
Formalising Control in Robust Spoken Dialogue Systems

Hui Shi Robert J. Ross John Bateman�

Collaborative Research Centre SFB/TR 8 Spatial Cognition
Universität Bremen

Bibliothekstr. 1, 28334 Bremen, Germany
{shi,robertr}@informatik.uni-bremen.de

�bateman@uni-bremen.de

Abstract

The spoken language interface is now becoming an in-
creasingly serious research topic with application to a wide
range of highly engineered systems. Such systems not only
include innocuous human-computer interactions, but also
encompass shared-control safety critical devices such as
automotive vehicles and robotic systems. Spoken Dialogue
Systems (SDS) are the language architecture used to provide
linguistic interaction in these applications, but they have to
date been notoriously difficult to engineer in a robust and
safe manner. In this paper we report on our efforts to im-
prove the safety and overall usability of dialogue enabled
applications through the employment of formal methods in
SDS development and testing. Specifically, we use Commu-
nicating Sequential Processes (CSP) as the basis of a new
approach to the specification, design and verification of dia-
logue manager control. Moreover, to support this approach,
we introduce FDMSC – the Formal Dialogue Management
for Shared Control toolkit – and illustrate its use in the con-
struction of formal methods based spoken dialogue systems.

1. Introduction

In shared-control systems, such as intelligent service
robots or semi-autonomous wheelchairs, a human opera-
tor and an automated technical system are interdependently
in charge of control. Such control-sharing can vary in de-
gree from a user-supervised execution of a task by an au-
tomaton, to the automaton momentarily asserting control
under safety critical circumstances. Indeed, shared-control
systems are often instances of safety-critical devices, and
as such, we believe that the formal analysis of the shared-
control dynamics in these devices is as crucial to the devel-
opment of a safe system as the classical modelling of the
automation.

In the construction of shared-control systems, spoken di-
alogues can be appropriate when users are technically naive
or when manual interaction may not be feasible. However,
linguistic interaction, particularly with systems that have
some aspect of spatial knowledge, introduces a number of
shared control problems that go beyond the issues found in
GUI or manual based shared control systems (25). These
problems include: classical mode confusions where the hu-
man operator loses track of the mode transitions performed
by the robot; and knowledge and ontological disparities
where the robot’s domain and instance specific knowledge
mismatches that of the user’s.

While some researchers have used formal methods to
systematically detect and avert shared control and mode
confusion issues (26; 16; 5), these efforts have not investi-
gated specific issues for dialogue based systems, or indeed,
systems where the level of automation is approaching that
of autonomous systems rather than more simple technical
devices. To help address this, we report here on the appli-
cation of formal techniques to the design and verification of
the Spoken Dialogue System (SDS) and dialogue managers
that act as the language backbone for dialogue based shared
control systems.

The paper is structured as follows: we begin in Section 2
with an introduction to spoken dialogue systems, dialogue
managers, and discourse models. Then, in Sections 3, 4,
and 5 we introduce a formal method based toolkit for the
development and verification of dialogue models. Section
3 introduces our formal methods based approach, before
Section 4 goes on to describe the communicating sequen-
tial processes based FDMSC toolkit. Then, in Section 5 we
present in detail an example dialogue model specification
and implementation based on this toolkit. One advantage
to the formal specification of dialogue models is the oppor-
tunity to verify model properties. Section 6 therefore de-
scribes our approach to the verification of dialogue models
using the FDMSC toolkit. Before concluding, we relate our
formal dialogue approach to existing work in Section 7.

Proceedings of the Third IEEE International Conference on Software Engineering and Formal Methods (SEFM’05)
0-7695-2435-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on January 17, 2009 at 21:59 from IEEE Xplore. Restrictions apply.

Figure 1. The SharC Spoken Dialogue System

2. Dialogue System Management & Modelling

2.1. Spoken Dialogue Systems

The development of non-trivial applications that provide
natural language interfaces requires the employment of a
a large number of language technology components. Spo-
ken Dialogue Systems (SDS) provide language technology
backbones for such applications and typically include com-
ponents for language recognition, analysis, dialogue mod-
elling, generation, speech synthesis, and often a number of
domain components.

2.2. Dialogue Managers

The central element within any SDS – and the compo-
nent which is core to the verification of safety-critical as-
pects of a dialogue based shared-control system – is the di-
alogue manager (21). While dialogue management tech-
niques have been principally developed for less safety-
critical applications, e.g. information-seeking and phone
based commerce, the techniques developed are broadly
suited to shared control application, and modelling with
contemporary formal techniques.

Traditional dialogue management approaches can be
classified into three groups: finite state, frame based, and
agent based models (cf. (21)). Broadly, finite state mod-
els have been deployed in many practical applications, but

are limited to dialogue scenarios that are well scripted in
advance. Frame based models, on the other hand, do not
require strict structuring of the discourse, but focus on the
pieces of information that a dialogue system must obtain
from a user. Agent based models, the last of the three tra-
ditional models, offer more flexible, conversation-like dia-
logues, but have rarely been deployed in real world systems.

