute then the pragmatic scores for
both candidates are reduced, and 4) if two candidates have the
same value the two candidates are merged and their combined
score is increased accordingly.

To better demonstrate the inner workings of the scoring algo-
rithm consider the three examples shown in Table VI. Pragmatic
scores are normalized between (certain to be incorrect) and
1 (certain to be correct). In the first dialogue fragment, the user
gives the departure city information twice: “Boston” (due to a
misrecognition) and “Austin”. The original confidence 0.5 is re-
duced to 0.44 for both candidates due to their conflicting values
as detailed in the next section. In the second dialogue frag-
ment, we have three pieces of information for the departure city:
“Boston”, “not Boston”, “Austin”. “not Boston” is interpreted
as negative evidence for “Boston” resulting in 0 confidence for
“Boston” and 0.5 confidence for “Austin”. Finally, in the third
dialogue fragment, the user again supplies three pieces of in-
formation for the departure city “Austin”, “Austin, Texas” and
“Boston”. The first two correspond to the same value “Austin”
and the score update formula gives 0.72 for “Austin” and 0.38
for “Boston”. The quantitative inner workings of the pragmatic
analysis and score update algorithms are presented next. (Note

9If no semantic confidence scores are available, the acoustic confidence scores
can be used instead. If neither the speech recognizer nor the speech under-
standing modules are capable of producing confidence scores, a generic (con-
stant) confidence value can be used to initialize all candidate values.

TABLE IV
PRAGMATIC SCORING EXAMPLE FOR THE ATTRIBUTE “TRIP.FLIGHT.LEG1.
DEPARTURE.CITY” WHEN THREE PIECES OF EVIDENCE ARE AVAILABLE:

“BOS”, “AUS” AND “AUS”; SUCCESSIVE UPDATES OF THE SCORE s FOR EACH

OF THE TWO POSSIBLE CANDIDATES “BOS” AND “AUS” ARE OBTAINED USING

THE MYCIN FORMULA (p = 0:5)

that the system uses the airport codes “BOS” for “Boston” and
“AUS” for “Austin”).

A. Score Update Algorithm

Given multiple candidates for a particular attribute, we re-
quire a scoring mechanism that is sufficiently parameterized to
allow training. At the dialogue management level the scoring
algorithm will be used to determine if confirmation or disam-
biguation is needed for a particular candidate value. Some de-
sirable characteristics of the scoring algorithm are that 1) the
algorithm should allow the use of any kind of evidence for or
against a particular candidate, 2) the score should be indepen-
dent of the order of application of each type of evidence,10 and
3) the range of scores should be normalized to a fixed range to
allow for comparisons.

Based on these observations, we chose MYCIN style confi-
dence factors [28], [11] that are normalized in the range [,
1], where 1 denotes certainty for the value correctness, 0 de-
notes ignorance about the true value and denotes certainty
for the value incorrectness. Candidate scores are updated using
evidence for or against the candidate based on the MYCIN for-
mula

otherwise
(1)

where denotes evidence for (positive) or against (negative) an
attribute-value , is the score before evidence is considered
and is the updated score when evidence is also taken
into account. For each candidate value the formula is applied
repeatedly, once for each piece of evidence. As described in the
Section V-B we use two types of evidence: raw candidates and
pragmatic analysis rules.

1) Ambiguity Detection and Resolution Using Pragmatic
Scores: Pragmatic confidence scores can be used to determine
whether the value of an attribute should be considered un-
known, ambiguously or unambiguously known. Based on the
confidence score values (and differences between scores) the
dialogue manager can detect and resolve semantic ambiguity.

For this purpose, we define the threshold parameters
and to govern ambiguity detection as follows: 1) for

10Although, in general, this is a desirable property of the scoring mechanism,
there are dialogue system applications where it is more appropriate to introduce
a time forgetting factor for past candidate values supplied by the user.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on January 17, 2009 at 21:47 from IEEE Xplore. Restrictions apply.

AMMICHT et al.: INFORMATION SEEKING SPOKEN DIALOGUE SYSTEMS I 541

a unique candidate with score to be considered established,
its score must be positive and sufficiently large, i.e.,
and 2) given multiple candidates with scores , where

, we require and
to consider candidate 1 sufficiently well established (unambigu-
ously known). We currently trained the system to use the settings

, .
Once ambiguity is detected, it is up to the dialogue manager

to decide when and how to best resolve ambiguity. Typically the
dialogue manager will attempt to resolve ambiguity as early as
possible, either using implicit confirmation, explicit confirma-
tion or direct disambiguation subdialogues. The selected disam-
biguation method depends on the “degree” and “importance” of
the existing ambiguity, i.e., how close are the pragmatic scores
and score differences to the thresholds and and how im-
portant are the attribute-values in question for the successful
completion of the task. For more details see [22].

B. Types of Evidence

Evidence for or against candidate values in our system comes
from two main sources: 1) evidence derived from the raw data
and associated scores derived from the user utterance and 2)
evidence derived from pragmatic considerations by analyzing
the dialogue. Details about each type of evidence follow.

1) Raw Data: Raw data values typically have confidence
scores attached, e.g., an acoustic confidence or semantic con-
fidence score.11 To use such scores in (1), they are first com-
bined to derive a single individual score with range [0, 1] based
on the score type and the particular attribute of the datum. The
strength of the evidence for or against a particular candidate
is obtained by setting

if and are consistent
otherwise

(2)

where is the degree of consistency between the raw value and
the candidate value (e.g., the percent overlap in the case of two
ranges), and where and are constants. We
currently use , , where is the number
of position ambiguous attributes found for the raw datum and

is a weight obtained from the context tracking algorithm (see
Section IV).

For example, consider the case in the third subdialogue pre-
sented in Table VI where there are three pieces of information
for the attribute “…departure.city”: “BOS” (Boston) and “AUS”
(Austin) occurring twice, resulting in two candidates, “BOS”
and “AUS” (note that there is no position ambiguity and for
all candidates and). In this example, ,

, and .
Given an initial value of 0 for the score of the AV pair candi-

date (“…departure.city”,“BOS”), the MYCIN formula with ev-
idence for “BOS” yields a new score . Next,
the evidence for “AUS” is computed as
(the evidence is negative since the value “AUS” is inconsistent
with “BOS”). This evidence value is then used in the MYCIN
formula to obtain the updated score

11In the absence of such scores, we use a modality-dependent default score:
.5 for speech input and .9 for graphical input.

