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Abstract

From a system developer’s perspective, designing a spoken dialogue system can be a

time-consuming and difficult process. A developer may spend a lot of time anticipating

how a potential user might interact with the system and then deciding on the most

appropriate system response. These decisions are encoded in a dialogue strategy,

essentially a mapping between anticipated user inputs and appropriate system outputs.

To reduce the time and effort associated with developing a dialogue strategy, recent

work has concentrated on modelling the development of a dialogue strategy as a

sequential decision problem. Using this model, reinforcement learning algorithms

have been employed to generate dialogue strategies automatically. These algorithms

learn strategies by interacting with simulated users. Some progress has been made with

this method but a number of important challenges remain. For instance, relatively little

success has been achieved with the large state representations that are typical of real-

life systems. Another crucial issue is the time and effort associated with the creation

of simulated users.

In this thesis, I propose an alternative to existing reinforcement learning methods of

dialogue strategy development. More specifically, I explore how XCS, an evolutionary

reinforcement learning algorithm, can be used to find dialogue strategies that cover

large state spaces. Furthermore, I suggest that hand-coded simulated users are

sufficient for the learning of useful dialogue strategies. I argue that the use of

evolutionary reinforcement learning and hand-coded simulated users is an effective

approach to the rapid development of spoken dialogue strategies.

Finally, I substantiate this claim by evaluating a learned strategy with real users. Both

the learned strategy and a state-of-the-art hand-coded strategy were integrated into an

end-to-end spoken dialogue system. The dialogue system allowed real users to make

flight enquiries using a live database for an Edinburgh-based airline. The performance

of the learned and hand-coded strategies were compared. The evaluation results show

that the learned strategy performs as well as the hand-coded one (81% and 77% task

completion respectively) but takes much less time to design (two days instead of

two weeks). Moreover, the learned strategy compares favourably with previous user

evaluations of learned strategies.
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Chapter 1

Introduction

1.1 Motivation

Since the early 1990s, speech and language-processing technologies have been

combined to create spoken dialogue systems (SDSs). These interfaces allow users

to converse with a computer to retrieve information, conduct transactions, or engage

in problem-solving tasks (McTear, 2004). From a developer’s perspective, designing a

SDS can be a difficult and time-consuming process. Although each SDS is normally

designed for a specific purpose (e.g. to provide a weather report), the number of

unique conversations that can occur between a user and the system is almost unlimited.

Consequently, a system developer may spend a lot of time anticipating how a potential

user might interact with the system and then deciding on the most appropriate system

response (Zue and Glass, 2000). These decisions are encoded in a dialogue strategy,

essentially a mapping between anticipated user inputs and appropriate system outputs.

In practice, the strategy is often limited by the capabilities of the available technology

(Cavazza, 2001). Nevertheless, the task of encoding anticipated user behaviour and

system responses is a complex one. Another problem for the system developer is how

to assess whether the chosen dialogue strategy is the optimal one. In other words,

does the strategy achieve the best possible compromise between the needs of potential

users and the limitations of the available technology? A number of usability criteria

have been proposed to help developers evaluate their strategies (Walker et al., 1998;

Paek, 2001). However, these criteria do not explicitly suggest the modifications that

1



Chapter 1. Introduction 2

will produce optimal strategies. Instead, developers analyse evaluation results and then

employ their skill and experience to improve their dialogue strategies. For a particular

system, this test-and-refine process may be repeated many times.

How can a developer reduce the time and effort required to design a spoken dialogue

strategy? How can s/he have confidence that the chosen dialogue strategy is the

best possible one? Put simply, how can a developer build a good strategy quickly?

One approach to addressing both of these questions is to model the search for a

dialogue strategy as a sequential decision problem and then use reinforcement learning

techniques to find a solution to the problem (Levin et al., 2000; Pietquin and Dutoit,

2006). This approach typically requires the creation of a simulated user, a model of

how typical users might interact with a SDS (Georgila et al., 2005).

Progress has been made within this framework but some important challenges remain.

For instance, little success has been achieved with the large state representations that

are typical of real-life systems (Henderson et al., 2005). Another crucial issue is the

time and effort associated with the creation of simulated users (Schatzmann et al.,

2006). Often, simulated users are created by applying supervised learning methods

to either: (i) a relevant, pre-existing corpus or (ii) a corpus collected specifically for

the intended application. An obvious dilemma is whether the time taken to train a

simulated user might detract from the goal of developing dialogue strategies quickly.

1.2 Aims

This thesis has three main aims. Firstly, I wish to investigate an alternative

to existing reinforcement learning techniques for developing dialogue strategies.

More specifically, I will explore how XCS, an evolutionary reinforcement learning

algorithm, can be used to generate strategies. The XCS algorithm possesses a number

of useful qualities that make it an appealing candidate for the learning of dialogue

strategies. For instance, the algorithm’s rule-based representation is a good match

for how many dialogue strategies are represented, particularly information-seeking

systems. Additionally, a number of theoretical and empirical studies demonstrate that

XCS can generate rule sets that are optimal and maximally general with respect to

sequential decision tasks (Kovacs, 2002; Lanzi, 2002). Most importantly, the algorithm

can generate rule sets covering very large state spaces (Wilson, 1995).
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Secondly, I will determine whether useful dialogue strategies can be developed without

the use of a training corpus. Naturally, a classifier trained on a corpus of relevant

human-computer, or even human-human dialogues, has more validity than a simulated

user which is hand-coded by a system developer. However, if we are to build novel

spoken dialogue applications then new corpora must be collected. This takes a lot

of time (Walker et al., 2001). Hand-coded simulated users require much less time to

create, and even refine (Chung, 2004). Therefore, an important question that needs to

be answered is whether hand-coded simulated users are sufficient for the generation of

useful dialogue strategies.

Finally, the performance of a spoken dialogue strategy can only be properly assessed

by: (i) integrating it into a complete dialogue system; and (ii) having the system’s

performance evaluated by human users. Therefore, a third aim of this thesis is to

empirically evaluate a dialogue strategy generated by XCS in conjunction with a

hand-coded simulated user. The strategy will be integrated into an end-to-end spoken

dialogue system. The system will allow human users to complete a realistic task.

1.3 Outline

The remainder of the thesis is structured as follows: Chapter 2 gives an overview

of spoken dialogue systems and the issues surrounding the development of dialogue

strategies. This chapter also surveys the current approaches to generating dialogue

strategies automatically; Chapter 3 outlines a framework for developing dialogue

strategies using evolutionary learning and hand-coded simulated users; Chapter 4

presents a series of experimental results demonstrating the feasibility of the proposed

framework; Chapter 5 describes the application of the framework to a more realistic

problem, requiring a very large state-action space; Chapter 6 reports on an evaluation

by real users of the framework as part of a complete spoken dialogue system; Chapter

7 lists a summary of the contributions made by the thesis and provides suggestions for

future research.



Chapter 2

Background

2.1 Overview

This chapter provides a brief introduction to spoken dialogue systems (SDSs). I list

some of the spoken dialogue applications that have been developed in the last few

years and also describe the system architecture of a typical SDS. I then focus on one

particular component of a SDS: the dialogue strategy. The dialogue strategy defines

how a system should interpret a user’s intentions and generate appropriate responses.

Developing an effective strategy often demands a great deal of time and expertise on

the part of a system developer. I outline what is required of dialogue strategies, the

main ways in which they are implemented, and how they are evaluated.

Recent work has focused on generating dialogue strategies automatically and this will

be reviewed here. The basic premise of this work is that a dialogue can be modelled

as a Markov Decision Process. Reinforcement learning techniques can then be applied

to this model in order to generate dialogue strategies. I describe in detail a commonly

used algorithm: Q-learning. This is followed by a case study to help illustrate the ideas

discussed so far. An important component of developing learned strategies is the use

of dialogue simulations. A summary of the most recent work in dialogue simulation

is presented. Finally, I review the main challenges associated with learning dialogue

strategies and discuss the progress that has been made towards addressing these issues.

4



Chapter 2. Background 5

2.2 Spoken dialogue systems

A spoken dialogue system (SDS)1 is a natural language interface designed to make

use of spoken language technology for both language understanding and generation

and so to effect a conversation between a user and computer. Such a system usually

provides access to a computer-based application such as a database or an expert

system. The development of SDSs has been made possible by improvements in speech

technology in recent years. However, there is still a long way to go before a user can

converse in a completely natural manner. Despite the rapid progress achieved, dialogue

system developers must often make compromises between naturalness and recognition

accuracy. One of the subtleties of dialogue system design lies in giving users a feeling

of naturalness and freedom of response in spite of the underlying system constraints.

Nevertheless, usable and effective applications are being developed at an increasing

rate.

2.2.1 Applications

A wide variety of spoken dialogue systems have been implemented; they include:

(i) information retrieval and transactional systems; (ii) intelligent assistants; and

(iii) tutorial systems.

Information retrieval and transactional systems are arguably the most prevalent forms

of spoken dialogue systems in use today. Interaction is almost exclusively telephony-

based. Existing applications allow users to retrieve tourist, weather and telephone

directory information (Litman et al., 2000; Zue et al., 2000), make travel, restaurant,

cinema and theatre reservations (Seneff and Polifroni, 1996; Shriver, 2001) and

conduct financial transactions (McInnes et al., 1999). At the simplest level, these

applications are a speech-based version of form-filling. That is, a system elicits some

parameters from the user and then executes a database query. However, the results

of such a query may be too large to report sequentially in spoken form. Therefore,

increasingly sophisticated strategies have been developed for presenting users with the

appropriate information (Demberg and Moore, 2006). Figure 2.1 presents an example

of an interaction between a user and a train information system (Aust et al., 1995).

1Spoken dialogue systems are also known as conversational interfaces or spoken language systems.
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System Good morning. This is the automatic timetable information service.

How can I help you?

User Good morning. I need a connection from Hamburg to Munich.

System When would you like to go from Hamburg to Munich?

User Next Friday, er, at eight o’clock.

System So you want to travel on Sunday the 25th of September at 8 a.m.?

User No, on Friday.

System So you want to travel on Friday the 23rd of September at 8 a.m.?

User Exactly.

System There is the following connection. With Intercity Express 793,

departure from Hamburg at 8:02, arrival in Munich at 14:05.

Would you like me to repeat the connection?

User No.

System I wish you a pleasant journey. Thank you for calling. Goodbye.

Figure 2.1: Example of a train information dialogue (Aust et al., 1995).

Intelligent assistants support human users in complex decision-making tasks.

By having humans and machines work together, rather than in isolation, it is suggested

that better solutions to some problems can be found (Allen and Ferguson, 2002).

For instance, the TRAINS and TRIPS projects at the University of Rochester are long-

term efforts to develop an intelligent natural language planning system (Allen et al.,

1996, 2000). In the TRAINS system, a scheduling assistant cooperates with a human

supervisor in the management of railroad freight. In the TRIPS system, an assistant

collaborates with a human manager to construct an evacuation plan for a fictitious

island that is about to encounter a hurricane.

Tutorial systems allow users to converse with a knowledge base in order to acquire

new skills or learn new concepts. These systems make inferences about a user’s

understanding of topics in order to dynamically alter the content of one-to-one

tutor style of instruction. The development of tutorial systems is motivated by

the observation that one-to-one tutoring often yields significantly higher gains than

classroom instruction (Bloom, 1984). Tutorial systems attempt to replicate many of

the advantages of human tutors in a cost-effective manner. Presently, most systems

are text-based, but work has begun on developing speech-based tutors (Litman, 2002;

Pon-Barry et al., 2004).
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In all of these applications, the interaction between system and user consists of a

cycle of spoken utterances. In many conversational systems, the user is able to

interrupt the system while it is speaking. In more dynamic, event-driven environments,

it is possible for the system to deliberately interrupt the user (Lemon et al., 2001).

The conversational cycle continues until the user’s goal has been achieved or until

the user decides to terminate or suspend the conversation. In a simple information

retrieval task, an interaction may be completed in just a few system-user exchanges.

In sophisticated planning or tutorial systems, a conversation may last for several hours.

With some systems, speech is integrated with other forms of input (e.g. pointing

gestures on a touch-sensitive screen). These more advanced interfaces, often referred

to as multimodal systems, are beyond the scope of this thesis (but see Oviatt and Cohen

(2000); Brøndsted et al. (2002) for reviews).

2.2.2 System architecture

From a user’s perspective, the conversational cycle is conducted with a single computer

system. In reality, implementing a SDS requires the integration of several speech-

and language-processing components (Figure 2.2). Normally, a SDS will include a

speech recogniser, a speech synthesiser and possibly natural language understanding

and generation components. An excellent introduction to these technologies can be

found in Jurafsky and Martin (2000).

SPEECH

RECOGNISER


SPEECH

SYNTHESISER


DATA

BASE


DIALOGUE

MANAGER


LANGUAGE

PARSER


LANGUAGE

GENERATOR


Figure 2.2: Conceptual outline of a spoken dialogue system.

The basic stages of processing in a single conversational cycle are: (i) the user’s

utterance in the form of a speech signal is sampled and processed by the speech

recogniser; (ii) the recogniser outputs a list of potential sentences (hypotheses),
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with associated confidence levels, to the language parser; (iii) the parser examines

these hypotheses and decides on a meaning that can be usefully interpreted by the

dialogue manager; (iv) the dialogue manager analyses the parser’s output in the context

of the dialogue as a whole; it then decides on the most appropriate response, possibly

retrieving information from the database in the process; (v) this response is converted

into a complete sentence by the language generator; (vi) finally, the speech synthesiser

translates the text from the language generator into spoken form.

2.2.3 Spoken dialogue strategies

In the previous section, I characterised the dialogue manager as a module that analyses

the output from the language parser and then decides on an appropriate response for

output to the language generator. In practice, this module is executing a dialogue

strategy, created by the system developer. This strategy defines how the system should

interpret the user’s intentions and how it should generate its responses. Dialogue

strategies can vary widely in terms of how they are represented and in their level

of sophistication. This thesis addresses the difficulties associated with developing a

dialogue strategy and how these difficulties can be alleviated.