A more recent dialogue management model is the In-
formation State (IS) based approach of (19; 32). The IS
based approach combines aspects of simple but easily im-
plemented finite state models with the more robust but the-
oretically complicated agent based efforts. Specifically, the
IS based approach models dialogue in terms of discourse
objects (e.g., questions, beliefs) and rules which encode re-
lationships between these objects. As such, IS systems may
be viewed as a practical instantiation of agent based mod-
els, instantiations where the broad notions of beliefs, ac-
tions, and plans are replaced with more precise semantic
types and their interrelationships.

Despite the importance of dialogue management to SDS
and intelligent robot control, little research effort has ad-
dressed the testing of dialogue model correctness. While
the VALDIA tool (1) was built for the automatic testing of
dialogue managers, it used testing methods and tools which
are comparatively primitive when contrasted against formal
methods commonly applied to safety critical systems, such
as those described in Section 3.

Proceedings of the Third IEEE International Conference on Software Engineering and Formal Methods (SEFM’05)
0-7695-2435-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on January 17, 2009 at 21:59 from IEEE Xplore. Restrictions apply.

Figure 2. Rolland

2.3. Generalised Dialogue Models

While dialogue managers provide practical implemen-
tations for the storage and update of dialogue state, gen-
eralised dialogue models provide implementation indepen-
dent descriptions of essential dialogue interactions. The
models, chiefly developed within the Natural Language
Processing Community, often draw upon formalisms com-
mon in computer science; for example, those relying on
the idea that dialogues can be modeled as finite-state ma-
chines. In the Formal Methods Community, on the other
hand, technical systems are modeled using forms of math-
ematical logic that can be subjected to very powerful anal-
yses using mechanized theorem provers and model check-
ers. Since finite-state machines are among those formalisms
used in formal methods, we can now combine ideas from
both sides; thus allowing dialogue modelling and control
using formal methods to ensure robustness and correctness.

In the formal dialogue approach presented in Sections 3,
4, 5, and 6 we make use of a particular class of generalised
dialogue model based on Sitter & Stein’s Conversational
Roles (COR) model (30). This model, which combines the
well-known notion of speech acts (27) with the ’Conver-
sation for Action’ (CfA) model (33), is constructed from
empirical studies and captures the essential interaction be-
tween two dialogue participants in an information-seeking
dialogue. However, we view this model as being applicable
to more generalised domains where user and system must
address queries and potential solutions. Broadly, the COR
model can be viewed as a Recursive State Transition Net-
work that traces the dialogue out as a set of actions that are
always performed by the dialogue’s interlocutors.

2.4. The SharC Spoken Dialogue System

To illustrate SDS construction principles and show the
relationship between a dialogue manager and other SDS

components, we review the SharC dialogue system (25)
which has been constructed for use in safe shared-control
systems.

Figure 1 presents an instantiation of that SDS that has
been built for the shared control of Rolland, the Bremen au-
tonomous wheelchair (17) (See Figure 2). Rounded blocks
represent complete control agents that encapsulate a system
component. Arrows between the agents show primary in-
formation flow. The SDS makes use of ‘off the shelf’ com-
ponents for speech recognition and synthesis. Language
analysis and generation are facilitated with the OpenCCG
analyser1 and the KPML text generation system (3) respec-
tively. Low-level, non-linguistic, robot control is encapsu-
lated within a single domain components previously pre-
sented in (18). Finally, dialogue management is provided
by the FDMSC toolkit which is presented in the remainder
of this paper.

The SharC SDS has been developed for multi-lingual
deployment through the application of ontological separa-
tion principles proposed by (2). These separation principles
partition the SDS into areas that use principally concep-
tual knowledge, versus those that should use an ontological
formulation that has been motivated by linguistic concerns.
Two hatched regions in Figure 1 show how the domain and
linguistic ontologies carve up the complete SDS.

All components are wrapped within Belief-Desire-
Intention (BDI) agent wrappers written in ALPHA (A Lan-
guage for Programming Hybrid Agents) (cf. (24)), and in-
teract using communication services provided by the Agent
Factory framework (8; 7). While the SharC SDS has been
developed for the Rolland platform, our agent oriented ap-
proach combined with the clean ontological separation of
knowledge makes the application of the SDS to other appli-
cations straightforward.

3. A Formal Approach to Dialogue Model
Specification & Verification

We have chosen to apply the well developed method
Communicating Sequential Processes (CSP) to model the
dialogue management process. Our choice was based on its
executability, good tool support, and our extensive experi-
ence with it (e.g., (5; 6; 29)). In fact, in (5) CSP is used
to model and detect mode confusion problems present in
a manually operated shared control system. Nevertheless,
our approach is not restricted to CSP. Other formal methods
such as SPIN (14), Kronos (12), SMV (20) and so forth,
could also be applied.