. The process is repeated for the third
piece of evidence “AUS” to get and a final score

for “BOS”. Note
that we would have gotten the same results independent of the
order in which the three values appear in user input. The score
for the AV pair (“…departure.city”, “AUS”) is similarly ob-
tained by computing the three evidence scores for the candidate
“AUS” , and due to the respective
occurrences of “AUS”, “AUS” and “BOS” in the user input, and
using the MYCIN formula to update the score for the candidate
value, successively obtaining new scores ,
and . For details see Table IV.

Given the ambiguity thresholds provided in Section V-A1 the
pragmatic module decides that in this case the value for the at-
tribute “…departure.city” is unambiguously established to be
“AUS” because and

.
In general, the degree of consistency between values is a

function of the value type.12

At each dialogue turn, the scoring operation proceeds as fol-
lows: 1) as each datum is added to the raw data tree, its score
is computed; 2) the evidence that the new datum introduces
is computed using (2); and 3) the scores of all known candi-
dates are updated based on the new evidence using the score
update formula (1). Note that the score computation algorithm
is simple, yet powerful; only two parameters and need to
be trained to quantify the contribution of positive and negative
evidence. More complex scoring algorithms based on Bayesian
networks are discussed in Section V-D.

2) Pragmatic Analysis: The spoken dialogue system uses
a dialogue strategy of frequent implicit confirmation. For
example, the system prompt “Flying from Atlanta to New
York. When do you want to leave Atlanta?”, attempts to obtain
implicit confirmation of the departure and arrival city, before
asking the user for the departure date. Given the nature of the
system prompts, we can classify the information extracted from
the resulting user response as follows.

1) Expected requested response (RR): the user input con-
tains values, attributes and action requests that are a di-
rect response to the system prompt, i.e., the user pro-
vides the information that the prompt was designed to
elicit. For example, the user responds with “Friday July
13th” (providing departure date information) to the ex-
ample prompt given above.

2) Expected error response (ER): the user input contains
attributes and values that are not a direct response to
the prompt, but instead relate to the implicit confirma-
tion part of the prompt, i.e., the user attempts to cor-
rect (or verify) the value of a specific attribute that is
being implicitly confirmed by the current prompt. For
example, the user responds with “I am flying to Newark
New Jersey” to the prompt given above, attempting to

12A more complex scoring example where the degree of consistency is not
c = 1, is provided by the candidates extracted from user inputs “New York”
and “Newark”, which are partially consistent since Newark is one of the three
airports around New York. By defining the consistency between two candidates
consisting of a set of discrete values as the ratio of the cardinality of their inter-
section to the cardinality of their union, we obtain c = 0:33.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on January 17, 2009 at 21:47 from IEEE Xplore. Restrictions apply.

542 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 3, APRIL 2007

correct the AV pair (“…arrival.city”, “New York”) given
in the first part of the prompt.

3) unrelated response (UR): The user response contains
attributes and action requests that are neither a direct
response to the prompt nor mentioned in the implicit
confirmation. For example, the user provides a departure
date for the return flight when asked for the departure
date of the first leg, as in “I want to leave on the tenth
and return on the fourteenth”.

4) “Yes”/“no” confirmation response (Confirm): the
user responds with a “yes”/“no” (or synonyms) to an
explicit/implicit confirmation question or disambigua-
tion prompt, e.g., to the disambiguation prompt “Is
the departure New York or Boston?” the user responds
with “ Neither, I am leaving from Austin”. A simpler
example is the explicit confirmation prompt “Are you
leaving from Atlanta on July fifth?” and the user reply
“Yes, that’s correct”.

Note that user input often contains more than one type of
response, e.g., the user reply “I want to leave on the tenth
and return on the fourteenth” (to the “…When do you want
to leave…?” prompt) contains both an RR (departure date for
current leg) and a UR (departure date for return flight leg). The
classification algorithm of user input semantics to RR, ER and
UR is automatic and application independent.13 The confirma-
tion response type is identified by the semantic module.

During pragmatic analysis, the user input is characterized and
its relation to the make-up of the corresponding system prompt
is examined. Specifically, the following prompt types are iden-
tified:14

1) Explicit single attribute confirmation (ESAC): a
single attribute-value pair is being explicitly confirmed,
e.g., the (“…departure.city”,“Paris”) AV is being con-
firmed by the prompt “Are you leaving from Paris?”.

2) Explicit multiple attribute confirmation (EMAC): in
this case, explicit confirmation of more than one AV pair
is being requested, e.g., “Are you leaving from Paris on
January 15?”.

3) Implicit single attribute confirmation (ISAC): same
as ESAC but in this case the confirmation is implicit,
e.g., “You are leaving from Paris …” or “At what time
are you leaving from Paris?”.

4) Implicit multiple attribute confirmation (IMAC):
same as EMAC but implicit, e.g., “You are leaving from
Paris on January 15…”.

5) Value disambiguation (VD): a request to select one of
several (typically two) values for an attribute, e.g., “Are
you leaving from Boston or New York?”.

6) Attribute disambiguation (AD): a request to select one
of several attributes for a given value, e.g., “Is Boston
your arrival or your departure city?”.

13The implementation of the user input classification algorithm is very simple
in our system, thanks to the common semantic representation (prototype tree)
for both system output and user input: the attributes and actions in the implicit
confirmation and information request parts of the system prompt are compared
to the attributes and actions in user input to classify input semantics into RR,
ER or UR.

14The proposed tagging scheme has similarities with the dialogue act tagging
scheme proposed [31] for dialogue evaluation purposes. For tagging of error-
related pragmatic information in dialogues, see also [3].

The precise definition of the pragmatic analysis rules for
the evidence derived depends on the system capabilities as
well as the aggressiveness with which the system confirms or
abandons hypotheses about the appropriate candidate values.
In Table V, the rules that are used in the current system are
shown. The rules are fired for specific types of user input
(RR, ER, UR, Confirm) and system prompts (EMAC, ESAC,
IMAC, ISAC, VD, AD); each rule updates the pragmatic
scores of candidates. The firing of each pragmatic analysis
rule is interpreted as evidence for or against the associated
candidates as specified in the table. Other rules may readily
be derived in addition to those in Table V.