2.3 Developing spoken dialogue strategies

This section outlines the way in which spoken dialogue systems are developed and

the challenges that are faced by system developers. Typically, a system’s development

begins with an initial specification from a client. In the context of SDSs, a client is

someone who wishes to provide human users with access to a speech-based interface

to perform a particular task. For example, an airline company may want to create a SDS

for ticket reservations, allowing customers to make reservations over the telephone, 24

hours a day without the need to speak with a human operator. The client’s knowledge

of the intended task, domain and customers is often sufficient for a developer to

begin implementing a dialogue strategy. Frequently, a developer draws upon a

number of other resources to influence the design of this initial strategy (Figure 2.3).

For example, there may be previously recorded examples of human-computer or

human-human dialogues that are relevant to the task at hand.
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Figure 2.3: Possible resources for the design of a dialogue strategy.

If these are not available, the developer might devise a simple prototype to facilitate

the collection of such data (often referred to as a Wizard-of-Oz study, see Fraser and

Gilbert, 1991; Klemmer et al., 2000). In addition, the developer can make use of his/her

own experience of end users and of the available technology. When the first pass at a

dialogue strategy has been implemented, it is usually evaluated by a group of test users

and then amended in light of the evaluation results. This test-and-refine procedure

may be repeated many times before the system is deployed for widespread use.

The deployed system may itself be periodically reviewed and amended if necessary.

This development lifecycle will now be described in more detail with respect to three

important questions: (i) what makes for a good dialogue strategy; (ii) how is a dialogue

strategy implemented; and (iii) how does a developer evaluate the chosen strategy?

2.3.1 Strategy requirements

Clearly, the primary goal of any dialogue strategy is to satisfy the functional

requirements of the client. That is, the developed strategy should accurately model
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the intended task and facilitate users in the completion of this task. However,

a conversational system should also address a number of more generic design

requirements. As SDSs have been developed in recent years a variety of important

design requirements have been identified. Some of the most commonly addressed

issues are highlighted below. A fuller treatment of these issues, and others, can be

found in Zue and Glass (2000) and van Kuppevelt et al. (2000).

A fundamental problem for developers of SDSs is the constraints associated with

today’s speech recognition and language-processing technologies. This means that

users cannot yet interact with SDSs using the same range of vocabulary and contextual

knowledge that is typical of human-human conversations. To be successful, a dialogue

strategy must strike a balance between the system’s technological capabilities and

a user’s desire for a natural conversation. Therefore, it should be made clear to a

user what the capabilities of the system actually are (Yankelovich, 1996). This is

particularly important for users who are unfamiliar with speech interfaces. If their only

reference point is human-human conversations they may become quickly frustrated by

the system’s limited abilities. How can this be avoided? One way is to carefully

choose system prompts that encourage users to respond in a way that the system can

understand (e.g.“Do you want to transfer some money or order a new chequebook?”).

This system-directed policy is a common dialogue strategy and can work well in many

situations (Hone and Baber, 2001). However, if used repeatedly, it can quickly become

tiresome for the user.

An alternative is to ask more open-ended questions and allow users to take the initiative

in deciding how the task is accomplished (e.g. “Which service would you like?”).

There are two risks associated with this tactic. Firstly, with more options available to

the user at each point in the dialogue, the level of misrecognition on the part of the

system may be higher. This is likely to frustrate the user. Secondly, the user may

lose track of what has been accomplished in a dialogue and become unable to find a

way of reaching the intended goal. A natural compromise between tightly controlled

and completely open systems is to allow mixed-initiative. In other words, a system

can provide the user with a pre-defined path but also allow the user the flexibility to

deviate from this path and reach the intended goal by an alternate route (Ramakrishnan

et al., 2002). This is a useful way to accommodate both novice users, who may need

guidance, and ‘expert’ users who use the system frequently and so know the shortcuts

to achieving their goal.
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Another important issue for SDSs is the notion of grounding. Conversational

participants are said to “share a common ground” if they have a mutual understanding

of what is occurring in the dialogue (Clark, 1996). To operate effectively, it is essential

for a SDS to maintain an understanding of the user’s beliefs and intentions. When

this shared understanding seems out of alignment, the system should take measures

to recover from the misunderstanding. A common strategy is to confirm the user’s

intentions (e.g. “So you want travel from Paris to New York on 10th March. Is that

correct?”). Detecting and repairing miscommunications between the system and user

is a critical aspect of developing a dialogue strategy (McRoy, 1998). Where possible,

a system should make use of as much task, domain and world knowledge as possible.

For example, if a system believes that a user wants to fly from London to London, a

sensible strategy would immediately trigger a clarification question from the system.

Lastly, a SDS is likely to be used by a highly variable population of human users.

In other words, users will differ in their experiences, abilities, preferences and

characteristics. A SDS is often more effective if it can infer some of this information

from the user and exploit it to personalize its interaction with the user. This process

is often referred to as user modelling (van Zanten, 1999). It is particularly important

in tutoring systems; a fundamental goal of a tutoring system is to adapt its responses

in line with the understanding demonstrated by the student (Shute, 1995). However,

all conversational systems can be enhanced by adapting their behaviour in accordance

with a model of the user (Zadrozny et al., 2000).

In summary, a spoken dialogue system should demonstrate an understanding of

the user’s intentions, taking and relinquishing control of the conversation where

appropriate. It should also avoid, or attempt to repair, any miscommunication between

it and the user. It should also try to tailor its behaviour to the user’s individual needs

and characteristics. In other words, it should behave, as much as possible, like a human

agent. Addressing these issues when devising a dialogue strategy can greatly enhance

the system’s performance and acceptance by human users. However, incorporating

these requirements into a system design contributes to the problem of anticipating what

a user might say and then selecting the appropriate system responses.
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2.3.2 Strategy implementation

This section examines how dialogue strategies are actually implemented in a working

system. The strategies of early commercial systems were encoded using high-

level programming languages such as C/C++. A strategy’s control logic could be

represented by constructs such as if-then statements. The input and output functions

of the system were realised through external library calls to the other software

components (e.g. a speech recogniser). However, strategies that were represented

in this way were often low in readability, flexibility and portability. At the same

time, a number of other approaches to representing conversational strategies emerged.

These include: (i) finite-state systems; (ii) collaborative planning systems and

(iii) information update systems. Each approach is based on a different theoretical

view of what constitutes a dialogue and this is reflected in the differing notations for

implementing dialogue strategies. These three approaches are described briefly below.

Finite-state systems are characterised by a state transition network that defines the

legal paths through a dialogue. Each node in the network represents a dialogue state

Associated with each dialogue state is a system prompt and a list of permissible user

responses. The determination of the next state is a function of both the current state and

the user’s response. Using this model, a conversation between the system and a user is

managed by the traversal of the finite-state network that was previously defined by the

system developer. A task reaches completion when the final state is reached. Dialogue

strategies are often implemented using a visual language that explicitly represents the

finite state network (e.g. Sutton et al., 1998). More recently, a markup language,

VoiceXML, has been devised to allow developers to encode strategies. This language

makes it easy for designers to provide users with a speech-based interface to web-based

information sources (Lucas, 2000; Bennett et al., 2002).

Using the finite-state model, dialogue strategies can be rapidly prototyped, tested

and debugged. A visual representation of the finite state network makes it fairly

straightforward for a system developer to encode the logic of a dialogue strategy.

However, this development methodology is limited by the fact that every change in the

conversation must be represented by a transition between two nodes in the network.

Consequently, as the task requirements grow, the size and complexity of such a design

can rapidly become unwieldy (Aust and Oerder, 1995).
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This problem can be mitigated to some degree by the use of self-contained modules

that achieve specific subtasks (e.g. to capture date information). In this way, a complete

spoken dialogue application can be constructed as a network of subdialogues (Heeman

et al., 1998; Ehrlich, 1999). Notwithstanding this, the finite-state model is useful for

small, well-defined tasks, and in situations where speech recognition performance may

be relatively low (e.g. over a telephone line). Because of this, many of the commercial

systems in use today have been developed using the finite-state model.

Collaborative planning systems are based on the idea that conversational participants

coordinate their actions towards achieving some shared goal (Grosz and Sidner, 1986).

Therefore, a collaborative planning system attempts to discover what the user’s goal is

and to assist the user with the development of a plan to realise this goal. It should be

noted that these systems often depend on a higher level of speech recognition accuracy

(e.g. microphone-based) where the range of vocabulary available to the user is often

much larger. Also, a larger amount of task and domain knowledge is often incorporated

into the system. Consequently, the interaction between human and user is potentially

much more sophisticated compared with finite-state systems (Allen et al., 2000).

On the other hand, dialogue strategies are correspondingly much more time-consuming

to develop. The size of the strategy can also make debugging very difficult.

Information update systems attempt to combine the simplicity of finite-state systems

and the sophistication of collaborative planning systems (Larsson and Traum, 2000).

These systems model the effect of user utterances on the system’s responses as a series

of state-action rules; they typically take the form of “if the dialogue is in state X

then take action Y”. The representation of state X may range from a simple state

variable to a complex feature structure. Using this representation it is easy to increase

incrementally the sophistication of the dialogue strategy. However, it can be difficult

to know whether all possible situations have been accounted for. In addition, as

the number of rules grows, an information update strategy can become increasingly

difficult to debug (Bos et al., 2003).

The three approaches outlined above do not represent an exhaustive list of the

techniques available for encoding dialogue strategies. It does however, give some

idea of the range of strategy sophistication that is possible; each of these approaches

is appropriate for different tasks. Many commercial systems are implemented

using finite-state languages. Collaborative planning methods are frequently used in
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developing intelligent assistants and tutorial systems. The information update method

has been used in a wide range of systems. Despite the success of these approaches,

they do not address the issue of how to develop the best possible dialogue strategy.

2.3.3 Strategy evaluation

An essential part of developing a software system is to evaluate its performance

with test users before deployment in the real world. A wide variety of evaluation

criteria and metrics for SDSs have been proposed over the years (e.g. Walker et al.,

1998; Paek, 2001). Evaluation metrics can be categorised into two types: objective

and subjective. Objective metrics can be calculated automatically from logs of test

dialogues. Measurements that are commonly taken include the length of time taken

for each dialogue, the number of system and user utterances, the number of times a

user asked for help, etc. By contrast, subjective metrics record users’ impressions

about the quality of the system’s performance. This information is usually gathered

using a questionnaire after users have interacted with the system. Users are asked to

rate the system’s performance with respect to a range of criteria, such as intelligibility,

ease of use, etc.

As a system is developed, it can be iteratively evaluated by test users and refined by

the designer in the light of the evaluation results. However, this can be a very time-

consuming and expensive process. In practice, what often happens is that a developer

asks some colleagues to experiment with the early prototypes of a system. As system

development progresses, the test regime becomes more formal, using more naı̈ve test

users. An alternative approach to reducing the cost associated with repeated testing

is to create a simulated user. This ‘user’ is a model of how human users behave

(Eckert et al., 1998; López-Cózar et al., 2002). This model can be created using

previous examples of dialogues as well as the experience and intuition of the designer

and client.

It seems obvious that testing a system with real users is likely to be more accurate.

On the other hand, it is often much cheaper to develop a simulated user model, which

can be used by the system developer as many times as is required. A satisfactory

compromise might be to perform initial tests with a simulated user and then to recruit

real users in the final stages of evaluation. The simulated user model has also become
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an important ingredient in the development of dialogue strategies based on machine

learning techniques, as we shall see in the next section.

2.4 Learning spoken dialogue strategies

Developing a spoken dialogue system is a complex and time-consuming task.

Consequently, attempts have been made to automate parts of the development process;

the use of simulated user models for system evaluation is one example of this. More

recently, researchers have focused on automating the design and implementation stages

of system development. The idea is for developers to specify what behaviour is

required of the system rather than how it is to be achieved. That is, the dialogue

strategy is automatically generated from the developer’s specification. One approach

to accomplishing this automated development process is to use reinforcement learning

(RL) techniques. To generate a dialogue strategy using RL, we first need to model a

human-computer dialogue as a sequential decision task. In particular, by formalising a

dialogue as a Markov Decision Process, RL can be used to learn dialogue strategies.

2.4.1 Sequential decision tasks and Markov Decision Processes

Sequential decision tasks are characterised by an agent which interacts with its

environment. In the simplest case, the agent interacts with the environment in discrete

time steps (see Figure 2.4). At each step, the agent receives some representation of

the state of the environment s. Using this information, the agent selects an action a.

The effect of this action on the environment is fed back to the agent in two ways.

First, the agent will receive a numerical reward r. This reward is used to reinforce –

or possibly discourage – the agent’s selection of that action the next time it is in that

state. Second, the agent will receive a new representation of the environment’s state,

s′, which becomes the new value for s in the next time step (i.e. s← s′). This process

is repeated many times. The purpose of this iterative process is for the agent to learn

how to maximise the amount of reward that it receives from its environment. Practical

applications of this model include robot navigation (Crook and Hayes, 2003b), board

game playing (Tesauro, 1995) and channel allocation for mobile (cellular) telephone

networks (Singh and Bertsekas, 1997).
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Figure 2.4: The agent-environment interaction in a sequential decision task.

In a sequential decision task, an episode is the sequence of steps taken by the agent to

reach a pre-defined terminal state from its initial state. In a board game, for example,

an episode is a single game. Remembering that the agent receives a reward r at each

time step, the goal of the agent is learn how to maximise the total reward received in

a complete episode. The strategy developed by the learning agent for achieving this

maximal cumulative reward is known as a policy. To learn a good policy in a sequential

decision task, actions need to be chosen in order to accumulate maximum reward over

the entire episode. That is, actions should be chosen for their reward over the long

term, rather than simply for their immediate reward r. For example, in a chess game,

many low reward moves (e.g. sacrificing pieces) may eventually give rise to a very

high reward (e.g. checkmate). A good policy is one where actions are chosen for their

long term reward.

An important form of sequential decision task is the Markov Decision Process

(MDP). MDPs are based on the notion that the current state of the environment

contains all the relevant information needed to decide on which action to take next.