Once created, a CSP specification of the dialogue model
can be used to directly drive an implementation, or, alterna-
tively, to check the properties of an otherwise developed im-

1See http://openccg.sourceforge.net

Proceedings of the Third IEEE International Conference on Software Engineering and Formal Methods (SEFM’05)
0-7695-2435-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on January 17, 2009 at 21:59 from IEEE Xplore. Restrictions apply.

plementation against a verified abstract model. Moreover,
the approach presented here is not developed for a particu-
lar dialogue management or modelling approach; rather it
attempts to provide a formal methods based framework for
developing dialogue management systems, including rapid
prototyping, reasoning, testing of such systems – particu-
larly if they are to be embedded in safety critical systems.

3.1. Formal Method CSP

The specification language CSP is associated with a for-
malisation that allows verification of properties of parallel
processes by means of logic reasoning. The CSP language,
its mathematical foundations and its possible applications
have been thoroughly investigated, see (13; 23). CSP pro-
cesses proceed by engaging into events and they can be
composed by operators, some of which require synchroni-
sation and communication over some events.

FDR (Failures-Divergence Refinement) (9) is a model-
checking tool for state machines, with foundations in the
theory of concurrency based upon CSP. Except for the abil-
ity to check determinism – primarily for checking security
properties – its method of establishing whether a property
holds is to test for refinement (in one of the semantic mod-
els of CSP) of the candidate machine capturing the required
specification. The main ideas behind FDR are presented in
(22; 23).

Refinement relations can be defined for systems de-
scribed in CSP in several ways – these depending on the
semantic model of the language used. In Section 6 we will
use the refinement relation in the Failures model, since we
concerns both what a process can do and what it can not do.
A process P refines (or implements) a process Q in the Fail-
ures model, if Q can neither accept an event nor refuse one
unless P does; P can do at lest every sequence of events
which Q can do. If P refines Q and Q refines P in the
Failures model, then we say they are equivalent.

3.2. The Incremental Development Approach

The notion of refinement is a particularly useful concept
in many forms of engineering activity. If we can establish
a relation between components of a system which captures
the fact that one satisfies at least the same conditions as an-
other, then we may replace a component by a less abstract
one without degrading the properties of the system.

This refinement approach is particularly well suited to
the construction of dialogue systems. A complete dialogue
manager will often have domain specific data and compo-
nents, which can vary wildly and make complete system
modelling difficult. However, during initial development,
it is not necessary to consider such domain specific in-
formation; instead, development can focus on the creation

and specification of a generalised dialogue model, such as
that introduced in Section 2.3. Once the generalised di-
alogue model has been established, communication chan-
nels between this high level model and application specific
components can be introduced. From the point of view
of the dialogue model, these components can at first be
treated as nodeterministic black boxes – the nondetermin-
ism is later substituted by the deterministic behaviour of
concrete domain components. Moreover, the refinement re-
lations between subsequent development phases can be es-
tablished through model checking, thus verifying that prop-
erties gained in previous phases carry through the develop-
ment process. Section 5 gives an example of this incremen-
tal development of dialogue management.

4. The FDMSC Toolkit

The Toolkit FDMSC – Formal Dialogue Management for
Shared Control systems – is an FDR based implementation
of the ideas described in the previous section. The imple-
mentation provides a set of development and runtime com-
ponents to implement and test a complete dialogue manager.
Specifically, FDMSC, depicted in Figure 3, includes the fol-
lowing components:

• Generator – Generates state machines from CSP spec-
ifications using FDR.

• Validator – Dialogue model validation tool based on
FDR’s model-checker.

• Simulator – Development tool for the simulation of di-
alogue scenarios.

• Interfaces – Abstract Interfaces to application specific
components.

• Driver – Low-level deterministic implementation with
access to domain specific data.

• Visualiser – Visualisation of dialogue states and up-
dates using the uDrawGraph2 tool for directed graphs.

The Driver controls internal dialogue states according to
the given CSP specification and events from both the user
and the system. If the dialogue model is changed, all that is
necessary is to give a new CSP specification and a suitable
driver. Other components remain unchanged.

This formal method based implementation provides sev-
eral ways to enhance the quality of dialogues. On the one
hand, it supports the validation of some dialogue properties,
e.g., fairness, lack of loop, or lack of nondeterminism. To
achieve this, a highly abstract dialogue model, which meets

2http://www.informatik.uni-bremen.de/ũDraw/

Proceedings of the Third IEEE International Conference on Software Engineering and Formal Methods (SEFM’05)
0-7695-2435-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on January 17, 2009 at 21:59 from IEEE Xplore. Restrictions apply.

CSP specification

State machine

Generator

simulator

Driver

Interfaces

Model
checker

Figure 3. FDMSC – A Formal Framework for
Dialogue Manager Development

the desired properties, is first formalised using CSP. Then,
the model-checker FDR compares this abstract model to a
more concrete specification based on a generic or domain
specific dialogue model and decides whether these proper-
ties are satisfied by that latter dialogue model.