Most of the rules in Table V are self-explanatory. For
example, rule 1 increases the scores of implicitly confirmed
attribute-values if the user provided a requested response (RR).
Rules 5, 6, 7, 9 increase the score(s) of the AV pair(s) being
confirmed if the user replies affirmatively (with a “yes” or
synonyms). Rules 2, 8, 10, decrease the score of the AV
pair being confirmed if the user replies with a “no” (note
that there is no such rule for multiple AV pair confirmation
here, since a “no” response could correspond to any of the
AV pairs being confirmed). Finally, the value disambiguation
rules 3 and 11, cover the requested response case (where
one candidate is selected by the user) and the rejection of
all candidates case respectively.

A pragmatic analysis example can be found in the first subdi-
alogue of Table VI. Specifically, the value disambiguation rule
3 is applied at the third dialogue turn of the subdialogue with
system prompt “Is the departure city Boston or Austin?” and
user reply “Yes, Austin Texas”. According to pragmatic anal-
ysis rule 3, and (additional) positive evidence of strength 0.3 is
incorporated into the candidate “AUS” using the MYCIN for-
mula in (1), resulting in a pragmatic score of 0.8 for “AUS”,
while the score of the candidate “BOS” (that was not selected
by the user) goes to 0. Note that in the absence of the pragmatic
analysis rules the pragmatic scores for the two candidates would
have been 0.38 and 0.72 for “BOS” and “AUS” respectively, just
as is the case for third subdialogue of Table VI.

C. Training of Scoring Parameters

In this section, we discuss the training of the evidence com-
putation parameters of the scoring algorithm, i.e., the parame-
ters and in (2) and the evidence contribution values from
the pragmatic analysis rules 1–11 in Table V. For simplicity we
have encoded all the evidence rules in Table V into a single pa-
rameter , where is the evidence for rules {1, 3–7, 9}, is
the evidence for rules {8, 10} and is the evidence for rule
2. Note that in Table V we have set .

The scoring algorithm parameters can be op-
timized using the following supervised training algorithm. Di-
alogues are manually labeled; at each dialogue turn each can-
didate value is assigned a (pragmatic) confidence score by the
labeler. The scores are normalized between and 1 (as in (1)),
and quantized (for example into five levels (, ,0,0.5,1)).
The optimal value of the parameters are then computed so as
to minimize the mean absolute distance between the automati-
cally computed pragmatic scores and the (quantized) manually

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on January 17, 2009 at 21:47 from IEEE Xplore. Restrictions apply.

AMMICHT et al.: INFORMATION SEEKING SPOKEN DIALOGUE SYSTEMS I 543

TABLE V
PRAGMATIC EVIDENCE RULES USED IN THE TRAVEL RESERVATION SYSTEM. USER INPUT IS CLASSIFIED IN THE FOLLOWING CATEGORIES: REQUESTED

RESPONSE (RR), EXPECTED ERROR RESPONSE (ER), UNRELATED RESPONSE (UR) AND “YES”/“NO” CONFIRMATION. THE SYSTEM PROMPT CATEGORIES ARE:
EXPLICIT/IMPLICIT MULTIPLE/SINGLE ATTRIBUTE CONFIRMATION (EMAC/ESAC/IMAC/ISAC) AND VALUE/ATTRIBUTE DISAMBIGUATION (VD/AD). THE

PRAGMATIC SCORING DECISION FOR EACH RULE IS SHOWN QUALITATIVELY AND QUANTITATIVELY AS POSITIVE OR NEGATIVE EVIDENCE e FOR CANDIDATE

VALUES. NOTE THAT THE “REMOVE CANDIDATE” OPERATION SETS THE PRAGMATIC SCORE OF THAT CANDIDATE TO 0

transcribed pragmatic scores over all dialogue turns and all can-
didates, i.e.,

(3)

where is the dialogue index, is the dialogue turn index, AV is
the candidate index (attribute-value pair), is the score com-
puted automatically from (1) and is the manually transcribed
score. The minimization can be implemented using gradient de-
scent.

The supervised training procedure presented above requires a
significant number of dialogues to be manually transcribed. Al-
ternatively, an unsupervised training algorithm can be used that
requires no manual labor. Users are asked to complete the same
task for different values of the parameters . The optimal param-
eters are selected so as to minimize an objective criterion, e.g.,
time-to-completion (average number of dialogue turns it takes
to complete the task). Note that the unsupervised training algo-
rithm requires far more training data (typically a few hundred
dialogues) than the supervised algorithm. In practice, system
developers can use more than one objective criterion to select
the optimal parameters and focus their attention mainly on the
error correction subdialogues to speed up the training process.
For our travel reservation systems we found that the values

, and were close to optimal. However,
more research is needed to investigate how well these param-
eter values generalize across different applications and to what
extent these parameters are attribute-dependent.

Overall, the proposed pragmatic scoring algorithm has the ad-
vantages outlined in Section V-A, namely: the use of all avail-
able sources of information to determine the validity of an at-
tribute-value pair, a parsimonious representation with few train-
able parameters and a normalized score that is easy to use in the
dialogue manager to disambiguate among AV pairs.

D. Bayesian Formulation of Pragmatic Scores

Instead of using the MYCIN update formula in (1) one may
use a probabilistic framework to compute pragmatic scores. In
this case, pragmatic scores represent the probability that an at-
tribute has a specific value given all evidence available (for
or against) that value. In [18], a Bayesian probabilistic frame-
work is proposed for combining evidence from various sources

to compute the probability of an AV. However, the proposed
framework is hard to use in practice since all possible values
have to be taken into account, i.e., even if there is no evidence
for a value the probability of this value has to be computed. An
interesting alternative approach to statistical modeling and se-
mantic/pragmatic evidence combination can be found in recent
work [4], but this approach requires sufficient training data; a
more practical approach on how to combine evidence from user
input for or against an AV pair is presented below.

Each candidate with value and confidence 0.5 is represented
as a Bayesian network node with a probability table
and (the latter is the probability of any value but

). We refer to these binary valued nodes as “evidence” nodes;
there are typically multiple evidence nodes per attribute. Each
attribute is modeled with an “attribute” node AV that holds all
possible values for that attribute; all evidence nodes are con-
nected (point to) to their corresponding attributes. The possible
values for an attribute node are the values of the evidence nodes
connected to it and the negation of these values. For example, if
two evidence nodes and with values and exist and are
connected to an attribute node AV the possible values for this
attribute node are , and . Continuing with this example the
probability table for node AV is ,

, ,

a 3 4 table. As
the number of evidence nodes becomes larger the size of the
probability tables becomes unmanageable and the training
requires a large amount of data. In practice, one can make
reasonable assumptions for the attribute node probability table

, e.g.,

Assuming that for nodes and , and
, it is easy to compute

using the table above. Similarly for evidence nodes
and , we obtain ,

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on January 17, 2009 at 21:47 from IEEE Xplore. Restrictions apply.