A state representation that fulfills this requirement is said to be Markov, or to have the

Markov property, or to satisfy the Markov assumption (Sutton and Barto, 1998, p. 61).

For example, in a board game, such as chess or backgammon, the only information an

agent actually needs to decide on its next move is the current board position; it does

not matter how that board position came about. Put another way, the history of all

previous moves are summarised by the current position of the pieces on the board.
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This idea can be applied to the concept of dialogue state. In many spoken dialogue

systems, the dialogue state includes a compact representation of the dialogue’s history

(see section 2.3.2). Although this state representation may contain information about

previous dialogue states, it does not violate the Markov assumption since all the

relevant information is summarised by the current dialogue state.

Formally, a finite MDP is defined by a state set S = {s1, ...,sm}, an action set A =

{a1, ...,an}, a transition function T (s,a,s′) and a reward function R(s,a). With m

possible states and n possible actions, the transition function represents the probability

of making a transition to state s′ when taking action a in state s, i.e. P(s′|s,a). The

reward function represents the immediate reward r associated with taking action a

in state s, i.e. R(s,a) = r. With these elements defined, we can compute the optimal

mapping between states and actions (known as the optimal policy2 in the RL literature).

One way to do this is to first compute the optimal action-value function Q∗:

Q∗(s,a) = E(r|s,a) ∀ s ∈ S, a ∈ A. (2.1)

For any state s, this function gives the expected total reward if action a is chosen and the

interaction proceeds to the final state in an optimal way. This function is essentially

a lookup table, indexed by state-action pairs, defining the value (long term reward)

of selecting individual actions. With this function computed, it is straightforward to

induce the optimal policy; we simply look at the actions available in each state and

select the action with the highest Q-value. In other words, the optimal policy, π∗,
enumerates the optimal action for each state s:

π∗(s) = argmax
a

Q∗(s,a) ∀ s ∈ S, a ∈ A. (2.2)

2.4.2 Reinforcement learning

A variety of algorithms exist for computing the optimal action-value function. These

iterative algorithms begin with an initial value function Q0, where all the state-action

values are initialised to some arbitrary value (e.g. 0). In a single iteration, the

transition and reward functions are used to update the estimated Q-value of some

2For a given task there may be more than one optimal policy. However, we only need to find one of
these policies since they are all equally optimal. In the RL literature, it is common simply to refer to the
optimal policy.
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(possibly all) state-action pairs. This new value function Q1 is a slightly more accurate

estimate of Q∗. The update step is repeated many times, with each successive update

(Q2,Q3, . . . ,Qt) producing an improved estimate of Q∗.

If the transition function is fully specified, dynamic programming can be used to

estimate Q∗. This algorithm works by updating the Q-value for every possible state-

action pair in a single iteration using the transition and reward functions. Since (i) the

transition function defines the probability of moving from any state s to another state

s′, i.e. P(s′|s,a) and (ii) the reward function R(s,a) defines the reward for choosing the

action that creates this transition, the Q-value of each state-action pair can be updated

recursively by:

Qt(s,a)← R(s,a)+∑
s′

P(s′|s,a) max
a′

Qt(s
′
,a′) (2.3)

Dynamic programming cannot be used when a complete model of the transition

function is not available. For example, RL has been applied to the development of

backgammon strategies (Tesauro, 1995). There are approximately 1020 possible board

positions in a backgammon game. This means that the transition matrix enumerating

the probability of each possible transition contains 1040 elements. Calculating the

value of every element in this matrix is computationally infeasible. An alternative

approach is to update the estimate of Q∗ using temporal difference (TD) learning.

Instead of considering all possible transitions, TD methods require only sample

sequences of state-action transitions.

In backgammon, for example, a sample sequence would be the moves of a complete

game. In a dialogue system, a sample sequence would be the system and user

utterances of a single dialogue. If we can generate a sufficiently large number of these

sequences then the estimate of Q∗ can be updated in a manner similar to that used in

dynamic programming. The essential difference in the two algorithms is the update

rule. In dynamic programming, all possible state transitions are considered. In TD

learning, only the sampled transitions contribute to the improved estimate of Q∗:

Qt(s,a)← Qt(s,a)+α[R(s,a)+Qt(s
′
,a′)−Qt(s,a)] (2.4)

TD learning is an example of model-free reinforcement learning. By contrast, dynamic

programming is a model-based technique since it requires a complete model of the

environment’s behaviour as described by the transition function.
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In both forms of RL, the resulting value function is guaranteed to converge on the

optimal one if the update rule is repeated an infinite number of times (i.e. Q∞ = Q∗).

More practically, a learning algorithm is halted when Qt is believed to be sufficiently

close to Q∗ (i.e. Qt ≈ Q∗). A variety of criteria have been proposed for deciding

when a satisfactory approximation for Q∗ has been reached (Kaelbling et al., 1996;

Mahadevan, 1996). One method is to halt the algorithm when the absolute difference

between successive Q-values for each state-action pair is less than some threshold θ:

|Qt(s,a)−Qt−1(s,a)|< θ ∀ s ∈ S, a ∈ A. (2.5)

2.4.3 Q-learning

This section examines the mechanism for estimating Q∗ using a well known TD

algorithm: Q-learning (Watkins and Dayan, 1992). As shown in Figure 2.5, the

algorithm begins with the initialisation of all Q values to some arbitrary value, (e.g. 0).

The algorithm terminates when the value function Q is considered to be a satisfactory

approximation to the optimal value function Q∗. The value for Q is updated in line 8

according to the states sampled by the agent. In terms of a game-playing task, each

iteration of the outside loop represents a single game while each iteration of the inner

loop represents a single move. The agent begins each game in some initial state SI

(line 3); the game ends when the agent’s action leads to a terminal state ST (line 10).

Each move of the game is in fact decomposed into five steps (lines 5-9): (i) selection

of the move; (ii) execution of the move; (iii) a response from the environment giving

the reward associated with the move and the state in which this move will result;

(iv) an update of the Q value for the state-action pair that has just been visited; (v) an

update of the agent’s current state using the feedback received from the environment.

Three lines of the algorithm require further explanation. Firstly, how is action a

selected from the set of all available actions (line 5)? A common strategy is to select

the action with the highest Q-value most of the time and occasionally (e.g. 10% of

the time) select randomly one of the sub-optimal actions. If the agent is not allowed

to explore the potential value of sub-optimal actions, the Q function is less likely to

converge towards Q*. This strategy is known as an ε-greedy policy, meaning that most

of the time an optimal action is chosen, but with probability ε, a random action is

selected. Typically, the value of ε is decayed as learning progresses.
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1 Q(s,a) ← 0 for all s in S, a in A

2 repeat

3 s ← sI

4 repeat

5 choose an action a from A

6 execute a

7 receive r and s
′
from the environment

8 Q(s,a) ← Q(s,a) + α[r+ γ max
a′
Q(s

′
,a

′
) - Q(s,a)]

9 s ← s
′

10 until s = sT

11 until Q ≈ Q∗

Figure 2.5: Finding an approximation for Q∗ using Q-learning, a TD algorithm.

Secondly, in line 7, the value of r is based on the reward function previously defined

by a system developer, but how is s′ calculated? Although a complete transition model

is not required, the agent must have available to it some model of what transitions

are permissible. For example, it is relatively straightforward for a system developer

to encode the rules of backgammon, thus allowing an agent to calculate which new

position will result from any chosen action.

Thirdly, how does the update rule in line 8 improve the estimate of Q∗? It can be shown

that the closer an action occurs to the end of a task the more its Q value will reflect

the probable success of taking that action. For example, we have a better idea of a

game’s outcome in the later stages of play than we do at the beginning. The general

idea of TD algorithms is to pass on the knowledge available in the later states of a task

to the earlier states. In other words, the Q values of later states should influence the

Q values of earlier states. This process is achieved using the update rule. When the

agent is in state s and takes action a the environment gives the state s′ that the agent

will visit in the next iteration. Of all the actions available in the subsequent state s′,

the expression maxa′Q(s′,a′) gives the Q value of the optimal action a′. The value of

Q(s,a) is updated using a combination of the immediate reward it has just received and

the value for Q(s′,a′). It has been shown that this strategy is effective even though the

action chosen in the subsequent state s′ may not in fact be a′ (Watkins, 1989).
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The discount factor γ, and the learning rate 3 α, are positive fractions that control the

amount that Q(s,a) moves towards Q(s′,a′). The discount factor controls how much

weight should be attached to future rewards while the learning rate defines how much

of the total reward (immediate and future) is incorporated into the current Q-value.

Typically, the values for γ and α are decayed as learning progresses.

The effect of the Q-learning algorithm can be illustrated by the simple example given

in Table 2.1. The task consists of three states and two actions. Hypothetical values are

given for the Q function before and after learning has taken place. The optimal action

for each state is the one with the highest Q value after learning. Therefore, the optimal

policy is given by: π∗(s1) = a2, π∗(s2) = a1, π∗(s3) = a2. There are a number of

issues that have not been discussed in this brief description of reinforcement learning,

including the choice of learning parameters and the problems associated with large

state spaces. A detailed account of RL algorithms such as dynamic programming, TD

learning and others can be found in Sutton and Barto (1998).

state s action a Q(s,a) before learning Q(s,a) after learning

s1
a1 0 2.0

a2 0 5.6

s2
a1 0 3.2

a2 0 1.0

s3
a1 0 8.4

a2 0 9.1

Table 2.1: Action-value function for a simple RL task before and after learning.

2.4.4 Dialogue as a Markov Decision Process

In the introduction, I characterised a dialogue strategy as a mapping between

anticipated user inputs and appropriate system outputs. However, a system may need to

respond to the same user input in a variety of ways, depending on the context in which

it occurs. For example, if a user asks the system for help, the system’s response will

depend very much on the current state of the dialogue (Gorrell et al., 2002). Therefore,

it is more accurate to define a dialogue strategy as a mapping between the set of

3The learning rate is also known as the step-size parameter (e.g. in Sutton and Barto, 1998).
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possible dialogue states S (which may include a record of user input) and the set of

system actions A.

Using this definition, we can translate the goal of automatically generating a dialogue

strategy into the search for a mapping between S and A. But we want to do more than

that — we want to find the optimal dialogue strategy. In other words, we want to find

the optimal mapping between S and A. If this mapping can be found, a dialogue system

will know how best to respond a user’s utterances at any point in a dialogue.

This mapping can be found by modelling dialogue as a Markov Decision Process.

In terms of the MDP formalism: (i) the state set is a list of all possible dialogue states;

(ii) the action set is the list of possible system acts; (iii) the transition function can

be estimated from a corpus of previous dialogues or modelled by a simulated user;

(iv) the reward function is based on evaluation metrics. It is important to remember that

an optimal mapping between S and A is optimal with respect to the reward function.

Whether such a mapping produces the best possible dialogue strategy remains an open

question.

2.4.5 Case study

As an illustration, I now describe how the MDP approach to dialogue modelling has

been used to improve the strategy of a tourist information system: NJFun (Litman

et al., 2000; Singh et al., 2002). In this system, the authors took advantage of situations

where the appropriate system action was obvious. For example, it seems clear that

the first system action in any interaction should be a greeting prompt. The authors

hard-coded such system behaviours. This meant that learning need only be applied

to more contentious design decisions. In particular, they focused on two important

design choices: (i) the type of initiative to use (system, user or mixed) when asking or

re-asking the user for a piece of information, and (ii) whether to confirm a value once

it was obtained. The full state representation for this dialogue system consisted of 14

variables. However, not all of these variables needed to be considered for the purposes

of learning; the learning state set consisted of only seven variables (Table 2.2).
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Feature Values Explanation

Greeting 0,1 Whether the system has greeted the user

Attribute 1,2,3,4 Which attribute is being worked on

Confidence/ 0,1,2,3,4 0,1,2 for low, medium, and high ASR confidence

Confirmed 3,4 for explicitly confirmed or disconfirmed

Value 0,1 Whether value has been obtained for current attribute

Tries 0,1,2 How many times current attribute has been asked

Grammar 0,1 Whether non-restrictive or restrictive grammar was used

History 0,1 Whether there was trouble on any previous attribute

Table 2.2: State features and values in the NJFun dialogue system.

The state space defined by these variables contained 2× 4× 5× 2× 3× 2× 2 = 960

unique states. However, many of these states would not actually occur. For example,

Greeting=0 was only possible in the initial dialogue state. All other states where

Greeting=0 would never occur. Consequently, only 62 states could actually occur in

a dialogue. Furthermore, by hard-coding obvious decision choices, the authors were

able to reduce the number of significant states to just 42. The purpose of learning was

to determine which was the most appropriate action in each of these 42 states.

Only two actions were made available in each of the 42 contentious states. The action

alternatives were chosen so that the dialogue system could randomly choose an action

and still appear to behave sensibly to a user. In many of the 42 states, the choice was

between confirming an attribute value or not; the remaining choices centred on which

type of initiative to use when greeting the user or asking a question (Table 2.3).

Action choice Number of states

Confirm vs NoConfirm 30

ReAsk (system vs mixed initiative) 9

Ask (system vs user initiative) 2

Greet (system vs user initiative) 1

Total 42

Table 2.3: Summary of action choices in contentious states in NJFun.
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Using this framework, the unlearned system was used by 54 human participants.

Each participant was asked to complete six free-form tasks (e.g. “You are bored at

home in Morristown on a rainy afternoon. Use NJFun to find a museum to go to.”).

A total of 311 dialogues was completed. Whenever one of the 42 contentious states

occurred in a dialogue, the system randomly chose between the two available actions.

After completing each dialogue, users were asked to rate the success of the dialogue

according to a number of user satisfaction measures. The logged data was then used

to model the transition and reward functions. The transition function was based on

the relative frequency of the actions chosen in each contentious state. Data sparsity

was prevented by the small state set and the fact that only two actions were allowed in

each state. The reward function was a simple binary one: a value of 1 was assigned at

the end of the dialogue if the system queried the database using exactly the attributes

specified in the task description, and -1 otherwise.