In addition to dialogue property validation, FDMSC pro-
vides the possibility to test and simulate complete dialogue
systems. For each given CSP specification with finite state
space, a complete state machine can be generated automati-
cally by FDR. After receiving a dialogue action, e.g., a user
utterance, or a reaction of the robot, the Simulator calcu-
lates the new dialogue state according to the state machine
of a dialogue model and the current dialogue state. The
Simulator can then use the Visualiser to show graphically
how a dialogue progresses. Dialogue actions can be spoken
utterances or annotated utterances.

Moreover, our implementation is extensible and all infor-
mation communicated between different system component
is encoded in XML.

5. Developing Dialogue Control with CSP

To illustrate our refinement based approach to dialogue
management this section presents a worked example based
on the FDMSC toolkit. The example shows three major
phases of the development process, i.e. dialogue model
specification, abstract communication modelling, and do-
main component integration. The example is based around
our chosen development scenario of a shared control system
involving a user and robotic wheelchair, but can be gener-
alised to a wide range of human-machine interaction dia-
logues.

5.1. Specification of the Generic Dialogue Model

The generic dialogue model we use here combines as-
pects of Sitter & Stein’s COR model (30), with Ginzburg’s
Dialogue Game Board (11) as used in the TrindiKit based
GoDis (32). Here the general flow of dialogue moves fol-
lows that of the COR model, with the information state of
the dialogue game board used to record the details of dia-
logue history and other discourse information.

To specify the unified dialogue model the approach taken
here is to introduce two data structures for representing in-
formation states into the COR model. The two structures
are: user’s agenda stack and Robot’s agenda stack. An
agenda stack is a stack of actions which the agent is to
perform, such as accept, reject, request, withdraw request,
etc, which are domain independent. The following FDR
datatype defines the number of dialogue acts used in the
COR dialogue model, where “wRequest” stands for with-
draw request, “rRequest” for reject request, etc.

datatype act =
Request | Promise | Offer

| Accept | Inform | Evaluate
| wRequest | wOffer | wPromise
| wAccept | rRequest | rOffer

Additionally, we use a set of CSP communication chan-
nels to specify the common stack operations like “push”,
“pop” and “isEmpty” as interfaces to the agenda stacks. For
example, the event “push.user.Request” means put the dia-
logue act “Request” on the top of the user’s agenda stack.

channel push, pop: {user, robot}.act
channel is_empty : {user, robot}.Bool

For any dialogue management system an interface for
communicating with natural language processing compo-
nents is indispensable. However, during early develop-
ment cycles, we are only interested in the dialogue acts
which can occur during communication, e.g., the event
“dialogue.user.Request” means that the user gives a re-
quest, and “dialogue.robot.Promise” means that the robot
promises to respond to a request.

channel dialogue : {user, robot}.act

To complete the specification of the abstract dialogue
model, the dialogue strategy must be defined in terms of
allowed dialogue events. This specification is the most im-
portant step in the formalisation of the dialogue manage-
ment since it outlines the general flow of dialogue according
to a generic dialogue model.

The corresponding CSP specifications based broadly on
the COR model is presented in Figure 4, where operator
”|∼|” is for nondeterministic choice. Initially, the user’s

Proceedings of the Third IEEE International Conference on Software Engineering and Formal Methods (SEFM’05)
0-7695-2435-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on January 17, 2009 at 21:59 from IEEE Xplore. Restrictions apply.

agenda consists of the dialogue act “Request” or the robot’s
agenda has the act “Offer” depending on who initiates the
dialogue. If the user’s agenda stack is empty, then the robot
takes over the initiative. Otherwise, the user will use the
next turn to pop an action from his/her agenda stack, and
the reaction is decided according to the COR model. A final
state is one in which both participants’ agenda stacks are
empty. The general flow of the dialogue is as follows:

• If the action is “Request”, the user should give his/her
request, and then “Promise” or “rRequest” will be
pushed onto the robot’s agenda, or “wRequest” onto
his/her agenda.

• If the action is “Accept”, then the user should show
his/her acknowledgement, and “Inform”, “wPromise”,
or “wOffer” will be pushed onto the robot’s agenda,
and “wRequest” or “wAccept” onto the user’s agenda.

• If the action is “Evaluate”, “wRequest”, “wAccept”,
or “rOffer”, the user should give his/her mind, then
“Request” will be pushed onto the user’s agenda, or
“Offer” onto the robot’s agenda, or just give dialogue
control to the robot.

5.2. Modelling Abstract Communication

While the generic dialogue model structures the dis-
course flow, thus allowing verification of the overall di-
alogue strategy for user studies and avoidance of shared-
control problems, the abstract specification must be refined
with domain specific elements for a complete system. For
example, if a dialogue system is used for seeking informa-
tion, then it usually employs a database for information stor-
age and retrieval; or, if it is a part of a robot navigation
system, then a map of the environment space and a robot
control system are indispensable.