544 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 3, APRIL 2007

TABLE VI
EXAMPLES OF IMPLICIT AND EXPLICIT CORRECTION SUB-DIALOGUES INITIATED BY THE USER. IN ALL CASES THE USER IS TRYING TO CHANGE THE DEPARTURE

CITY FROM BOSTON TO AUSTIN. THE ACOUSTIC/SEMANTIC CONFIDENCE SCORES ARE ASSUMED TO BE p = 0:5 FOR ALL AV PAIRS. IN THE FIRST CASE, THE

IMPLICIT CORRECTION LEADS TO VALUE AMBIGUITY WHICH IS THEN DISAMBIGUATED BY THE DIALOGUE MANAGER. IN THE SECOND CASE, THE USER

PERFORMS AN IMPLICIT CHANGE REQUEST. IN THE THIRD CASE, THE USER PROVIDES EVIDENCE FOR AUSTIN; THE EVIDENCE IS WEIGHTED AGAINST THE

EVIDENCE FOR BOSTON AND THE SYSTEM DECIDES THAT AUSTIN (WITH SCORE 0.72 VERSUS 0.38) PREVAILS (UNAMBIGUOUSLY)

given the assumption that .
Compare the probabilities 0.375 and 0.5 with the scores 0.44 and
0.72 respectively that the MYCIN formulas produce in the same
situation; clearly the proposed Bayesian formulation produces
lower confidence scores compared to MYCIN. More research is
needed to better understand how the Bayesian formulation can
be used for pragmatic confidence scoring and how to parame-
terize and train the attribute node probabilities table efficiently.

E. Combining Inputs From Multiple Modalities

The proposed pragmatic analysis and scoring mechanisms
can be also used for combining input from different modali-
ties. Consider for example a multimodal system that can handle
speech and graphical input sequentially.15 Each piece of evi-
dence (raw data, pragmatic analysis) is independently evaluated
for each input mode. A default evidence score is assigned to
each input modality depending on its reliability, e.g., for
speech input and for graphical input. The score for each
piece of evidence is then computed using (2) and the pragmatic
analysis rules. Finally evidence from various input modalities is
combined using (1). Note that the evidence combination algo-
rithm operates independent of modality; the mode of input only
affects the evidence score .

15For a discussion on how the semantic and pragmatic modules can be ex-
tended to handle concurrent multimodal input, see Section VII and [15].

For example, consider two pieces of input for the attribute
“…departure.city”: speech input “leaving from Boston” and
graphical input (via the departure city field in the graphical
user interface) “NYC”. Based on the default confidence scores
for the speech and graphical input modalities the two pieces
of evidence “BOS” and “NYC” have scores and

respectively. Assuming an initial value of 0 for all
candidates, the evidence is computed and combined using the
formulas in Section V-A. as follows:16

The final scores for “BOS” and “NYC” are and
respectively. Given the ambiguity thresholds pro-

vided in Section V-A1 the attribute “…departure.city” is unam-
biguously established as “NYC” because
and .

Overall, the proposed pragmatic module can be used as an
simple and efficient way of combining inputs from multiple

16Note that both the positive and negative evidence is affected by the input
mode reliability score p.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on January 17, 2009 at 21:47 from IEEE Xplore. Restrictions apply.

AMMICHT et al.: INFORMATION SEEKING SPOKEN DIALOGUE SYSTEMS I 545

modalities: in essence, merging input from multiple modalities
is formulated and solved as an evidence combination problem.
In [22], a multimodal spoken dialogue system that can handle
both speech and graphical input is implemented using the prag-
matic module presented here.

VI. EVALUATION

In this section, evaluation results for the proposed semantic
and pragmatic modules are presented. The proposed semantic
and pragmatic algorithms were implemented as part of the 2001
Bell Labs DARPA Communicator travel reservation system. We
present the 2000 [33] and 2001 [34] DARPA Communicator
evaluation campaign results for the Lucent Bell Labs system
(evaluation organized by NIST/DARPA). The main differences
between the 2000 and 2001 Bell Labs systems are outlined as
follows.

1) The 2001 system employed the semantic and prag-
matic representation algorithms described in this paper:
pragmatic scoring, pragmatic analysis, complex error cor-
rection mechanisms, complex context tracking, improved
parsing. The 2000 system used simple parsing and context
tracking rules and no pragmatic scoring.

2) The automatic speech recognizers (ASR) employed by
both the 2000 and 2001 systems were identical17; however,
the acoustic and language models used in the 2001 system
were trained on a bigger corpus and in-domain (travel
reservation) data was used for model adaptation.

3) The Bell Labs text-to-speech synthesizer (TTS) system
[37] was used in the 2000 system, while for the 2001
system concatenated pre-recorded prompts were used.

4) The functionality (and evaluation scenarios) of the 2001
system were augmented compared to the 2000 system:
more travel destination were added to the system, as well
as car and hotel reservation capabilities.

The 2000 system evaluation was performed over a period of
three weeks; during this period 75 calls were made to the system
by paid subjects. Callers were also asked to judge whether the
task was successfully completed and to answer a set of five user
satisfaction survey questions on the system usability based on
the NIST-derived Likert paradigm [16], [29]. The 2001 evalu-
ation was performed over a period of six months; during this
period 215 calls were made by 28 paid subjects. Among the
215 dialogues collected, we present results for 139 dialogues for
which user survey data exist. In Table VII, the objective and sub-
jective evaluation metrics are presented for the 2000 and 2001
systems. Perceived task completion (PTC), task duration statis-
tics and word/sentence accuracy are shown for the two systems
for completed and non-completed tasks. The task completion for
the 2001 system was 83%, significantly higher than the 2000
system (53%). Task duration statistics are significantly lower
for the 2000 system due to the simpler evaluation scenarios (no
car/hotel reservations in 2000). Finally, the relative word error
rate reduction in the 2001 system (compared with 2000) is 40%.

In the second part of Table VII, the average Likert scores
in the user survey are shown as a function of perceived task
completion for the two systems. The user survey consisted of

17Note that the ASR engine did not produce word level confidence scores;
default acoustic confidence values of 0.5 was assumed for all attribute values.