Using these transition and reward functions, dynamic programming was used to learn

a strategy for the 42 contentious states. At the end of learning, a preferred action was

identified in 36 of the 42 states. The new learned strategy was evaluated by a new group

of 21 participants, performing the same six tasks as used in the previous evaluation.

A total of 124 dialogues were completed. The evaluation results reported a number of

positive findings including a statistically significant increase in the task completion rate

from 52% to 64%. This study illustrates the potential benefit of modelling dialogue

as a MDP. Other studies demonstrating similar benefits include Levin et al. (2000);

Scheffler and Young (2002) and Lemon et al. (2006).

2.4.6 Dialogue simulation

In the case study just described, the creation of a realistic transition function was

possible because the number of state transitions under consideration was very small.

However, with larger state sets, modelling a transition function directly from a corpus

would inevitably lead to an issue with data sparsity. Some studies in strategy learning

have proposed methods, such as back-off schemes, to compensate for the sparseness

of collected data (Goddeau and Pineau, 2000). However, directly modelling state

transition probabilities gives rise to another, more serious problem. With this approach,

the state and action sets need to be known in advance so that the corpus can be

annotated for estimating the transition probabilities. If a system developer wishes
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to experiment with an alternative state representation – and this often happens – the

corpus will need to be re-annotated. This process is potentially very time-consuming.

One way to avoid both these problems is dialogue simulation. Simulated users

were discussed briefly with regard to strategy evaluation (section 2.3.3). These

models of user behaviour can also be employed to generate an unlimited number

of training episodes for a strategy learner and, thus, allow a potentially exhaustive

search for a useful strategy. More importantly, these models can be easily modified

to accommodate alternative state and action sets. Consequently, simulated users have

become an essential part of strategy learning techniques.

In recent years, a number of techniques have been employed in the development of

simulated users. Typically, user behaviour is modelled at the level of dialogue acts

(also referred to as ‘intention level’). Some implementations have modelled behaviour

at word level (Watanabe et al., 1998) or even acoustic level (López-Cózar et al., 2002).

Whichever level of representation is chosen, simulated users normally include some

model of the errors associated with speech recognition (hence, it is more accurate to

refer to a simulated environment). Unfortunately, misrecognition remains a common

occurrence in dialogue systems, so it is important to incorporate a model of recognition

errors in dialogue simulations (Lin and Lee, 2001; Pietquin and Beaufort, 2005).

Early models of user behaviour used simple bigram models to generate the simulated

user’s response based solely on the system’s last dialogue act (Eckert et al., 1998).

Although this model was simple to devise and was task-independent, it did not take

account of the user’s long term goals. Consequently, it sometimes generated actions

that did not make contextual sense. The notion of a goal-directed simulated user was

introduced by Scheffler and Young (2000). In this work, the authors created a finite-

state network of possible paths through a simulated dialogue. Some choice points

were hand-coded, while others were trained from a corpus. This approach generated

responses that were always consistent with a specified user goal. On the other hand,

the approach was highly task-dependent.

Increasingly sophisticated probabilistic, goal-directed simulated users have been

implemented in recent years. This has been achieved using a variety of representations

and techniques, including: hand-coded probabilistic rules (Chung, 2004), Bayesian

networks (Pietquin and Dutoit, 2006), n-grams with linear feature combination

(Georgila et al., 2005) and Hidden Markov Models (Cuayáhuitl et al., 2005). For a
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recent survey of dialogue simulation techniques, see Schatzmann et al. (2006).

It seems likely that the performance of any strategy learner depends, not only on

the chosen state representation and reward function, but also on the quality of the

simulated user(s) with which it interacts. Therefore, it is natural to ask what defines

a good simulated user. In simple terms, a simulated user should be representative

of the real users that will eventually interact with the learned strategy. A number of

evaluation metrics were used to measure the realism of simulated users in Schatzmann

et al. (2005). In this study, a comparative evaluation of three simulation methods was

performed. The results indicated that “simple statistical metrics are still sufficient to

discern synthetic from real dialogues” (p. 45).

2.4.7 Technical challenges

A great deal of progress has been made with the use of RL techniques to generate

dialogue strategies. However, a number of important challenges remain. For instance,

very little success has been achieved with the large state-action spaces that are typical

of real-life systems (Henderson et al., 2005). Similarly, work on summarising learned

strategies for interpretation by human developers has so far only been applied to tasks

where each state-action pair is explicitly represented (Lecœuche, 2001). This tabular

representation severely limits the practical size of the state space.

In addition, misrecognition on the part of the speech recogniser can create situations

where the dialogue manager makes decisions based on an inaccurate assessment of

the dialogue state. In other words, the true state of the dialogue is only partially

observable by the dialogue manager. Recent work has incorporated a model of

this partial observability into the dialogue strategy, albeit with relatively small state

representations. Experimental results show that incorporating such a model into a

strategy learning framework can produce superior strategies (Williams et al., 2005).

Eventually, this learning framework for strategy generation needs to be embodied in a

software tool. Such a tool should require a system developer to specify only what kind

of behaviour is required of the dialogue strategy and allow the learning framework

to generate a strategy that fulfills these requirements. In the broadest sense, the

tool should allow system developers to build good dialogue strategies quickly. More

concretely, the tool should be able to:
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i. generate strategies that compare favourably with hand-coded ones;

ii. generate strategies quickly (e.g. within hours instead of days or weeks);

iii. improve existing strategies where possible;

iv. handle a wide variety of tasks;

v. produce understandable results;

vi. automatically halt when a solution is found;

vii. incorporate domain-specific knowledge;

viii. compensate for the uncertainty associated with speech recognition;

Given the current state of the art, a software tool that satisfies all of these requirements

may be some way off. There remain a number of important technical challenges to be

tackled before all of these criteria can be met; some of these are discussed below.

2.4.7.1 Large state-action spaces

Bearing in mind that tabular RL algorithms, such as Q-learning, are designed to operate

on individual state-action pairs, there is a practical limit to the size of the state-action

tables that can be implemented. This constraint poses a problem for dialogue strategy

developers. Even with a relatively small number of state features and system actions,

the size of the state-action space can grow very quickly. In the context of reinforcement

learning problems, “large” means a state-action space that would require greater than,

say, one million (106) elements when represented in tabular form. Realistic state-

action spaces can very easily reach or exceed this figure (e.g. six state variables with

ten possible values). Large state-action spaces also increase the time taken to learn an

effective strategy (Denecke et al., 2004). In summary, large state-action spaces are a

major issue when learning dialogue strategies.

Several approaches to dealing with the problem of large state-action spaces have been

proposed in recent years. One approach is based on the idea that not all state variables

are relevant for learning a dialogue strategy. By carefully selecting a subset of the

available state variables, the state-action space is reduced. If the right variables are

chosen, useful dialogue strategies can still be learned. This technique has been applied
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successfully in several recent studies, including Frampton and Lemon (2006), Tetreault

and Litman (2006) and Reiser and Lemon (2006).

A related technique is to consider only valid state-action pairs when learning a dialogue

strategy. In the fully enumerated set of possible states, many of the states will not

make sense. For example, if the status of a slot is represented by two binary variables,

filled and confirmed, the state ‘filled=false, confirmed=true’ should not occur. Using

this idea, the size of the ‘feasible’ state-action space can be greatly condensed. For

example, the case study presented in section 2.4.5 stated that only 62 of a theoretically

possible 960 states would actually occur in a real dialogue (Litman et al., 2000).

More recently, this idea has been formalised into an algorithm for automatically

eliminating invalid state-action pairs (Cuayáhuitl et al., 2006a). Using basic domain

knowledge, the sapReduction algorithm can dramatically reduce the size of the state-

action space. Experimental examples demonstrated a 94% reduction in the size of the

state-action space and 93% faster rate of convergence towards an appropriate strategy.

The techniques discussed so far are practical ways to reduce the size of the state-

action space so as to make the use of tabular RL algorithms feasible. It may be

the case that, even for fairly sophisticated dialogue tasks, a small state-action space

is sufficient to learn appropriate dialogue strategies. However, there may be times

when a system developer decides that a large state-action space is required. One

solution to this problem has been proposed in Henderson et al. (2005). This work used

linear function approximation (LFA) to represent a state space with theoretically 1087

unique elements. This technique exploited the commonality between neighbouring

dialogue states to define a function which approximates the Q-value for all possible

states. In this study, the LFA-based state representation was used in conjunction with a

hybrid reinforcement/supervised learning technique. This technique was applied to the

Communicator task (Walker et al., 2001) to learn dialogue strategies that outperformed

state-of-the-art hand-coded ones (Lemon et al., 2006).

2.4.7.2 Strategy Inspectability

It is important for human developers to understand, and learn from, the strategies

generated by machine learning methods. Furthermore, it would be very useful

for system developers to have an easy way to modify learned dialogue strategies.
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Therefore, some method is required for summarising the behaviour of a learned

strategy. Without the ability to inspect a learned dialogue strategy, a system developer

might find it difficult to deploy the strategy in the real world. Certainly, it seems

unlikely that a commercial enterprise would deploy a SDS containing a learned

dialogue strategy if its behaviour was not completely inspectable.

However, summarising learned dialogue strategies is difficult. When state-action

spaces are small enough to represent in tabular form, RL algorithms such as

Q-learning can be applied to generate a dialogue strategy. However, the representation

of the learned dialogue strategy is extremely fine-grained; every possible state-action

combination is specified. Unless the state-action table contains less than a few hundred

elements, strategy inspectability is virtually impossible. What is required is some

method for summarising which action is appropriate in which states.

One approach to this problem is the use of inductive logic programming (ILP) to

generate a set of if-then rules which summarise the state-action space of a learned

dialogue strategy (Lecœuche, 2001). In this study, the summarisation method is

illustrated by reducing 42 state-action pairs to 24 if-then rules after learning has

occurred. The paper also described some preliminary work integrating the rule-

based representation into the learning algorithm. Experimental results suggested that

this might help to accelerate convergence towards an appropriate strategy. Clearly,

results with much larger state-action spaces, and greater compression, are needed

to be genuinely useful. Moreover, it is not clear how this approach could be

applied successfully to non-tabular state representations (Goddeau and Pineau, 2000;

Henderson et al., 2005)

It is worth noting that inspectability has long been an issue with other machine learning

techniques, particularly neural networks (Haykin, 1999). Because the ‘solution’

produced by a neural network is represented by a set of numerical weights, it exhibits

very low readability. Some techniques have been developed to make solutions more

transparent, notably sensitivity analysis (Oh and Lee, 1995). However, extracting

learned knowledge from neural networks remains difficult. Despite this fact, neural

networks have been employed in a large number of research-led and commercial

applications (Berry and Linoff, 2004, Chapter 13). Over time, the same perspective

may be adopted by developers of learned dialogue strategies. For the moment,

however, the inspectability of dialogue strategies remains an important goal.
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2.4.7.3 Simulated users

The use of simulated users was reviewed briefly in section 2.4.6. While it is true that

the sophistication of simulated user models has increased greatly in the last few years,

some important issues remain unresolved. Firstly, there have been very few evaluations

of learned dialogue strategies with real users (e.g. Litman et al., 2000; Walker, 2000).

Moreover, only one of these has learned a dialogue strategy using a simulated user and

tested the learned strategy with real users (Lemon et al., 2006).

Certainly, conducting evaluations with real users is time-consuming and expensive.

However, the quality of any dialogue strategy can only be properly assessed by human

users. Therefore, it is important that more work be done to assess whether good results

with simulated users are a reliable predictor of subsequent performance with real users.

Secondly, very little attention has been given to the cost in time and effort required to

collect and annotate a corpus for the purpose of creating a simulated user. I argue that

an implicit motivation for learning dialogue strategies is to reduce the time taken to

develop SDSs. If novel applications are to be developed in the future, then no relevant

corpora will exist. In this situation, a system developer is faced with the choice of

hand-coding a simulated user or collecting a corpus. For complex tasks, hand-coding

simulated users may not be feasible. However, I suggest that, for many information-

seeking tasks, hand-coding simulated users is feasible (see Chapters 4 – 6). If this is not

the case, an implicit benefit of learning dialogue strategies will be lost. Thus far, there

has been no cost-benefit analysis of the hand-coded versus corpus-based approaches.

2.4.7.4 Partial observability

Modelling dialogue as a Markov Decision Process assumes that the state representation

reflects all the information needed to decide on which action to take next. However,

this is not actually the case. The errors associated with speech recognition mean that

the user’s intentions may not be accurately communicated to the dialogue manager.

Consequently, the dialogue state may not represent the true state of the dialogue, from

the user’s perspective. In terms of modelling dialogue as a MDP, the true dialogue state

is said to be partially observable by the dialogue manager.
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In an information-seeking (slot-filling) task, the usual approach to dealing with speech

recognition errors is to associate a recognition confidence score with each slot. In this

type of task, the value of each slot is usually considered to be correct (i.e. what the user

actually said) if either the slot value has a high confidence score or the slot value has

been confirmed by the user in some way. Although a simplification of what happens

in slot-filling tasks, this description is a reasonable approximation. Studies of more

sophisticated confirmation strategies include Raymond et al. (2003) and Litman and

Hirschberg (2006). The recognition confidence scores are received by the dialogue

manager from the speech recogniser for each user utterance.

In recent years, the MDP approach to learning dialogue strategies has been extended

to include a model of the errors associated with speech recognition. Since this model

takes account of the inherent partial observability, it is known as a Partially Observable

Markov Decision Processes (POMDP). The basis of the POMDP approach is the use

of a belief state, which is a probability distribution over the set of all possible dialogue

states. In other words, multiple dialogue state hypotheses are maintained at each point

in the dialogue. The idea is to update the probability for each possible state that it

is the true state as the dialogue progresses. Using this extended state representation,

several POMDP algorithms exist for generating optimal policies (e.g. Kaelbling et al.,

1998). However, the computational complexity of these algorithms is exponential in

the number of states. This makes learning a dialogue strategy intractable with anything

more than a handful of states. Therefore, methods of approximating the belief state

or finding near-optimal policies are used to make learning computationally feasible.

This approach has been shown to improve the performance of a SDS in Roy et al.