Following good practice rules of encapsulation and loose
coupling we consider domain specific components to be
separate entities from the dialogue specification, but which
can be accessed through any number of CSP channels.
Rather than moving too quickly to the inclusion of highly
domain specific information in the CSP specification, we
choose an abstraction approach that categorises the reac-
tions of domain specific components into three types: the
definitive reaction to an action exists; several possible reac-
tions exist; or no reaction is possible. Thus, we introduce
the datatype “react” to define abstract data for communi-
cation between dialogue management and domain specific
components.

datatype react = OK | NOK | AMBIGUITY

As indicated, it is possible to introduce interfaces to do-
main components. In our application scenario “navigating

robots”, the robot and the user control the system together.
Suppose, the robot has a Route Graph including information
for places and routes for his navigation tasks and, moreover,
the robot’s states play a role during the navigation, as well.
Then, for our scenario, at least two components should be
considered, and the interfaces to them are specified as fol-
lows:

channel routegraph_in,robot_in: act
channel routegraph_out,robot_out: react

An extended specification is given in Figure 5. That
specification, taken as an excerpt from a complete dialogue
model, shows the allowed behaviours following a user’s re-
quest.

5.3. Integrating Domain Specific Components

To this point we have concentrated on the generic dia-
logue model, given in terms of dialogue acts, and abstracted
communication channels and ignored any specification of
dialogue content. However, to apply our refinement based
approach, and leverage most out of the formal tools made
available by that process, it is necessary to integrate an ele-
ment of domain specific dialogue content into the CSP spec-
ification.

Rather than including low-level domain specific content,
we once again follow an abstraction approach. Specifically,
we first introduce two new data structures into the infor-
mation states for dialogues, i.e., questions under discussion
stacks, or QUDS, for both participants. Questions are do-
main dependent, and can be a real question, a command or
an assert, e.g, “where is the secretaries office”, “turn left
at the end of the corridor”, “the kitchen is on the left hand
side”. Obviously, the contents of dialogue may be infinite,
but not every detail influences the behaviour of dialogue
management. It is thus important to abstract these contents
according to the tasks they involve.

The majority of utterances in our application scenario –
and more generally across command and control applica-
tions – involve the execution of some task, e.g. moving to
a specified destination, finding a route, or making an airline
reservation. We define a task as an abstract class of dialogue
contents, which relates to some domain specific function or
refers to some system behaviour. An utterance may contain
a sequence of such tasks. In the scenario “navigating robot”
the set of tasks is defined as follows. seek represents tasks
for information queries, e.g., “where is the secretaries of-
fice”; move for motion related tasks; turn for tasks to change
move directions; check for tasks to prove the truth of asser-
tions; add for adding information into application specific
components.

datatype task = move | turn | seek
| check | add

Proceedings of the Third IEEE International Conference on Software Engineering and Formal Methods (SEFM’05)
0-7695-2435-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on January 17, 2009 at 21:59 from IEEE Xplore. Restrictions apply.

1STRATEGY_user =
2 isEmpty.user?b -> (
3 if (not b)
4 then pop.user?a -> dialogue.user.a -> (
5 (a==Request) & (
6 push.user.wRequest -> STRATEGY_user |˜|
7 push.robot.rRequest -> STRATEGY_robot |˜|
8 push.robot.Promise -> STRATEGY_robot)
9 []

10 (a==Accept) & (
11 push.user.wAccept -> STRATEGY_user |˜|
12 push.robot.wOffer -> STRATEGY_robot |˜|
13 push.robot.Inform -> STRATEGY_robot)
14 []
15 (a==Evaluate or a==wRequest or a==rOffer or a==wAccept) & (
16 push.user.Request -> STRATEGY_user |˜|
17 push.robot.Offer -> STRATEGY_robot |˜|
18 STRATEGY_robot)
19)
20 else (isEmpty.RAS?b -> (
21 if (b) then STOP
22 else STRATEGY_robot))
23)

Figure 4. A Generic CSP Specification for User’s Dialogue Strategy

Then, we extend the channel definitions to include tasks
and introduce channel definitions for communicating with
questions under discussion stack.

channel dialogue :
{user, robot}.act.task

channel routegraph_in, robot_in :
act.task

channel push_quds, pop_quds : task
channel isEmpty_quds : Bool

Through this approach, we have included enough infor-
mation in the CSP dialogue specification to allow concrete
dialogue modelling and verification, while leaving the data
intensive domain specific details in separated components.

Within the FDMSC toolkit, low-level task information
is represented as XML documents which can then be ex-
changed with domain specific components. A low level im-
plementation interacts with the CSP based controller speci-
fication. This program, in conjunction with the driver, in-
teracts directly with domain components, processing the
information state, leaving the CSP controller to focus on
controlling dialogue progress. Such an extended model,
not detailed here, extends the above specification in two
ways: first, the stacks “questions under discussion” should
be treated according to information-state updates rules such

as those of TrindiKit (32); secondly, the robot’s behaviour
is now deterministic, the nondeterministic choice should be
replaced by a deterministic one, so that the robot’s reaction
on the current question under discussion always depends on
its knowledge or on its current state.