TABLE VII
OBJECTIVE AND SUBJECTIVE DIALOGUE METRICS FOR THE 2000

AND 2001 BELL LABS COMMUNICATOR SYSTEMS

the following five questions which were rated from 1 to 5 (5
being strong agreement):

1) “In this conversation, it was easy to get the information that
I wanted” (Easy to Get Info).

2) “I found the system easy to understand in this conversa-
tion” (Easy to Understand).

3) “In this conversation, I knew what I could say or do at each
point of the dialogue” (Know What to Say/Do).

4) “The system worked the way I expected it to in this con-
versation” (Know What to Expect).

5) “Based on my experience in this conversation using this
system to get travel information, I would like to use this
system again” (Future Use).

The overall subjective score improvement for the 2001 vs 2000
system is 0.6 in the Likert scale for completed tasks. This is a
statistically significant result; the 95% confidence interval for
the overall score difference is [0.24, 0.24]. Note, that the dif-
ference in subjective scores between the two systems for non-
completed tasks is not significant. See [32] for a formal eval-
uation across all Communicator systems using the PARADISE
framework [30].

Overall, the 2001 system compares favorably to the 2000
system both in terms of objective (task completion) and sub-
jective metrics (user satisfaction). Due to the numerous differ-
ences between the two systems and the different evaluation sce-
narios it is hard to judge the impact of the improved semantic
and pragmatic modules in the overall system performance. The
main difference between the 2000 and 2001 systems (apart from
the semantic and pragmatic modules) is the improved speech
recognition word accuracy in the 2001 system.

The PARADISE evaluation model [30] gives the ability to
estimate contributions of each system component to overall user
satisfaction, but unfortunately we are unable to run this style
of evaluation for our system. However, we do note that Walker
et al.’s PARADISE analysis of all Communicator systems
(including ours) indicates that the critical predictive factors
of user satisfaction (in decreasing order) were Task Duration,
System Words Per Turn, Task Completion, Sentence Error
Rate, Number of Overlaps, and User Words Per Turn [33], with
the first three items demonstrating 2 to 2.5 times as much influ-
ence as the sentence error rate. This suggests that while ASR

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on January 17, 2009 at 21:47 from IEEE Xplore. Restrictions apply.

546 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 3, APRIL 2007

TABLE VIII
A DIALOGUE FRAGMENT FROM THE JUNE 2000 DARPA COMMUNICATOR EVALUATION. S = system utterance, U = recognized user utterance.

AT EACH DIALOGUE TURN THE INNER WORKINGS OF THE PRAGMATIC MODULE ARE SHOWN: PROMPT AND USER INPUT CATEGORIZATION,
APPLICABLE PRAGMATIC ANALYSIS RULES AND THE AV PAIRS WITH THEIR CORRESPONDING PRAGMATIC SCORES s (THE ACOUSTIC CONFIDENCE

SCORE IS p = 0:5 FOR ALL CANDIDATES). CONTEXT TRACKING AND DIALOGUE MANAGEMENT DECISIONS ARE ALSO SHOWN WHERE

APPROPRIATE (THE COMMON CONTEXT PREFIX “TRIP.FLIGHT” IS OMITTED)

improvements could theoretically account for the improvement
in user satisfaction, it is more likely that the improved semantic
and pragmatic modules, which would have improved the first
three metrics, would likely have been a significant contributor
in the improvements seen in our 2001 system. However, further
research is needed to understand the exact relationship between
utilizing the improved semantic/pragmatic modules and user
satisfaction.

A different way of estimating the impact of our proposed se-
mantic and pragmatic algorithms on system performance is to
remove the effect of ASR performance by taking the output of
the 2000 ASR system as a given for a subset the 2000 eval-
uation corpus, and then analyze the performance of the 2000
and 2001 Semantic/Pragmatic modules on these constant ASR
strings. This does not have the advantage of being tied to user
satisfaction ratings, but provides us with an alternative method
of evaluating the correctness of our algorithm. In the next sec-
tion, we perform a detailed turn-by-turn analysis of the 2000
Communicator corpus.

A. Turn by Turn Dialogue System Evaluation

We analyzed 35 dialogues collected during the third week of
the June 2000 DARPA Communicator evaluation by the Bell
Labs system. Every dialogue was run through both the 2000
and 2001 systems turn by turn until the output prompts of the
two systems were different, i.e., the dialogues “diverged.”18 At
turns where the two systems diverged a labeler manually char-
acterized the system behavior as “better”, “worse” or “no differ-
ence”. The labeler made such judgments using full knowledge
of the system prompts, transcribed user inputs, speech recog-
nizer outputs, as well as information about the internal system

18Note that the (text) input to both systems was identical, thus eliminating
any ASR performance bias.

state. The labeler did not listen to the synthesized prompts, thus
eliminating any TTS performance bias.

The analyzed dialogues contained multiple transactions,
frequently covering more than one leg of a flight. For some
of the dialogues evaluated, the two systems diverged (e.g., in
the first leg) and then latter re-converged (e.g., in the second
leg). As a result multiple dialogue fragments per transaction
were analyzed and evaluated: a total of 49 fragments. Given
these 49 examples where the two systems diverged, we found
that the 2001 system improved in 25 cases, compared to 3
cases where the 2000 system was superior. The improvements
were due to better parsing/context tracking in 10 cases, the
introduction of scoring and pragmatic analysis in 10 cases and
the interaction of the semantic and pragmatic modules in 3
cases. In 21 cases, the dialogue diverged in ways that did not
allow such a value judgment to be made (“no difference”). The
results are summarized in Table IX. A sample interaction where
the 2001 system performed “better” is shown in Table VIII.
Note the application of pragmatic analysis rule 7 in the third
dialogue turn and the disambiguation subdialogue that the
system enters at the fifth dialogue turn due to the value ambiguity
for the departure city. Overall, the introduction of pragmatic
analysis and scoring improved the quality of the 2001 system
in about 20% of the dialogue fragments examined, a significant
improvement.

B. Multimodal Dialogue System Evaluation

To evaluate the ability of the pragmatic module to operate
with visual or multiple input modalities a multimodal version of
the travel reservation system was created in [22]. For the mul-
timodal version of the system a GUI parser and interpreter had
to be written, e.g., to be able to parse “3/9” as “March 9th”. The
semantic representations used for the unimodal (speech-only,
GUI-only) and multimodal systems were identical. No porting

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on January 17, 2009 at 21:47 from IEEE Xplore. Restrictions apply.