(2000). The study also showed that the margin by which the POMDP-based strategy

outperforms the MDP-based one, increased with the level of recognition error in the

SDS.

The most comprehensive study of the POMDP-based approach to dialogue strategy

learning can be found in Williams (2006). In this work, the state representation

differs from the approach normally found in MDP-based state spaces. Slots are not

characterised by their status (e.g. empty, filled, confirmed etc.) but by their possible

values (e.g. ‘London’, ‘Edinburgh’, ‘Cambridge’ etc.). This is because the main

point of the POMDP approach is to explicitly model multiple state hypotheses. The

work presents a novel technique, Composite Summary Point-Based Value Iteration

(CSPBVI), to tackle the issue of scalability.
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The author also describes a working SDS, which includes a dialogue manager based on

the CSPBVI algorithm. The system is a simple ticket booking application. However,

the size of the state space is 3× 10× 7× 9 = 1890 unique slot value combinations

(“user goals”). Clearly, many applications would require a much larger slot value

space. Nevertheless, the work clearly demonstrates that the POMDP approach can

model the effect of recognition errors and consequently outperform MDP-based

dialogue strategies.

2.5 Summary

A spoken dialogue system is a natural language interface designed to make use of

spoken language technology for both language understanding and generation and so

to effect a conversation between a user and computer. Such a system usually provides

access to a computer-based application such as a database or an expert system. From

a system developer’s perspective, designing a spoken dialogue system can be a time-

consuming and difficult process. A developer may spend a lot of time anticipating

how a potential user might interact with the system and then deciding on the most

appropriate system response. These decisions are encoded in a dialogue strategy.

To reduce the time and effort associated with developing a dialogue strategy, recent

work has focused on generating strategies automatically. The idea is for developers

to specify what behaviour is required of the system rather than how it is to be

achieved. That is, the dialogue strategy is automatically generated from the developer’s

specification. One approach to accomplishing this is to model a human-computer

dialogue as a Markov Decision Process (MDP). MDPs are based on the notion that the

current state of the environment contains all the relevant information needed to decide

on which action to take next. This idea is akin to the concept of dialogue state. In

many spoken dialogue systems, the dialogue state serves as a compact representation

of the dialogue’s history. By formalising a dialogue as a MDP, reinforcement learning

(RL) algorithms can be used to search for dialogue strategies. Such strategies are often

learned by repeated interaction with a simulated user. This ‘user’ is a software-based

model of how a human user might interact with a spoken dialogue system.
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A great deal of progress has been made with the use of RL techniques to generate

dialogue strategies. However, a number of important challenges remain. For instance,

very little success has been achieved with the large dialogue state representations that

are typical of real-life systems. Similarly, work on summarising learned strategies

for interpretation by human developers has so far only been applied to very simple

dialogue strategies. Also, it is not yet clear whether learning dialogue strategies with

simulated users provide a reliable predictor of subsequent performance with real users.

Finally, it has been shown that incorporating a model of the errors associated with

speech recognition can improve the quality of a learned dialogue strategy. However,

more work is required to exploit these error models with large state representations.
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An evolutionary approach to learning

spoken dialogue strategies

3.1 Overview

In this chapter, I present an alternative to existing approaches for learning spoken

dialogue strategies. I propose the use of an evolutionary-based algorithm, XCS

(Wilson, 1995). This algorithm has been applied successfully to a number of

supervised learning and reinforcement learning tasks. The principal advantage of XCS

over tabular TD algorithms, such as Q-learning, is the ability to represent regions of

the state-action spaces rather than single points (i.e. individual state-action pairs). This

means that much larger state-action spaces can be represented, which in turn means

that more realistic problems can be tackled.

Before describing the XCS algorithm, I present some background on evolutionary

algorithms (EAs) and show how they have been applied to sequential decision tasks.

Next, I introduce Learning Classifier Systems (LCS), a well known example of a rule-

based EA. I then present XCS, an algorithm that combines an evolutionary algorithm

with a Q-learning update rule, to generate condition-action rules that can compactly

represent solutions to sequential decision tasks. I describe classifiers, the basis for

knowledge representation in XCS and then describe how XCS evolves a population of

classifiers that accurately describes a solution to a sequential task. Finally, I outline

how I will use the XCS algorithm to learn spoken dialogue strategies.

34
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3.2 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are a group of stochastic search techniques inspired

by Darwin’s theory of evolution by natural selection. EAs operate on a population of

potential solutions, often encoded in structures called chromosomes. This population

of chromosomes is iteratively modified using operators borrowed from genetics. The

idea is that successive generations of the population contain chromosomes that are

better suited to their environment than the chromosomes from which they were created,

just as in natural selection. In other words, chromosomes which encode the best

solutions evolve over time and eventually dominate the population in a way that is

similar to the notion of ‘survival of the fittest’. This remarkably simple process of

combining candidate solutions to produce progressively better solutions has proven to

be very powerful. Figure 3.1 shows the structure of a generic evolutionary algorithm.

1 randomly initialise population with n chromosomes

2 repeat

3 evaluate the fitness of each chromosome

4 select parents stochastically according to their fitness

5 generate n offspring by transforming parents

6 replace the old population with the n offspring

7 until termination criteria met

Figure 3.1: A generic evolutionary algorithm.

The term ‘Evolutionary Algorithm’ has been coined to collectively describe four

different approaches that have been developed independently over the last 40 years:

Evolutionary Strategies (Rechenberg, 1964), Evolutionary Programming (Fogel et al.,

1966), Genetic Algorithms (Holland, 1975) and Genetic Programming (Koza, 1992).

Each of these approaches incorporate the notion of a population-based search for

solutions. However, there are some important differences. For example, in Genetic

Algorithms (GAs), solutions are often encoded as fixed length strings of bits, integers

or real values. In Genetic Programming (GP), each chromosome is a variable length

tree structure representing part of a computer program; in Evolutionary Programming,

solutions are represented by finite state machines. Another difference relates to how

chromosomes are transformed. In GAs, the transformation is primarily accomplished

by the crossover operator. This operator produces new offspring chromosomes by
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combining the information contained in its parental chromosomes. By contrast, the

other forms of EA have traditionally made more use of the mutation operator, where

parts of a chromosome are randomly modified. As variations in the basic forms of EA

have been developed over the years, it has become clear that the methods have merged

to some degree. For instance, the role of mutation has become more important in the

design of GAs. Similarly, the crossover operator is now more prevalent in Evolutionary

Strategies.

The XCS algorithm presented later in this chapter has features that are most closely

associated with GAs. These features include: (i) fixed length chromosomes;

(ii) selection of chromosomes for reproduction in proportion to their fitness;

(iii) reproduction of chromosomes by genetic operators (crossover and mutation).

3.2.1 Evolutionary Algorithms for sequential decision tasks

EAs have been applied successfully to a diverse range of learning, classification and

optimisation problems (Goldberg, 1989; Obayashi et al., 2000; Andreou et al., 2002;

Koza et al., 2003). EAs have also been employed to search for policies in sequential

decision tasks (Moriarty et al., 1999). This approach differs from the one presented

in section 2.4. In that section, I discussed how reinforcement algorithms, such as

Q-learning, can be used to find an optimal action-value function and from this function,

a policy can be induced. By contrast, the EA approach is a form of direct policy

search. An optimal policy is derived by searching the policy space directly rather than

searching the value space and from that deriving a policy. In other words, an initial

estimate π0 of the optimal policy π∗ is iteratively refined (π1,π2, . . . ,πt) to produce

increasingly more accurate estimates of π∗. It has been suggested that a direct policy

search may have advantages over a search for an optimal action-value function (Baxter

and Bartlett, 2001; Rosenstein and Barto, 2001). A brief discussion of the merits of

policy search versus value function search is given later in section 3.2.5.

To explain how EAs (particularly the GA form) can be employed to generate optimal

policies for sequential decision tasks, I will address the following questions: (i) how are

policies represented? (ii) how are policies evaluated and selected for transformation?

(iii) how are policies transformed to produce better ones?
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3.2.2 Policy representation

In the context of GAs, a gene is a subsection of a chromosome which usually encodes

the value of a single parameter. Thus, the simplest way to represent a policy in a GA

is to use a single chromosome per policy with a single gene associated with each state.

Each chromosome comprises a list of observed states and a preferred action for each

state (Figure 3.2a). This is the same type of policy as would be derived using tabular

RL algorithms such as Q-learning. However, for many applications the number of

observable states is too large, making this method of policy representation impractical

(just as with tabular RL).

Consequently, more compact representations of policies are often required. One

approach is to replace the state-action table with a sequence of weights for a neural

network (Figure 3.2b). The neural network architecture represented by these weights

acts as a function approximator. That is, the neural net approximates the policy in a

compact way, accepting the state representation as input and generating the optimal

action as output. Example applications of this approach include Whitley et al. (1993)

and Yamauchi and Beer (1993). Another approach is to represent a policy as a set of

condition-action rules (Figure 3.2c). Each condition expresses a predicate that matches

a set of states. In this way, a condition identifies a region of the state space rather than

a single state. Examples of this approach include Grefenstette et al. (1993) and Smith

et al. (2000).

Figure 3.2: Schemes for representing policies within a single chromosome: (a) state-

action table; (b) neural network weights; (c) condition-action rules. a

aIn practical applications, the number of weights and condition-action rules are very much less than

the number of states (i.e. n, p� m).
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A further refinement is to distribute the representation of a policy over several

chromosomes, or even over the entire population of chromosomes. In other words,

rather than representing an entire policy, each chromosome expresses only part of a

policy. This approach has two possible advantages. Firstly, it allows learning to work

on a more detailed level of the task. It seems likely that evolving a policy for a subtask

is easier than evolving a policy for the complete task. Consequently, a complete policy

can be represented as a set of ‘sub-policies’. Secondly, decomposition facilitates the

exploitation of domain knowledge. For example, a system developer might separate a

task into components that can be hard-coded while other components can be learned.

An example of a distributed neural network-based application is the SANE system

(Moriarty and Miikkulainen, 1998) whereas, the XCS algorithm – described in Section

3.4 – is an example of the distributed rule-based approach.

Finally, we must address the issue of how policies are actually encoded. Most GA

applications use fixed-length, fixed-order bit strings to encode solutions. For example,

in a very simple robot navigation problem, four actions could be encoded as two bits:

“step back” (00), “turn right” (01), “turn left” (10), “step forward” (11). A complete

policy for an environment containing only six states might be: 00 10 11 10 11 11 .

This chromosome indicates that the robot should step back in state 1, turn left in states

2 and 4 and step forward in all other states.

There are a number of reasons for the prevalence of binary encoding of chromosomes

in GAs. The original work on GAs by John Holland used this encoding; thus, much of

the existing GA theory was developed in the context of binary encodings. Furthermore,

heuristics concerning appropriate parameter settings have generally been developed

with binary encodings. However, for many applications, binary encoding may be

unsuitable. For example, neural network weights are normally best encoded by real

values (Montana and Davis, 1989). In applications with many actions, it might be more

appropriate to employ more compact, character-based encoding schemes (e.g. {B, L,

R, F} for the robot navigation example above). Selecting an appropriate encoding

scheme can often be crucial to the success of a GA-based algorithm and a wide range of

schemes have been devised over the years. Examples of alternative encoding schemes

and discussions of their effectiveness can be found in: Goldberg (1989, pp.80–82),

Mitchell (1996, pp.156–166) and Salomon (1996).
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3.2.3 Fitness function and selection

In order to produce successively better policies from one population to the next,

some method of evaluating the performance of individual polices is required. This

is achieved using a fitness function. The role of the fitness function is to define

the criterion for ranking potential solutions and for stochastically selecting them for

inclusion in the next generation of the population. The form of the fitness function

depends on the type of solution being represented. In a classification task, for example,

the fitness function typically scores the classification accuracy of each solution over a

set of training data.

When the solution is a policy, the fitness function should reflect the reward that would

be accumulated by an agent employing that policy in a specified environment. In

a deterministic environment, a policy’s fitness can be evaluated in a single episode

(i.e. the sequence of steps from the initial to the terminal state, see Section 2.4.1). In

a stochastic environment, the fitness is normally averaged over a number of episodes.

Calculating the fitness of policies can become computationally expensive. In fact,

fitness scoring can sometimes account for a high proportion of the total computational

effort. In tasks where there are many steps in a single episode, alternative fitness

measures can be employed, including: (i) the total reward achieved after a fixed number

of steps; and (ii) the number of steps required to attain a fixed level of reward.

When a fitness score has been assigned to each candidate policy, some method of

selection is required for deciding which chromosomes will be included in the next

generation of the population. A commonly used selection method is to probabilistically

select chromosomes based on relative fitness:

P(pi) =
Fitness(pi)

∑n
j=1 Fitness(p j)

(3.1)

where pi represents policy i and n is the total number of policies. This method is

sometimes referred to as fitness-proportionate selection, or roulette-wheel selection. In

another method, rank selection, the policies are first sorted by fitness. The probability

that a policy is selected for inclusion in the next generation is proportional to its rank

rather than its fitness. This method can prevent highly fit solutions from dominating

the population too quickly. A variety of other selection methods have been proposed,

including tournament selection, scaling selection and others (Goldberg and Deb, 1991).
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3.2.4 Genetic operators

Once the fittest chromosomes have been selected, they must be transformed with a

view to producing even fitter chromosomes in the next generation. There are two basic

methods for achieving this. The first is the crossover operator, which produces two new

offspring from two parent chromosomes by copying selected genes from each parent.

The simplest form of crossover is single-point crossover, where a crossover point is

chosen at random and the parts of each parent after this point are exchanged to form

the offspring (Figure 3.3a). Other forms of crossover include multi-point (De Jong and

Spears, 1992) and uniform (Syswerda, 1989).

The second method of transformation is the mutation operator (Figure 3.3b). This

operator produces small random changes to a chromosome by modifying the value of

each gene with a small probability. Consequently, for a particular chromosome, none,

one, or more genes may mutate in a single operation. Mutation is often performed after

crossover has been applied.

Figure 3.3: Simple genetic operators: (a) single-point crossover; (b) mutation.