6. Verifying Dialogue Control with FDR

As indicated earlier, the benefits of applying formal
methods to dialogue management design is the opportunity
to verify various dialogue model properties. These proper-
ties, highly relevant to the design of safety-critical systems,
include: notions of fairness between different dialogue par-
ticipants; the presence, or absence, of loops in model de-
sign or implementation; and verification that implementa-
tions match the requirements set out by empirically derived
models that are said to be more natural to a user. In this sec-
tion we prove the correctness of the development approach
in two steps, as an example of verifying dialogue control
with FDR.

To illustrate the verification approach, we begin by as-
suming three dialogue models specified as three separate
CSP processes: DIALOGUE1 for generic dialogue con-
trol (see Section 5.1); DIALOGUE2 for dialogue control
with abstract communication (see Section 5.2); and, finally,
DIALOGUE3 for the model in which our domain specific

Proceedings of the Third IEEE International Conference on Software Engineering and Formal Methods (SEFM’05)
0-7695-2435-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on January 17, 2009 at 21:59 from IEEE Xplore. Restrictions apply.

1 dialogue.user?a -> (
2 (a==Request) & (
3 push.user.wRequest -> STRATEGY_user |˜|
4 routegraph_in!a -> (
5 routegraph_out.OK ->
6 robot_in!a -> (
7 robot_out.OK -> push.robot.Promise -> STRATEGY_robot []
8 robot_out.NOK -> push.robot.rRequest -> STRATEGY_robot []
9 robot_out.AMBIGUITY -> push.robot.rRequest -> STRATEGY_robot) []

10 routegraph_out.NOK -> push.robot.rRequest -> STRATEGY_robot []
11 routegraph_out.AMBIGUITY -> push.robot.rRequest -> STRATEGY_robot)))
12 ...)

Figure 5. Modelling Abstract Communication

component is integrated (see Section 5.3). To begin, we
can show, thanks to FDR’s verification process, that DIA-
LOGUE2 satisfies DIALOGUE1, i.e., that these two speci-
fications are in fact equivalent in the Failures model as long
as abstract communication on the channels routegraph in,
routegraph out, robot in, and robot out are ignored. To fa-
cilitate this, we can first apply CSP’s cancel (\) operator to
DIALOGUE2 to provide a dialogue model, DIAL2, where
communication events are now invisible, i.e.:

DIAL2 = DIALOGUE3
\ {|routegraph_in,routegraph_out,

robot_in,robot_out|}

We can now directly verify the equivalence of the ab-
stract model DIALOGUE1 against this DIAL2, i.e. the
communication event invisible form of DIALOGUE2. This
equivalence verification can be achieved automatically
through the use of FDR’s assert functionality as follows:

assert DIALOGUE1 [F= DIAL2
assert DIAL2 [F= DIALOGUE1

Similarly, we can now also demonstrate that DIA-
LOGUE2 and DIALOGUE3 are equivalent. To achieve
this we first abstract channels dialogue, routegraph in, and
robot in with the CSP renaming operator ([[· · ·]]), and can-
cel the channels push quds, pop quds, and isEmpty quds,
as follows:

DIAL3 = DIALOGUE2
[[dialogue.p.a.x<-dialogue.p.a,
routegraph_in.a.x<-routegraph_in.a,
robot2_in.a.x<-robot_in.a |
p<-participant, x<-task, a<-act]]

DIAL3_1 = DIAL3
\ {|push_quds,pop_quds,

top_quds,isEmpty_quds|}

Here, the process DIAL3 is defined from DIALOGUE2
through renaming the three channels, in which the addi-
tional domain dependent information in the events is ab-
stracted. Given these abstracted models, the following as-
sertions can be proved with FDR:

assert DIALOGUE2 [F= DIAL3_1
assert DIAL3_1 [F= DIALOGUE2

Finally, we may conclude that DIALOGUE2 and DIA-
LOGUE3 both satisfy the original generic dialogue control
strategy, although they both contain more communication
and domain information than the original. Furthermore,
since the development approach presented in the last sec-
tion is based on stepwise refinements, it is not necessary
to develop a completely new dialogue control specification
if domain specific components are changed, or, if differ-
ent abstract communications are introduced. Thus, this ap-
proach not only demonstrates clean formal modelling, but is
broadly appealing from a software engineering perspective.

7. Related Work

The literature contains a wide variety of commercial and
academic research projects concerned with the development
of complete spoken dialogue systems, and more specifically
dialogue managers. McTear (21) and Jurafsky & Martin
(15) present good listings of these efforts. Amongst the
closest work are a number of toolkits for the development
of complete spoken dialogue systems (28; 10), and infor-
mation state based dialogue managers (32; 4).