AMMICHT et al.: INFORMATION SEEKING SPOKEN DIALOGUE SYSTEMS I 547

TABLE IX
COMPARISON OF THE 2000 AND THE 2001 VERSION OF THE SPOKEN DIALOGUE SYSTEM

TABLE X
OBJECTIVE AND SUBJECTIVE METRICS FOR UNIMODAL AND MULTIMODAL SYSTEMS

and no modification to the pragmatic module were necessary
for the GUI and multimodal systems. Speech and GUI input
is parsed and interpreted and candidates are added to the raw
data tree.19 The context tracker, pragmatic analysis and prag-
matic scoring algorithms operate uniformly on the raw data (in-
dependent of the mode of input). Input from different modali-
ties is seamlessly merged using the candidate tree and pragmatic
scoring machinery as discussed in Section V-E.

The unimodal (speech-only, GUI-only) and two versions of
the multimodal travel reservation systems were evaluated by
ten non-native English-speaking users. A total of 50 interac-
tions (dialogues) were collected for each system. Selected re-
sults from the subjective and objective evaluation are shown in
Table X. Note that in terms of task completion, time to com-
pletion, and user satisfaction the GUI and multimodal systems
significantly outperform the speech-only system. For more de-
tails on the development of the multimodal (and GUI) systems,
as well as the evaluation procedure see [22].

VII. DISCUSSION

In this section, we discuss our experience from using the se-
mantic and pragmatic algorithms proposed here for a different
application domain, namely movie information. Also general-
izations of the proposed algorithms to handle simultaneous mul-
timodal input (concurrent multimodality) and input from dif-
ferent modalities (e.g., gestures) are discussed.

The list of implementation steps for porting the system [22]
to a new application domain, e.g., movie information system,
were the following: 1) design the prototype tree, 2) compose
the parser rules (context sensitive grammar), 3) map parser con-
cepts to prototype tree concepts, 4) write/update the interpreters,

19Note that raw data have different a-priori confidences depending on the
input modality, p = 0:5 for speech and p = 0:9 for GUI input.

i.e., define mapping from spoken/written form to internal value
representation for each attribute in prototype tree, 5) update ap-
plication-dependent user requests in “User Action Interpreter”,
6) define application-dependent context ambiguity resolution
rules, and 7) implement “Domain Knowledge and Inference”
rules. Note that steps 1)–5) refer to semantic module and steps
6)–7) refer to the pragmatic module. Steps 2) and 4) were the
most time consuming. Steps 5) and 7) were not needed for the
simple movie information system implemented but are listed
here for completeness.

Most of the difficulties during porting were encountered at
the dialogue manager level; no modifications (other than the
ones listed above) were necessary to the semantic and prag-
matic modules. The context tracking and pragmatic scoring al-
gorithms were used as is in the new application domain. For a
full description of the movie information system porting expe-
rience see [22].

To incorporate new modalities into the system the following
steps have to be followed: 1) construct the “parser” for the new
modality, 2) construct the “interpreters” for the new modality,
3) define the modality-dependent confidence score for evidence
combination, and 4) add modality-dependent pragmatic rules
(optional). Note that steps 1), 2) affect the semantic module and
steps 3), 4) affect the pragmatic module. The notions of “parser”
and “interpreter” are generalized here to mean mapping from
user input to attributes and values. Examples of other modalities
that could be integrated into the system include gestures and
eye-gaze information.

Our discussion has focused on sequential multimodality —
when the user is required to utilize only one modality per turn.
Concurrent multimodality, where speech and GUI inputs work
in concert, will require extensions such as three-tape FSM
parsers [15]. In [22] we discuss how such technologies may be
integrated with our proposed architecture.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on January 17, 2009 at 21:47 from IEEE Xplore. Restrictions apply.

548 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 3, APRIL 2007

VIII. CONCLUSIONS

In this paper, a new application-independent framework
for semantic representation, context tracking and pragmatic
analysis in information seeking spoken dialogue systems was
developed. A pragmatic scoring mechanism was introduced that
combines information from acoustic, semantic and pragmatic
sources. The pragmatic analysis and pragmatic scoring algo-
rithms were shown to improve on a previous simpler spoken
dialogue system, thanks to the ability of the pragmatic module
to directly represent and identify ambiguities introduced either
by system errors or by user input. The semantic represen-
tation, context tracking, pragmatic analysis and pragmatic
scoring algorithms were shown (see also [22]) to be applica-
tion-independent by porting the system to a new application
domain (movie information) and to be modality independent
by extending the system to multiple modalities (combination
of speech and graphical input). Evaluation results provided
strong evidence that the proposed semantic and pragmatic
algorithms can improve system performance; further research
is required to better understand the impact of this work on the
user experience.

In future work, we plan to investigate how to further tune
the scoring algorithms through training of the parameters and
how to better integrate confidence measures from the semantic
module into the pragmatic scoring algorithm. Overall, this work
is a first step towards creating state-of-the art algorithms and
modules for spoken dialogue systems that are general enough
to be applicable to a wide range of application domains and
interaction modalities.

ACKNOWLEDGMENT

The data collection was designed and organized by NIST.
The user survey and scenarios were created by the DARPA
Communicator evaluation committee. The authors would like
to express their sincere appreciation to Dr. S. Lee, Dr. J. Kuo,
Dr. A. Pargellis, Prof. C.-H. Lee, and Prof. J. Olive for their
many contributions to the Bell Labs DARPA Communicator
program; to A. Saad and Dr. Q. Zhou for building the Com-
municator-compliant Bell Labs audio platform; to T. Ren, R.
Barkan, and M. Einbinder for their help with system imple-
mentation and data collection; to Dr. J. Chu-Carroll, Dr. M.
Tsangaris, and Prof. S. Narayanan for many helpful discus-
sions; and to the Colorado University Communicator team (and
especially Dr. B. Pellom) for providing and supporting the
travel information database back-end.

REFERENCES

[1] M. K. Abrahams, D. L. McGuinness, R. Thomason, L. A. Resnick, P.
F. Patel-Schneider, V. Cavalli-Sforza, and C. Conati, NeoClassic Tu-
torial: Version 1.0. Whippany, NJ: Artificial Intelligence Principles
Research Department, AT&T Bell Labs, 1996.