The idea behind crossover is that fit solutions consist of building blocks (schemas)

that can be recombined to produce even fitter solutions (Mitchell, 1996, p.27).

In other words, crossover seeks to exploit promising regions of the search space.
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Mutation, on the other hand, serves to preserve population diversity and thus

facilitate occasional exploration of new regions in the search space. Empirical results

over the years have suggested that a GA should use a high probability of crossover

(e.g. 0.9) and low probability of mutation (e.g. 0.01). Typically, the mutation

probability is selected so that, on average, one gene per chromosome is mutated.

Since these operators are implemented in a probabilistic fashion, occasionally a

chromosome will simply be cloned from one generation to the next (i.e. neither

crossover nor mutation occurred). More detailed descriptions of crossover, mutation

and other genetic operators, together with a discussion of empirical results can be

found in Goldberg (1989, Chapter 5) and Mitchell (1996, Chapter 5).

3.2.5 Strengths and limitations

It has been argued that EA-based policy search techniques enjoy several advantages

over tabular value function methods (Moriarty et al., 1999; Schmidhuber, 2000).

Firstly, most policy search methods specify the policy at a higher level of abstraction

than an explicit state-action mapping. Policy-based methods generally facilitate some

form of state aggregation, where states that require the same action are grouped

together (e.g. as a condition-action rule). Moreover, value function methods include

many state-action pairs where the expected reward is very low. In other words, a record

of all possible decisions is kept, including many bad ones. The purpose of policy

search methods is to represent only the good decisions. Actions that are sub-optimal

for certain states will have a low fitness score and so will eventually be eliminated

from the population. Both of these points mean that policy search methods facilitate

more compact state-action representations. Consequently, problems requiring very

large state-action spaces can be handled.

On the other hand, the aggregation of states and tendency to eliminate actions with

low reward can be a disadvantage with respect to rarely occurring states. In single-

chromosome policy representations, genes representing rarely occurring states will

have little impact on the fitness of the policy as a whole. As a result, random

mutations will tend to accumulate in these genes. In distributed policy representations,

chromosomes representing rare conditions (state sets) are unlikely to be selected for

recombination and will eventually be deleted from the population. Therefore, EA-

based methods of policy search often perform poorly with respect to rarely occurring
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states. In tabular value function methods, the value of every state-action pair is kept,

and so information about rarely occurring states is not lost. Naturally, the value

estimates for actions in these states will tend to be much less accurate than those of

frequently occurring states.

In sequential decision tasks, value function methods perform optimally when the state

of the environment is fully observable by the learning agent’s sensors. That is, the

state representation of the environment is Markov. However, in many realistic tasks,

the Markov Property does not hold; the true state of the environment is often only

partially observable. For example, in a robot navigation task, limitations in the robot’s

sensors may mean that different real world states (e.g. locations in a building) may

sometimes be indistinguishable by the robot (Crook and Hayes, 2003a). States that

are different in the real world but perceived to be the same are known as perceptually

aliased1. A similar problem occurs in spoken dialogue systems. The limitations of the

speech recogniser can create situations where a user’s intentions are misunderstood by

the dialogue manager.

Policy search methods, however, make no assumptions about the observability of the

environment. Reward is associated with entire policies (or sub-policies) rather than

individual states. Put another way, value-based methods reflect the structure of the

problem whereas policy-based methods reflect the structure of the solution (Rosenstein

and Barto, 2001). By taking a broader view of how to assign reward, policy-based

methods are less vulnerable to the effect of partial observability.

Finally, it is important to remember that the arguments presented in this section relate

to the differences between EA-based policy search and value function search where

the value function is tabular (i.e. all state-action mappings are represented). In cases

where the value function is represented in a generalised form (e.g. using a neural

network as a function approximator), the same strengths and limitations of policy

search methods may apply. Thus far, there appears to have been no direct comparison

of value space and policy space techniques methods where generalisation is employed

in both methods. A more detailed discussion of the strengths and limitations of EAs

for policy search (including illustrative examples) is given in Moriarty et al. (1999).

1There are situations when augmenting an agent’s sensors will still not prevent the problem of
perceptual aliasing. For example, two different corridors in a building may be appear identical, even
to humans. One way to make the environment fully observable is to give the learning agent some
facility to remember where it came from (e.g. Lanzi and Wilson, 2000).
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3.3 Learning Classifier Systems

A well known example of a rule-based EA that can be applied to sequential decision

tasks is the Learning Classifier System (LCS) model. This model was introduced

by John Holland in the 1970s as a framework for learning rule-based knowledge

representations (Holland, 1976). In this model, a rule base consists of a set of

N condition-action rules known as classifiers. The condition part of a classifier is

represented by a ternary string from the set {0,1,#} while the action part is composed

from {0,1}. The # symbol acts as a wildcard allowing a condition to represent a set of

states. For example, the condition string 1#1 matches the states 111 and 101.

Classifier systems search for optimal rule sets by combining two machine learning

techniques. A genetic algorithm is used to evaluate and modify the population of rules

while reinforcement learning is used to assign rewards to existing rules. The search for

better rules is guided by the strength parameter associated with each classifier. This

parameter serves as a fitness score for the genetic algorithm and as a predictor of future

reward for the RL component. This evolutionary learning process searches the space

of possible rule sets to find an optimal one.

Both the single-chromosome and distributed forms of policy representation are

available within the LCS paradigm. In Pittsburgh-style systems (Smith, 1983), a set of

classifiers, consituting a complete policy, is represented within a single chromosome.

In a Michigan-style system (Holland and Reitman, 1978), the policy is distributed

over the entire population, with each chromosome representing only a single rule

(i.e. a classifier). The names of these approaches refer to the univeristies where

they were first developed. Pittsburgh-style systems are generally able to solve more

complex problems but are very computationally intensive and slow to find solutions

(Wilcox, 1995). As a result, Michigan-style systems are more commonly used. Some

hybrid Pittsburgh-Michigan models have been developed in an attempt to retain the

advantages of both approaches (Ishibuchi and Nakashima, 2000).

Finally, it should be noted that LCS are also well suited to supervised learning tasks.

For instance, in data mining problems, the optimal rule set can represent classification

rules, rather than a policy. In fact, many of the practical applications of LCS have

occurred in this field (Lanzi et al., 2000; Bull, 2004; Bull and Lanzi, 2007). In this

thesis, however, I am concerned only with the solving of sequential decision problems.
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3.4 XCS

XCS (eXtended Classifier System) is a Michigan-style (i.e. distributed) classifier

system that incorporates a number of modifications to Holland’s original LCS

framework. Firstly, the GA is not applied to the entire population for the creation

of the next generation. Instead, only the rules which match the current input and

take the selected action, are modified by the GA. Secondly, and more importantly,

the strength parameter associated with each rule (classifier) is no longer used as an

indicator of a rule’s fitness. Instead, a classifier’s fitness is based on the accuracy

of the predicted reward rather than the reward itself. These two modifications result

in a strong tendency by XCS to evolve accurate, maximally general classifiers that

efficiently cover the state-action space of the problem (Wilson, 1995). An explanation

of how this is achieved is presented in the subsequent sections.

The primary motivation for these modifications was the desire to build complete but

compact maps of the state-action space. In common with many EA-based policy search

methods, traditional LCS tended to delete conditions that rarely occurred. Recall that

an advantage of value function methods was that they maintain a complete map of

the state-action space. The tendency of XCS to evolve accurate, complete state-action

maps make it more akin to Q-learning than policy search. At the same time, XCS

retains the advantage of a generalised state representation – the ability to represent

large state spaces. In fact, it has been shown that XCS is a proper generalisation of

tabular Q-learning (section 3.4.4). The XCS algorithm has proven suitable for a wide

range of supervised learning and reinforcement learning tasks, where generalisation

over states is desirable (Wilson, 2001; Lanzi et al., 2005).

The sections that follow (3.4.1 to 3.4.4) provide a brief overview of XCS, with

reference to sequential decision tasks. Since the algorithm was first proposed in 1995,

it has become the best known and well researched form of LCS. Consequently, there

is now a substantial, and growing, body of literature on the algorithm. Several of

the most readable accounts of XCS are by the algorithm’s creator, Stewart Wilson,

including: Wilson (1995) and Wilson (1998). An excellent pseudocode description

of the algorithm and suggestions for parameter settings are given in Butz and Wilson

(2002). Finally, a comprehensive study of the algorithm, covering many aspects, but

particularly the theory that underpins the accuracy-based fitness, is Kovacs (2002).
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3.4.1 Classifiers

Before describing how the XCS algorithm can be used to learn policies, it is important

to describe the basic unit of XCS, and LCS in general – the classifier. In a traditional

Michigan-style LCS, a policy is represented by a set of classifiers with each classifier

comprising a {condition, action, strength} tuple. The strength parameter defines

the expected reward associated with selecting the specified action in the specified

condition. For example, the three rules (classifiers) shown below represent a policy for

an agent to choose between two actions (1 and 2) in eight possible states (represented

as binary strings).

condition action strength

a 010 1 200

b 111 2 300

c ### 1 50

Since rule c consists entirely of wildcards (also known as “don’t-care” symbols), it is

the most general rule possible. Hence, there is an overlap between it and the other two

rules. For rule a, this is not a problem, because both rules a and c advocate the selection

of action 1. But what happens if the agent enters state “111”? Because classifier b has

a higher strength, action 2 will be selected. In each of the remaining six possible states,

only the condition of classifier c will match, in which case action 1 will be selected.

Recall that the strength parameter has a dual purpose in LCS. It defines both the

expected reward for action selection and the fitness measure for the genetic algorithm.

In XCS, strength is replaced by three parameters: prediction, prediction error and

fitness.

condition action prediction pred. error fitness

a 010 1 200 0.1 725

b 111 2 300 0.0 999

c ### 1 50 0.8 34

Prediction assumes the role of the strength parameter for action selection. The

prediction error and fitness parameters are inversely related and indicate the accuracy

of the prediction. Calculating the accuracy of each classifier’s prediction is the single

most important feature of the XCS algorithm. A description of how these parameters

are calculated is presented shortly (section 3.4.2.2).
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XCS also introduces the notion of macroclassifiers, which is simply a classifier

with an additional numerosity parameter. Whenever XCS generates a new classifier,

the population is scanned to see if the new classifier has the same condition and

action as any existing macroclassifier. If this is the case, the classifier is not added

to the population. Instead, the existing macroclassifier’s numerosity parameter is

incremented by one. The existing macroclassifier’s prediction, prediction error and

fitness parameters are left unchanged. If instead, there is no existing classifier with the

same condition and action, the newly generated classifier is added to the population

and its numerosity parameter is given the value 1. For example, if we wish to insert

into the existing population presented above, a new classifier for the condition-action

pair 〈010, 1〉, we simply increase the numerosity of the existing macroclassifier a that

has the same condition and action, thus:

condition action prediction pred. error fitness numerosity

a 010 1 200 0.1 725 2

b 111 2 300 0.0 999 1

c ### 1 50 0.8 34 1

Similarly, if a classifier is to be deleted from the population, its macroclassifier’s

numerosity value is decremented by one, unless its value is already 1, in which case the

macroclassifier is completely removed from the population. Within the XCS literature,

a macroclassifier is said to represent multiple copies of the same microclassifier. The

implementation of macroclassifiers is essentially a programming technique to speed

up the searching of classifiers and to reduce the size of the classifier population.

3.4.2 The XCS algorithm

I now present an overview of how the XCS algorithm works in the context of a

sequential decision task (Figure 3.4). Before the algorithm begins its interaction with

the environment, its population of classifiers [P] is initialised. Some example classifiers

are shown in the figure; each classifier comprises a condition-action rule and the three

parameters: prediction p, prediction error ε and fitness F . The population has a fixed

maximum size N and may be initialised as: (i) an empty population (rules are added

as required); (ii) N random rules; or (iii) N maximally general rules (i.e. all #’s). The

basic steps in each cycle of the algorithm’s execution are:
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Figure 3.4: Schematic illustration of XCS (reproduced from Wilson (1998) by kind

permission of Stewart Wilson).

1. the current state of the environment is received as input (from the “Detectors”);

2. classifiers that match the current state form the Match Set; if an insufficient

number of classifiers match the current state, then a new classifier is generated

(using covering);

3. the Match Set is translated into the Prediction Array which reflects the average

fitness-weighted prediction of each action in [M];

4. one action is chosen from the Prediction Array for execution;

5. all classifiers in the Match Set that propose this action form the Action Set [A];

6. the winning action is executed (by the “Effectors”);

7. a reward r for the action just executed is received from the environment;

8. the Previous Action Set [A]−1 is modified by the payoff P which is the sum of

the previous cycle’s reward and the discounted maximum prediction in [PA];

9. the GA is periodically applied to [A]−1; two classifiers with high fitness are

combined to produce offspring that replace two classifiers with low fitness.
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This execution cycle continues until some termination criterion is met. The end result

of this process is a classifier population that accurately predicts the expected reward

for selecting actions in different regions of the state space. The algorithm will now be

described in more detail in terms of its three main components:

• Performance: selecting actions based on the state of the environment;

• Reinforcement: rewarding classifiers that generate good performance;

• Rule Discovery: searching for classifiers that improve performance further.

3.4.2.1 Performance

The purpose of the Performance component is to select and execute actions. At each

discrete time step, the current state of the environment is received as input. All

classifiers within the current population that match the current state are known as the

Match Set [M]. For example, in Figure 3.4 the state 0011 is matched by the classifier

conditions: #011, #0##, 001#, #0#1. Since, the members of [M] may propose different

actions, we need some method to determine which of the alternative actions is to be

executed. To do this, each unique action in [M] and its associated system prediction

is stored in a Prediction Array [PA]. For each action ai in [PA], the system prediction

P(ai) is calculated as a fitness-weighted average of the predictions of classifiers in [M]

that advocate ai.

Using this array, XCS can select the action to be executed in a number of ways:

(i) deterministically select the action with the highest fitness; (ii) probabilistically

select an action according to its relative fitness; or (iii) randomly select any one of

the available actions. All classifiers in [M] that advocate the selected action now form

the Action Set [A]. Finally, the selected action is sent to the environment and a reward

r is returned to the system.