Of the information-state based school of dialogue man-
agement, two of the best known implementations are the
Trindikit (32) and DIPPER (4) toolkits. Both these im-
plementations provide the basic programming mechanisms
for the construction of dialogue managers around an infor-
mation state – usually stored as a record type structure –

Proceedings of the Third IEEE International Conference on Software Engineering and Formal Methods (SEFM’05)
0-7695-2435-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on January 17, 2009 at 21:59 from IEEE Xplore. Restrictions apply.

and declarative update rules that are applied to both up-
date the information state and exchange information with
domain specific components. While these toolkits do allow
the rapid development of dialogue managers based on mod-
els such as Ginzburg’s Dialogue Game Board (11), their
sole use of declarative rules to structure discourse makes
the evaluation of dialogue models and implementations dif-
ficult.

Another prominent dialogue management framework is
the CSLU Toolkit (31). That toolkit is based on a finite-
state approach to dialogue management. While such an ap-
proach is highly favourable from a safe systems perspec-
tive, it does not allow for the development of flexible and
natural dialogue management systems that are desirable for
future human-computer interaction. Thus, our use of CSP
specified recursive transition networks with the elements of
information state proves a unique compromise between the
well structured natural of finite state implementations and
the flexibility of the information state based approach.

8. Discussion & Future Work

In this paper we have reported on an application of for-
mal techniques to the design and verification of dialogue
management. The approach and tools presented make use
of generalised dialogue models which can be considered
a very high-level specification that can be refined to low-
level specifications including application specific informa-
tion. This formal method based approach opens a new per-
spective for developing dialogue management systems. We
can now talk about the correctness of the dialogue strategy
with respect to certain properties; compare the expressive-
ness of two different dialogue models; and test and simu-
late dialogues step by step. We hope that this approach is
an important step in bridging the gap between traditional
dialogue management implementations and formal method
based system development.

To prove the applicability of this approach, we are con-
tinuing our development of FDMSC in the shared-control of
navigating robots (25). The refinement based approach in-
troduced above is not ground within any one dialogue man-
agement school; therefore, in future work, it will be inter-
esting to study the use of our techniques within different
dialogue management approaches. Furthermore, the COR
model, introduced in Section 2.3, is only one of a number
of generic dialogue models available; we are currently for-
mulating a new dialogue model particularly suited to the
shared control of semi-autonomous systems – thus, further-
ing our goal of providing a dialogue management develop-
ment framework for safe systems.

Acknowledgements - We gratefully acknowledge the
support of the Deutschen Forschungsgemeinschaft (DFG)

through the SFB/TR8 Spatial Cognition - Subproject I3-
SharC.

References

[1] J. Alexandersson and P. Heisterkamp. Some notes
on the complexity of dialogues. In L. Dybkjaer,
K. Hasida, and D.Traum, editors, Proceedings of the
IJCAI 99 workshop on knowledge and reasoning in
pratical dialogue systems., 1999.

[2] J. Bateman and S. Farrar. Spatial ontology baseline.
SFB/TR8 internal report I1-[OntoSpace]: D2, Collab-
orative Research Center for Spatial Cognition, Univer-
sität Bremen, Germany, May 2004.

[3] J. A. Bateman. Enabling technology for multilingual
natural language generation: the KPML development
environment. Journal of Natural Language Engineer-
ing, 3(1):15–55, 1997.

[4] J. Bos, E. Klein, O. Lemon, and T. Oka. DIPPER:
Description and Formalisation of an Information-State
Update Dialogue System Architecture. In 4th SIGdial
Workshop on Discourse and Dialogue, 2003.

[5] J. Bredereke and A. Lankenau. A Rigouous View
of Mode Confusion. In SAFECOMP 2002, 21st Int.
Conf. on Computer Safety, Reliability and Security,
volume 2434 of LNCS. Springer Verlag, 2002.

[6] B. Buth, J. Peleska., and H. Shi. Livelock Analysis
for a Fault-tolerant System. In A. M. Haeberer, edi-
tor, Algebraic Methodology and Software Technology
(AMAST), volume 1548 of Lecture Notes in Computer
Science, pages 124–135. Springer Verlag, 1998.

[7] R. W. Collier. Agent Factory: A Framework for the
Engineering of Agent Oriented Applications. PhD the-
sis, University College Dublin, 2001.

[8] R. W. Collier, G. O’Hare, T. Lowen, and C. Rooney.
Beyond Prototyping in the Factory of the Agents.
In 3rd Central and Eastern European Conference on
Multi-Agent Systems (CEEMAS’03), Prague, Czech
Republic, 2003.

[9] Formal Systems (Europe) Ltd. Formal Systemes: Fail-
ures Divergence Refinement FDR2 Preliminary Man-
ual., 2001.

[10] G. Gerzog, A. Ndiaye, S. Merten, H. Kirchmann.,
T. Becker, and P. Poller. Large-scale software integra-
tion for spoken language and multimodal dialog sys-
tems. Natural Language Engineering, 10 (3/4):283–
305, 2004.