[2] E. Ammicht, A. Potamianos, and E. Fosler-Lussier, “Ambiguity rep-
resentation and resolution in spoken dialogue systems,” in Proc. Eur.
Conf. Speech Communication and Technology, Aalborg, Denmark,
Sep. 2001.

[3] D. Bohus and A. Rudnicky, “Sorry, I didn’t catch that! – An investi-
gation of non-understanding errors and recovery strategies,” in Proc.
SIGdial Workshop on Discourse and Dialogue, Lisbon, Portugal, Sep.
2005.

[4] ——, “Constructing accurate beliefs in spoken dialog systems,” in
Proc. Workshop on Automatic Speech Recognition and Understanding,
Cancun, Mexico, Nov. 2005.

[5] B. Carpenter, Type-Logical Semantics. Cambridge, MA: MIT Press,
1998.

[6] J. Chu-Carroll, “Formbased reasoning for mixed-initiative dialogue
management in information-query systems,” in Proc. Eur. Conf. on
Speech Communication and Technology, Budapest, Hungary, Sep.
1999.

[7] ——, “MIMIC: An adaptive mixed initiative spoken dialogue system
for information queries,” in Proc. 6th ACL Conf. Applied Natural Lan-
guage Processing, Seattle, WA, May 2000.

[8] M. Denecke, “Rapid prototyping for spoken dialogue systems,” in
Proc. Internat. Conf. on Computational Linguistics, Taipei, Taiwan,
R.O.C., Aug. 2002.

[9] M. Denecke and A. Waibel, “Dialogue strategies guiding users to their
communicative goals,” in Proc. Eur. Conf. Speech Communication and
Technology, Rhodes, Greece, Sep. 1999.

[10] D. Goddeau, H. Meng, J. Polifroni, S. Seneff, and S. Busayapongchai,
“A form-based dialogue manager for spoken language applications,” in
Proc. Int. Conf. Speech Language Processing, Philadelphia, PA, Oct.
1996.

[11] D. Heckerman, “Probabilistic interpretations for MYCIN’s certainty
factors,” in Uncertainty in Artificial Intelligence, L. Kanal and J.
Lemmer, Eds. Amsterdam, The Netherlands: North Holland, 1986,
pp. 11–22.

[12] R. Higashinaka, M. Nakano, and K. Aikawa, “Corpus-based discourse
understanding in spoken dialogue systems,” in Proc. Annu. Meeting
Assoc. Comput. Linguist., 2003.

[13] J. Hobbs and R. Moore, Formal Theories of the Commonsense
World. Norwood, NJ: Ablex, 1985.

[14] K. Komatani and T. Kawahara, “Generating effective confirmation and
guidance using two-level confidence measures for dialogue systems,”
in Proc. Int. Conf. Speech Language Processing, Beijing, China, Oct.
2000.

[15] M. Johnston and S. Bangalore, “Finite-state multimodal integration and
understanding,” J. Natural Lang. Eng., vol. 11, no. 2, pp. 159–187,
2005.

[16] L. B. Larsen, “Combining objective and subjective data in evaluation of
spoken dialogues,” in Proc. ESCA Workshop on Interactive Dialogue
in Multi-Modal Systems, Kloster Irsee, Germany, Jun. 1999.

[17] S. Larsson and D. Traum, “Information state and dialogue management
in the TRINDI dialogue move engine toolkit,” Natural Lang. Eng., vol.
6, pp. 323–340, 2000.

[18] O. Lemon, P. Parikh, and S. Peters, “Probabilistic dialogue modeling,”
in Proc. 3rd SIGdial Workshop on Discourse and Dialogue, Philade-
phia, PA, Jul. 2002.

[19] E. Levin, R. Pieraccini, W. Eckert, G. D. Fabbrizio, and S. Narayanan,
“Spoken language dialogue: From theory to practice,” in Proc. Work-
shop on Automatic Speech Recognition and Understanding, Keystone,
CO, Dec. 1999.

[20] A. Potamianos, H.-K. Kuo, C.-H. Lee, A. Pargellis, A. Saad, and Q.
Zhou, “Design principles and tools for multimodal dialog systems,”
in Proc. ESCA Workshop Interact. Dialog. Multi-Modal Syst., Kloster
Irsee, Germany, Jun. 1999.

[21] A. Potamianos and H.-K. Kuo, “Speech understanding using finite state
transducers,” in Proc. Int. Conf. Speech Language Processing, Beijing,
China, Oct. 2000.

[22] A. Potamianos, E. Fosler-Lussier, and E. Ammicht, “Information
seeking spoken dialogue systems-Part II: Multimodal dialogue,” IEEE
Trans. Multimedia, vol. 9, no. 3, Apr. 2007, to be published.

[23] A. Rudnicky, E. Thayer, P. Constantinides, C. Tchou, R. Shern, K.
Lenzo, W. Xu, and A. Oh, “Creating natural dialogs in the carnegie
mellon communicator system,” in Proc. Eur. Conf. Speech Communi-
cation and Technology, Budapest, Hungary, Sep. 1999.

[24] A. Rudnicky and W. Xu, “An agenda-based dialog management archi-
tecture for spoken language systems,” in Proc. Workshop on Automatic
Speech Recognition and Understanding, Keystone, CO, Dec. 1999.

[25] S. Russell and P. Norvig, Artificial Intelligence: A Modern Ap-
proach. Upper Saddle River, NJ: Prentice-Hall, 1995.

[26] R. SanSegundo, B. Pellom, K. Hacioglu, W. Ward, and J. Pardo, “Con-
fidence measures for dialogue systems,” in Proc. Int. Conf. Speech Lan-
guage Processing, Salt Lake City, UT, May 2001.

[27] S. Seneff, E. Hurley, R. Lau, C. Pao, P. Schmid, and V. Zue, “Galaxy-II:
A reference architecture for conversational system development,” in
Proc. Int. Conf. Speech Language Processing, Sydney, Australia, Dec.
1998.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on January 17, 2009 at 21:47 from IEEE Xplore. Restrictions apply.

AMMICHT et al.: INFORMATION SEEKING SPOKEN DIALOGUE SYSTEMS I 549

[28] E. Shortliffe, Computer-Based Medical Consultation: MYCIN. New
York: Elsevier, 1976.