By selecting actions with a high fitness, the algorithm is seeking to gain the maximum

reward. In a random selection, or selection of an action with low fitness, the algorithm

executes a sub-optimal rule in order to explore new regions of the solution space. In

XCS, the balance between exploitation and exploration is controlled by the parameter

Pexplr, which defines the probability of using random action selection in a given cycle.
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3.4.2.2 Reinforcement

The purpose of the Reinforcement component is to reward classifiers that generate

good performance. In sequential decision tasks, this is achieved by updating the p, ε
and F parameters of each classifier in [A]−1, the action set that was active in the last

execution cycle.2 The order in which the three parameters are updated can be varied.

In this section, I will present the commonly adopted order: p, ε, F (Butz and Wilson,

2002). The update procedure begins with a calculation of the payoff P. This is the

sum of the previous time step’s reward rt−1 and the discounted value of the highest

prediction in [PA] in the current time step:

P = rt−1 + γ max
i

P(ai) (3.2)

where γ (0 < γ≤ 1) is the discount factor. The prediction p of each classifier in [A]−1

is updated by:

p← p+β(P− p) (3.3)

where β (0 < β≤ 1) is the learning rate. In RL systems, the learning rate (denoted α
in the RL literature) is normally decayed over time. In XCS, however, the learning rate

is normally constant. Next, the prediction error ε of each classifier is updated:

ε← ε+β(|P− p|− ε) (3.4)

Next, the fitness F of each classier is updated. To do this, we first compute the accuracy

κ and relative accuracy κ′ of each classifier in [A]−1:

κ =







1 if ε < ε0

α ( ε
ε0

)−ν otherwise
(3.5)

κ′ =
κ

∑
x∈[A]−1

κx
(3.6)

where ε0 (ε0 > 0) is the accuracy criterion. If the predicted error ε is below the

threshold ε0, the classifier is said to be accurate (i.e. κ = 1). Otherwise, the accuracy

drops off quickly, depending on the values of α and ν.

2If this is the first step in a sequential task, the classifiers in the action set [A] are updated instead.
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Finally, the fitness F of each classifier is updated towards its relative accuracy:

F ← F +β(κ′−F) (3.7)

The net effect of these updates is to improve the accuracy of each classifier’s prediction

of reward. More specifically, each classifier’s fitness F is an estimate of the classifier’s

accuracy, relative to other classifiers that typically occur in its action sets. This measure

of accuracy facilitates a selective pressure on the genetic algorithm to evolve accurate,

maximally general classifiers (Butz et al., 2001).

3.4.2.3 Rule Discovery

The purpose of the Rule Discovery component is to search for classifiers that improve

performance further. It achieves this by introducing new classifiers into the population

and removing old ones. Classifiers may be created on three different occasions:

(i) by population initialisation; (ii) by covering; and (iii) by the genetic algorithm

(GA). Covering occurs when the number of classifiers that match the current state

is less than θmna. Typically, this parameter is set to the number of possible actions.

When a classifier is created by covering, its condition is set to the current state of the

environment and its action value is chosen randomly. Each bit in the condition is then

mutated into a # with probability P#. Thus, a more general rule, that still matches the

current state, is created.

Covering normally only occurs at the start of a learning episode. The vast majority of

rule discovery takes place within the GA. The GA is applied to the Previous Action

Set [A]−1 if the average time since the last GA application to the classifiers in [A]−1

exceeds a threshold θGA. The GA is applied as follows: (i) two classifiers are chosen

with probability in proportion to their fitness; (ii) crossover is applied to the two

classifiers with probability χ to create two offspring; (iii) mutation is applied to each bit

in the offspring with probability µ; (iv) the two offspring are inserted into the classifier

population [P]. The effect of this procedure is that accurate classifiers tend to reproduce

and eventually dominate the population of rules.

If the population size N is exceeded when new classifiers are introduced into the

population, some classifiers must be deleted. The process for accomplishing this, and

other aspects of the Rule Discovery mechanism, are described in Kovacs (2002).
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3.4.3 Parameterisation

The performance of XCS is controlled by the parameter settings listed in Table

3.1. Many of these parameters were introduced in the previous sections. In many

applications of XCS, the value of many parameters are varied infrequently. In fact,

Lanzi (2006) reported that “practically speaking, many of the parameters could be

regarded as system constants”. More details on these parameters, and a brief discussion

of commonly used parameter settings is provided in Butz and Wilson (2002).

N maximum size of the population (in microclassifiers)

β learning rate

γ discount factor (for updating classifier predictions)

α accuracy falloff rate (for classifier fitness calculation)

ε0 accuracy criterion (for classifier fitness calculation)

ν accuracy exponent (for classifier fitness calculation)

θGA GA threshold (for deciding when to apply the GA)

χ probability of applying crossover in the GA

µ probability of applying mutation on a gene in the offspring

θdel deletion threshold

δ for deciding when a classifier may be considered for deletion

θsub subsumption threshold

P# probability of using a # in a classifier gene when covering

PI initial value for the prediction parameter in a newly created classifier

εI initial value for the prediction error parameter in a newly created classifier

FI initial value for the fitness parameter in a newly created classifier

Pexplr probability of random action selection

θmna minimal number of actions that must be present in a match set [M]

to avoid covering

Table 3.1: XCS parameters.



Chapter 3. An evolutionary approach to learning spoken dialogue strategies 52

3.4.4 Relationship with Q-learning

In the description of XCS’s Reinforcement component (section 3.4.2.2), the calculation

of the payoff P and prediction p were given as:

P = rt−1 + γ max
i

P(ai) (3.2)

p← p+β(P− p) (3.3)

Substituting P in (3.3), the update of p becomes:

p← p+β[rt−1 + γ max
i

P(ai)− p] (3.8)

which mirrors the update rule in Q-learning (section 2.4.3):

Q(s,a)← Q(s,a)+α[r + γ max
a′

Q(s′,a′)−Q(s,a)]

Thus, the update in XCS is directly related to that of Q-learning. In fact, XCS reduces

to Q-learning when its generalisation mechanism is disabled. This is achieved by

disabling the use of the wildcard symbol (#) and switching off the GA.3 The effect

of this is to produce a final classifier population that corresponds exactly to the Q-table

entries for states that actually occurred during learning.

However, in this version of XCS, a classifier can represent only a single state-

action pair (as in Q-learning). Therefore, the size of the XCS classifier population

N must be large enough to represent every state that is observed during learning.

For many sequential tasks this is not practical. Some form of generalisation over

state is required. And this is where the main advantage of XCS lies. The wildcard

symbol facilitates the representation of generalisations, while the GA facilitates the

detection of generalisations. In the terminology of evolutionary algorithms, the

generalisation mechanism of XCS facilitates the representation and detection of

categorical regularities in the payoff landscape. In other words, regions of the state-

action space that have the same expected reward are grouped together.

3In an XCS implementation this can be done by: (i) setting P# = 0 so that covering generates fully
specific rules; (ii) setting θGA to a very large number so that the GA is never invoked.
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Figure 3.5: Conceptual origins of the evolutionary and reinforcement elements of the

XCS algorithm.

To put the XCS algorithm in context, it is useful to consider the conceptual origins

of the two elements of XCS (Figure 3.5). The evolutionary element is a modification

of the one used in earlier Learning Classifier Systems (LCSs). The most important

difference between XCS and LCS is that the fitness of rules is evaluated according to

the accuracy of predicted rewards rather than by their magnitude. The transformation

of rules is achieved using a Genetic Algorithm (GA), which, as I have indicated already

(section 3.2), is a type of Evolutionary Algorithm (EA). The reinforcement element is

directly related to the update rule used in Q-learning. This algorithm is a well known

form of Temporal Difference (TD) learning, which, in turn, is one of several possible

reinforcement learning (RL) algorithms.

In summary, XCS combines a genetic algorithm and a Q-learning like update rule to

generate a population of condition-action rules that efficiently cover the state-action

space. Indeed, XCS has been shown to be a proper generalisation of Q-learning

(Wilson, 2000; Kovacs, 2002). With respect to sequential decision tasks, XCS is

often described as an evolutionary reinforcement learning algorithm (Lanzi, 2002).

Furthemore, XCS can produce much more compact mappings of the state-action space

than is possible with tabular Q-learning. This allows much larger state-action spaces

to be represented, which, in turn, allows more realistic sequential tasks to be solved.

In the context of spoken dialogue systems, this implies that XCS might be applied to

the learning of dialogue strategies in systems that require large state representations.
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3.5 Learning dialogue strategies with XCS

The representation of individual state-action pairs in tabular RL algorithms creates a

serious problem for developers of learned spoken dialogue strategies. The large state-

action spaces that are likely to be required for realistic tasks cannot be represented

in tabular form. However, the generalisation mechanism of the XCS algorithm

does facilitate the representation of large state-action spaces. This suggests that an

evolutionary approach to learning spoken dialogue strategies is worthy of investigation.

Therefore, I will develop an XCS-based framework for learning spoken dialogue

strategies. This can be achieved using the same formalism employed by RL-based

studies, namely, Markov Decision Processes (MDPs). Recall that a finite MDP is

defined by: (i) a state set; (ii) an action set; (iii) a transition function; and (iv) a reward

function. In an XCS implementation, state representations are encoded as binary

strings. This is straightforward when representing boolean state variables. Other

techniques are available for encoding integer and real values (e.g. Wilson, 2001).

The action set in XCS can be represented as an ordered list. Reward functions can

be encoded as lines of code within the XCS implementation. The framework will be

implemented using Java JDK 1.5 (Sun, 2007).

In common with most approaches to learning dialogue strategies, the transition

function will be modelled using a range of simulated users (sections 2.4.6 and

2.4.7.3). I intend to develop stochastic, goal-directed, hand-coded rule-based simulated

users (Lin and Lee, 2001; Chung, 2004; Pietquin and Dutoit, 2006). A user model

will consist of a set of probabilistic state-action rules. User behaviour will be

conditioned on the current dialogue state (which will include a record of the last

system utterance) and the user goal (e.g. fulfill a database query). I believe that this

approach to implementing simulated users is sufficient to enable the XCS-based learner

to experience enough user behaviours to generate robust human-computer interaction.

Naturally, this hypothesis can only be properly tested through evaluations with human

users.
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3.6 Summary

Evolutionary Algorithms (EAs) are a group of stochastic search techniques inspired

by Darwin’s theory of evolution by natural selection. EAs operate on a population of

potential solutions, often encoded in structures called chromosomes. This population

of chromosomes is iteratively modified using operators borrowed from genetics. The

idea is that successive generations of the population contain chromosomes that are

better suited to their environment than the chromosomes from which they were created,

just as in natural selection. In other words, chromosomes which encode the best

solutions evolve over time and eventually dominate the population in a way that is

similar to the notion of ‘survival of the fittest’.

The XCS (eXtended Classifier System) algorithm makes extensive use of this idea of a

population-based search for solutions. XCS combines an EA with a reinforcement

learning (RL) mechanism to generate condition-action rules (classifiers) that can

represent solutions for a variety of learning tasks. More specifically, XCS couples

a genetic algorithm (GA) with a Q-learning update rule. With respect to sequential

decision tasks, XCS is often described as an evolutionary reinforcement learning

algorithm.

The principal advantage of XCS over temporal difference algorithms, such as Q-

learning, is the ability to represent regions of the state-action spaces rather than single

points (i.e. individual state-action pairs). This means that much larger state-action

spaces can be represented, which in turn means that more realistic problems can be

tackled. In the context of spoken dialogue systems, this implies that XCS might

be applied to the learning of dialogue strategies in systems that require large state

representations.



Chapter 4

Preliminary experiments

4.1 Overview

In this chapter, I explore how an implementation of the XCS algorithm can be used to

develop simple dialogue strategies. I also investigate what effect varying the learning

framework has on the resulting strategies. More specifically, I investigate how the

state representation, reward function, simulated environment and learning parameters

affect both the way in which a strategy is learned (e.g. how quickly) and what strategy

is generated. If I can develop sensible dialogue strategies for this simple environment

and reach an understanding of the effect of the learning framework on dialogue strategy

learning, I can go on to develop strategies for much more realistic tasks, in particular

those requiring very large state-action spaces.

4.2 Experimental aims

These preliminary experiments have two main aims. Firstly, to assess whether an

implementation of the XCS algorithm can be applied to the development of dialogue

strategies. Classifier systems have so far been applied to a small number of sequential

tasks (e.g. Wilson, 1995; Smith et al., 2000). However, in these tasks the goal was

relatively easy to define precisely. This is simply not the case with learning dialogue

strategies; it is not clear what constitutes a ‘win’ in this domain. Therefore, it is

56
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important to investigate whether XCS can generate dialogue strategies that would be

considered sensible and useful by system developers.

Secondly, in the application of reinforcement learning to sequential decision tasks, the

learned policy is directly related to a number of elements: (i) the state representation;

(ii) the reward function; (iii) the environment; (iv) the learning parameters. The

literature on the learning of dialogue strategies contains few empirical results

describing the effect of these elements on the strategies that are learned (Frampton and

Lemon, 2005; Pietquin and Dutoit, 2006; Reiser and Lemon, 2006). It is expected that

this may also be the case with the application of XCS to learning dialogue strategies.

Therefore, it is important to investigate experimentally the effect of these elements on

the strategies generated by XCS.

4.3 Experimental methodology

In slot-filling dialogues, an effective strategy is one that interacts with the user

in a satisfactory way while trying to minimise the length of the dialogue. A

fundamental component of user satisfaction is the system’s prevention and repair of

any miscommunication between it and the user. These experiments were used to

investigate whether XCS could learn simple slot-filling strategies, including the use of

some essential miscommunication handling behaviours. I chose a simple hotel booking

task. The goal of this experimental system was to acquire the values for three slots:

the check-in date, the number of nights the user wishes to stay and the type of room

required (single, twin etc.).