Proceedings of the Third IEEE International Conference on Software Engineering and Formal Methods (SEFM’05)
0-7695-2435-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on January 17, 2009 at 21:59 from IEEE Xplore. Restrictions apply.

[11] J. Ginzburg. Dynamics and the Semantics of Dia-
logue. In J. Seligman, editor, Language, logic and
computation, volume 1. CSLI Lecture Notes, CSLI
Stanford, 1996.

[12] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine.
Symbolic Model Checking for Real-Time System. In-
formation and Computation, 111:193–244, 1994.

[13] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, 1985.

[14] G. Holzmann. Design and Validation of Computer
Protocols. Prentice-Hall, 1991.

[15] D. Jurafsky and J. H. Martin. Speech and Language
Processing: An Introduction to Natural Language
Processing, Computational Linguistics, and Speech
Recognition. Prentice Hall, Englewood Cliffs, New
Jersey, 2000.

[16] A. Lankenau. Avoiding mode confusion in service-
robots. In M. Mokhtari, editor, Integration of Assistive
Technology in the Information Age. Proc. of the 7th
Int. Conf. on Rehabilitation Robotics, pages 162–167.
IOS Pres, Amsterdam, 2001.

[17] A. Lankenau, O. Meyer, and B. Krieg-Brückner.
Safety in robotics: The bremen autonomous
wheelchair. In Proceedings of AMC98, 5th Int.
Workshop on Advanced Motion Control, pages
524–529, 1998.

[18] A. Lankenau and T. Röfer. A versatile and safe mo-
bility assistant. IEEE Robotics and Automation Mag-
azine, 7(1):29 – 37, 2001.

[19] S. Larsson and D. Traum. Information state and di-
alogue management in the TRINDI Dialogue Move
Engine Toolkit. Natural Language Engineering, 6(3-
4):323–340, 2000. Special Issue on Best Practice in
Spoken Language Dialogue Systems Engineering.

[20] K. McMillan. Symbolic Model Checking: An Ap-
proach to the State Explosion Problem. Kluwer Aca-
demic Publishers, 1993.

[21] M. F. McTear. Spoken dialogue technology: Enabling
the conversational user interface. ACM Computing
Surveys (CSUR), 34(1):90 – 169, 2002.

[22] A. W. Roscoe. Model-Checking CSP. In A Classical
Mind, Eassys in Honour of C.A.R. Hoare. Prentice-
Hall International, 1994.

[23] A. W. Roscoe. The Theory and Practice of Concur-
rency. Prentice-Hall, 1998.

[24] R. J. Ross, R. Collier, and G. O. Hare. ALPHA A Lan-
guage for Programming Hybrid Agents. Presented at
Second European Workshop on Multi-Agent Systems
(EUMAS 04, Dec 2004.

[25] R. J. Ross, H. Shi, T. Vierhuf, B. Krieg-Bruckner, and
J. Bateman. Towards Dialogue Based Shared Control
of Navigating Robots. In Proceedings of Spatial Cog-
nition 04, Germany, 2004. Springer.

[26] J. Rushby. Using model checking to help discover
mode confusions and other automation surprises. Re-
liability Engineering & System Safety, 75(2):167–177,
2002.

[27] J. Searle. Speech Acts. Cambridge Univesity Press,
Cambridge, England, 1969.

[28] S. Seneff, R. Lau, and J. Polifroni. Organization,
Communication, and Control in the Calaxy-II Conver-
sational System. In Eurospeech’99, pages 1271–1274,
1999.

[29] H. Shi, J. Peleska, and M. Kouvaras. Combining
Methods for the Analysis of a Fault-tolerant System.
In Pacific Rim International Symposium on Depend-
able Computing (PRDC), pages 135–142. IEEE Com-
puter Society, 1999.

[30] S. Sitter and A. Stein. Modeling information-seeking
dialogues: The Conversational Roles model. Review of
Information Science, 1(1):n/a, 1996. (On-line journal;
date of verification: 20.1.1998).

[31] S. Sutton, R. Cole, J. DeVilliers, et al. Universal
speech tools: The CSLU toolkit. In In Proceedings
of the 5th International Conference on Spoken Lan-
guage Processing (ICSLP 98, pages 3221–3224, Syd-
ney, Australia, 1998.

[32] D. Traum and S. Larsson. The information state ap-
proach to dialogue management. In R. Smith and
J. van Kuppevelt, editors, Current and New Directions
in Discourse and Dialogue, pages 325–353. Kluwer
Academic Publishers, Dordrecht, 2003.

[33] T. Winograd and F. Flores. Understanding computers
and cognition: a new foundation for design. Ablex,
Norwood, New Jersey, 1986.

Proceedings of the Third IEEE International Conference on Software Engineering and Formal Methods (SEFM’05)
0-7695-2435-4/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on January 17, 2009 at 21:59 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