[29] M. Walker, L. Hirschman, and J. Aberdeen, “Evaluation for DARPA
communicator dialog systems,” in Proc. Int. Conf. Language Resources
and Evaluation, Athens, Greece, Jun. 2000.

[30] M. Walker, C. Kamm, and D. Litman, “Towards developing general
models of usability with PARADISE,” Nat. Lang. Eng.: Special Issue
on Best Practice in Spoken Dialogue Systems, 2000.

[31] M. Walker and R. Passonneau, “DATE: A dialogue act tagging scheme
for evaluation of spoken dialogue systems,” in Proc. Human Language
Technology Conf., San Diego, CA, Mar. 2001.

[32] M. A. Walker, R. J. Passonneau, and J. E. Boland, “Quantitative and
qualitative evaluation of DARPA communicator spoken dialogue sys-
tems,” in Proc. Annu. Meeting of the Association for Computational
Linguistics, 2001.

[33] M. A. Walker, A. I. Rudnicky, R. Prasad, J. Aberdeen, E. O. Bratt, J.
S. Garofolo, H. Hastie, A. N. Le, B. Pellom, A. Potamianos, R. Pas-
sonneau, S. Roukos, G. A. Sanders, and S. S. Stallard, “DARPA com-
municator evaluation: Progress from 2000 to 2001,” in Proc. Int. Conf.
Speech Language Processing, Sep. 2002.

[34] M. A. Walker, A. I. Rudnicky, R. Prasad, J. Aberdeen, E. O. Bratt, J. S.
Garofolo, H. Hastie, A. N. Le, B. Pellom, A. Potamianos, R. Passon-
neau, S. Roukos, G. A. Sanders, S. Seneff, and D. Stallard, “DARPA
communicator: Cross-system results for the 2001 evaluation,” in Proc.
Int. Conf. Speech Language Processing, Keystone, CO, Sep. 2002.

[35] W. Ward and B. Pellom, “The CU communicator system,” in Proc.
Workshop on Automatic Speech Recognition and Understanding, Key-
stone, CO, Dec. 1999.

[36] W. Xu, B. Xu, T. Huang, and H. Xia, “Bridging the gap between dia-
logue management and dialogue models,” in Proc. 3rd SIGdial Work-
shop on Discourse and Dialogue, Philadephia, PA, Jul. 2002.

[37] Q. Zhou, A. Saad, and S. Abdou, “An enhanced BLSTIP dialogue re-
search platform,” in Proc. Int. Conf. Speech Language Processing, Bei-
jing, China, Oct. 2000.

Egbert Ammicht received the B.S. degrees in mathe-
matics and physics from Bogazisi University, Turkey,
in 1974 and the Ph.D. degree in applied mathematics
from Northwestern University, Evanston, IL, in 1978.

He held post-doctoral and teaching positions at
the Courant Institute, New York; the Karlsruhe Nu-
clear Research Center, Karlsruhe, Germany; Ames
Labs, Ames, IA; and the University of Delaware,
Newark, prior to joining AT&T Bell Laboratories
in 1985. He currently is a Distinguished Member
of Technical Staff at Lucent Bell Laboratories. His

research interests include signal processing applications in acoustics and E&M,
including adaptive beamforming, echo cancellation, noise suppression, as
well as image processing and image compression. His most recent areas of
work include speech processing applications, natural language understanding
algorithms, and wireless MIMO modems. In addition to having publications
and seven patents in these areas, he is the main author of a commercialized
high performance acoustic echo canceler.

Eric Fosler-Lussier (SM’05) received the B.A.S de-
gree in computer and cognitive studies and the B.A.
degree in linguistics from the University of Pennsyl-
vania, Philadelphia, in 1993. He received the Ph.D.
degree from the University of California, Berkeley,
in 1999; his Ph.D. research was conducted at the In-
ternational Computer Science Institute, where he was
also a Postdoctoral Researcher through August 2000.

From August 2000 to December 2002, he was a
Member of Technical Staff in the Multimedia Com-
munications Lab at Bell Labs, Lucent Technologies;

from January to July 2003, he was a Visiting Scientist in the Department of
Electrical Engineering, Columbia University, New York. Currently, he is an As-
sistant Professor in the Department of Computer Science and Engineering, The
Ohio State University, Columbus, with a courtesy appointment in the Depart-
ment of Linguistics, where he co-directs the Speech and Language Technolo-
gies (SLaTe) Laboratory. His interests include linguistic modeling for automatic
speech recognition, spoken dialogue systems, statistical pattern recognition, and
natural language processing. He has authored or co-authored over 50 journal and
conference papers.

Dr. Fosler-Lussier currently serves on the IEEE Speech and Language Tech-
nical Committee.

Alexandros Potamianos (M’92) received the
Diploma degree in electrical and computer engi-
neering from the National Technical University of
Athens, Greece, in 1990. He received the M.S and
Ph.D. degrees in engineering sciences from Harvard
University, Cambridge, MA, in 1991 and 1995,
respectively.

From 1991 to June 1993, he was a Research Assis-
tant at the Harvard Robotics Lab, Harvard University.
From 1993 to 1995, he was a Research Assistant at
the Digital Signal Processing Lab, Georgia Tech, At-

lanta. From 1995 to 1999, he was a Senior Technical Staff Member at the Speech
and Image Processing Lab, AT&T Shannon Labs, Florham Park, NJ. From 1999
to 2002, he was a Technical Staff Member and Technical Supervisor at the Mul-
timedia Communications Lab at Bell Labs, Lucent Technologies, Murray Hill,
NJ. From 1999 to 2001, he was an adjunct Assistant Professor at the Depart-
ment of Electrical Engineering, Columbia University, New York. In the spring of
2003, he joined the Department of Electronics and Computer Engineering at the
Technical University of Crete, Chania, Greece, as Associate Professor. His cur-
rent research interests include speech processing, analysis, synthesis and recog-
nition, dialogue, and multimodal systems, nonlinear signal processing, natural
language understanding, artificial intelligence, and multimodal child-computer
interaction. He has authored or co-authored over 60 papers in professional jour-
nals and conferences. He is the coauthor of the paper “Creating conversational
interfaces for children” that received a 2005 IEEE Signal Processing Society
Best Paper Award. He holds four patents.

Dr. Potamianos has been a member of the IEEE Signal Processing Society
since 1992 and he served as a member of the IEEE Speech Technical Committee
from 2000 to 2003.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on January 17, 2009 at 21:47 from IEEE Xplore. Restrictions apply.