Both the XCS algorithm and the simulated users were implemented using Java

JDK 1.5 (Sun, 2007). Unless specified otherwise, the XCS learning parameters

(section 3.4.3) in all experiments were: N = 1000, β = 0.2, α = 0.1, ε0 =

10, ν = 5, γ = 0.95, θGA = 50, χ = 0.8, µ = 0.04, θdel = 20, δ = 0.1, θsub =

20, P# = 0.33, pI = 12, εI = 0, FI = 0.01, pexplr = 0.5. The value of θmna in

each experiment was equal to the number of possible system actions. In each

experiment, a dialogue strategy was allowed to evolve over a fixed number of dialogues

(between 25,000 and 100,000) with a simulated user. Dialogues were limited to a

maximum of 50 system dialogue acts. The total payoff (reward) for each dialogue

was logged. Each experiment was repeated ten times (to produce an average result).
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A moving average of the total payoff was plotted for each experiment to enable visual

inspection of whether convergence towards an optimal strategy was achieved.

4.4 Experimental results

4.4.1 Experiment 1: A simple dialogue strategy

The goal of the first learned strategy is simply to greet the user, ask for the slot

information, present the query results and then finish the dialogue, in that order. In

all experiments, the presentation of the query results and closure of the dialogue

were combined into a single dialogue act. Therefore, the dialogue acts available

to the system for the first experiment were: Greeting, Query+Goodbye, Ask(Date),

Ask(Duration) and Ask(RoomType). Four boolean variables were used to represent the

state of the dialogue: GreetingFirst, DateFilled, DurationFilled, RoomFilled.

It was important to experiment with the effect of reward functions at this early stage

because a number of empirical results in the literature have noted that strategies

generated by RL are sensitive to variations in the reward functions (Paek, 2006). It is

important to assess whether this is the case with evolutionary reinforcement learning.

Consequently, I looked at four aspects of the reward function: (i) absolute magnitude;

(ii) relative magnitude; (iii) turn penalty; (iv) partial rewards.

4.4.1.1 Absolute Magnitude

In the first set of experiments, I examined the effect of varying the absolute magnitude

of the rewards. I created six versions of the reward function. Each function maintained

the same ratio between the reward for taking a system action and the reward for

completing the goal (1:100), but differed in absolute terms. At the end of each

dialogue, a penalty was assigned to each action performed and a larger reward was

given if the goal of filling the three slots was achieved (Table 4.1). For example,

the total possible payoff associated with the optimal strategy in Experiment 1a was:

−1×5+100 = 95, i.e. -1 for each of the five actions required to complete the dialogue

and 100 for filling the three slots.
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Exp. Per Action Goal Completion Max Payoff

1a -1 100 95

1b -10 1,000 950

1c -100 10,000 9,500

1d -1000 100,000 95,000

1e -10,000 1,000,000 950,000

1f -100,000 10,000,000 9,500,000

Table 4.1: Reward functions for Experiments 1a–1f.
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Figure 4.1: Strategy convergence: Experiments 1a–1f (absolute reward).

A plot of the average payoff for each experiment is given in Figure 4.1. It shows

that an optimal strategy is learned in Experiments 1c–1f within approximately 10,000

dialogues. However, in Experiments 1a and 1b, the maximum payoff of 95 and 950

respectively, were reached after 106 dialogues (on average). The plotted value of

Experiment 1a in Figure 4.1 is zero. Larger magnitude rewards appear to generate

optimal behaviour much more quickly. I could not find any explanation for these

observations either in the literature or through personal communication with members

of the XCS community. Nevertheless, to take advantage of this observation, I
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implemented a line in my code to multiply the value of all subsequent rewards by

1000. This allowed me to generate optimal strategies quickly using reward functions

expressed in units that are understood more clearly.

4.4.1.2 Turn penalty

Before proceeding further, it was useful to verify that a turn penalty is actually needed.

In many types of sequential decision tasks, such as maze learning (Wilson, 1995)

and game playing (Tesauro, 1992), a small negative reward is assigned to each time

step. This is used to encourage the learner to complete the task as quickly as possible.

Previous work on the use of RL for dialogue strategy learning report some kind of

reward measure like this (e.g. Frampton and Lemon, 2005; Cuayáhuitl et al., 2006a)

This is frequently referred to as a turn penalty. Experiments 1a–1f were all repeated,

this time without the turn penalty. That is, only the reward for goal completion

was assigned. In all cases, results indicated that the learner settled on a sub-optimal

strategy. That is, the learner completed the task but not in the shortest possible number

of turns.

4.4.1.3 Relative Magnitude

Previous work has investigated the relative size in magnitude between interim and

final rewards using Q-learning for generating dialogue strategies (English and Heeman,

2005). In this series of experiments, I examined whether varying the ratio between the

turn penalty and the reward for goal completion would have any effect on the learned

strategy. Four reward functions were devised (Table 4.2). The ratio of the turn penalty

to the goal completion reward was incrementally increased from 1:100 to 7.5:100. A

plot of average payoff for each experiment is given in Figure 4.2.

Exp. Per Action Goal Completion Max Payoff

1g 1.0 100 95.0

1h 2.5 100 87.5

1i 5.0 100 75.0

1j 7.5 100 62.5

Table 4.2: Reward functions for Experiments 1g–1j.
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Figure 4.2: Strategy convergence: Experiments 1g–1j (relative reward).

Results showed that no useful strategy was generated when the ratio of turn penalty

to goal completion was 7.5:100 (Experiment 1j). The plotted value of Experiment

1j in Figure 4.2 is zero. This experiment was allowed to run for 106 dialogues but

showed no change. The strategy generated with a reward ratio of 5.0:100 appeared

to oscillate between two sub-optimal strategies (Experiment 1i). Similar experiments

were performed with higher ratios; all failed to generate optimal strategies. Optimal

strategies were generated when the ratio was 1:100 (Experiment 1g) or 2.5:100

(Experiment 1h). These initial results suggest that a relatively high turn penalty ratio

may produce sub-optimal strategies.

4.4.1.4 Partial Rewards

In this set of experiments, I examined the effect of partial rewards. The aim was

to investigate whether dividing the goal completion reward into sub-rewards affected

the rate of convergence towards the optimal strategy. Previous work has shown that

applying partial rewards to tabular Q-learning can produce sub-optimal conversational

strategies (Frampton and Lemon, 2005, section 4.3). In Experiments 1k–1m, the

maximum possible payoff was the same. They differed only in the way the goal

completion reward was structured (Table 4.3).
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Exp. Per Action Goal Completion Max Payoff

1k -1 100 for greeting first and filling all 3 slots 95

1l -1 50 for greeting first; 50 for filling all 3 slots 95

1m -1 25 for greeting first; 25 for each filled slot 95

Table 4.3: Reward functions for Experiments 1k–1m.

In Experiment 1k, a reward of 100 was given if the first system act was a greeting and

all three slots were filled. In Experiment 1l, the rewards for greeting first and slot-

filling were sub-divided (50 points each). In Experiment 1m, the reward structure was

further subdivided: 25 points were awarded equally for greeting first and filling a single

slot. The plots for the strategies generated in these experiments are given in Figure

4.3. All three strategies were optimal. The experiment rewarding only the complete

accomplishment of the goal (Experiment 1k) converges after approximately 10,000

learning dialogues. In Experiment 1l, where the greeting and slot-filling tasks were

separated, an optimal strategy took much longer to learn, after approximately 40,000

dialogues. On the other hand, the completely decomposed reward model (Experiment

1m) converges towards the optimal strategy most rapidly, after approximately 6,000

dialogues.
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Figure 4.3: Strategy convergence: Experiments 1k–1m (partial reward).
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These results differ slightly to those reported in Frampton and Lemon (2005), where

partial rewards were investigated within a RL framework. In this study, the best reward

function was the one where only the complete goal accomplishment was rewarded

(“all-or-nothing reward”). However, since the experimental framework in that study

differed from the one used in the current study, it is not possible to draw any firm

conclusions as to whether partial rewards are better. Further research is required.

4.4.2 Experiment 2: Handling miscommunication

In this set of experiments, the functionality of learned strategies was extended through

the addition of extra state variables and dialogue acts. More specifically, these

experiments focus on learning essential behaviours for handling miscommunication

arising from speech recognition errors. Experiments 2a and 2b added a new dialogue

act: Ask(All). The goal here was to ask for all three slot values if the probability

of getting the slot values was reasonably high. If the probability was low, the system

should ask for the slots one at a time as before. This simple characterisation of ‘channel

noise’ was modelled in the simulated users by two variables: Prob1SlotCorrect

and Prob3SlotsCorrect. The values for these variables in Experiments 2a and 2b

respectively were: 0.9 and 0.729 (=0.93); 0.5 and 0.125 (=0.53).

Figure 4.4 shows the strategy convergence plots for the 25,000 training dialogues

in Experiments 2a and 2b. It shows that the algorithm learned to ask for all three

slots when the probability of success is high (Prob3SlotsCorrect = 0.729) and to

ask the simulated user for individual slots when the recognition accuracy is low

(Prob3SlotsCorrect = 0.125). The average payoff for Experiment 2b was less than

2a since it required more turns on average to successfully acquire the slot values.

Experiments 2c and 2d added three new dialogue acts: Explicit Confirm(Date),

Explicit Confirm(Duration), Explicit Confirm(RoomType) and three new state

variables: DateConfirmed, DurationConfirmed, RoomConfirmed. The goal here was

for the system to learn to confirm each of the slot values after the user has given

them. Experiment 2d sought to reduce the dialogue length further by allowing

the system to confirm one slot value while asking for another. Two new dialogue

acts were available in this experiment: Implicit Confirm(Date)+Ask(Duration) and

Implicit Confirm(Duration)+Ask(RoomType).
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Figure 4.4: Strategy convergence: Experiments 2a–2b (channel noise).
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Figure 4.5: Strategy convergence: Experiments 2c–2d (confirmations).
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Figure 4.5 shows the strategy convergence plots for the 100,000 training dialogues

in Experiments 2c and 2d. It shows that Experiment 2c approached the optimal

strategy (i.e. fill and confirm all slots in the shortest time) after approximately 20,000

dialogues whereas Experiment 2d converged after approximately 5000 dialogues. This

is encouraging because it suggests that XCS remains focused on finding the shortest

successful dialogue even when the number of available actions increases. In other

words, it has learned to make appropriate use of the implicit confirmations.

4.4.3 Experiment 3: User modelling

Previous work has shown that the quality of a learned strategy can be dramatically

affected by the quality of the simulated user with which it interacts during learning

(Ai and Litman, 2006; Schatzmann et al., 2006). Therefore, it was important at this

early stage in the use of XCS for dialogue strategy learning to investigate the effect of

different simulated users on the quality of learned strategies. To do this, three different

types of simulated user were defined. User A was designed to act as a less cooperative

user. It did not respond to the system’s requests for slot values or confirmation prompts

20% of the time. User B was the same as the one used in Experiment 2c. That is, it

was a cooperative user, responding to the system’s prompts in a cooperative manner

(but was not over-informative). System C was modelled as a highly cooperative or

expert user; 50% of the time this user was over-informative, giving more slot values

than were asked.

The strategy convergence plots for Experiments 3a–3c are given in Figure 4.6. It is

interesting to note that the less cooperative user (Experiment 3a) took significantly

longer to converge on the same optimal strategy. Similarly, learning with the highly

cooperative/expert user (Experiment 3c) converged most rapidly but not significantly

more than User B (Experiment 3b). The performance of the three learned strategies

were compared using a three-fold cross validation procedure. That is, the strategy

learned using each simulated user was then tested against 10,000 simulated test

dialogues with all three simulated users (Table 4.4). The results showed that the

learned strategies all performed optimally with each of the three users. Of course,

the strategies that were learned were still relatively simple. Nevertheless, the results

so far suggest that the dialogue strategy learning method is robust with respect to a

variety of simulated behaviours.
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Figure 4.6: Strategy convergence: Experiments 3a–3c (user modelling).

Sim. user (training) Sim. user (testing) Average Payoff

A A 94.06

A B 95.23

A C 96.79

B A 94.24

B B 94.89

B C 96.45

C A 94.14

C B 95.28

C C 96.96

Table 4.4: Cross validation results for simulated users in Experiments 3a–3c.
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4.4.4 Experiment 4: Incorporating domain knowledge

Several studies on generating dialogue strategies have used RL to enhance existing

strategies. In these studies, RL has been used to explore parts of the policy (strategy)

space that have not been explored by supervised learning (Henderson et al., 2005) or

by the initial hand-coded strategy (Litman et al., 2000; Walker, 2000). There is a good

practical argument for doing this - why waste time learning part of a strategy that you

(as a developer) already know should happen? For example, it is obvious that the

system should greet the user at the very beginning of the dialogue and not at any other

time.

4.4.4.1 State representation

In all the previous experiments, a boolean variable GreetingFirst was used to indicate

whether the first system dialogue act was a greeting. Since it is obvious that a dialogue

should always begin with a greeting, it seems sensible to assume that this situation has

occurred and then learn a strategy from this point onwards. Since the learned strategy

is ‘smaller’ as a result, it seems intuitive that it will take less time to learn the reduced

strategy. In fact, the removal of a boolean state variable halves the size of the state

space.

Experiment 4a is the same as Experiment 2c. Experiment 4b is the same as 4a, but

with the GreetingFirst variable removed from the state space and the dialogue act

GreetingFirst removed from the list of possible system acts. The plot of strategy

convergence (Figure 4.7) demonstrates that the reduced strategy was indeed learned

much more quickly. It has a slightly higher average payoff since it takes one turn less

to complete (i.e. there was no greeting).

In a practical implementation, a complete strategy would have to combine the hard-

coded rules (e.g. for greeting) and the learned rules. It is straightforward to imagine a

procedure for doing this. In the execution of the hybrid strategy the dialogue manager

could compare the current dialogue state with the list of conditions in the hard-coded

rule set. If any conditions matched, the appropriate rule(s) would be executed. If there

are no matches, the dialogue manager could then search the conditions covered by the

learned strategy.



Chapter 4. Preliminary experiments 68

0 20,000 40,000 60,000 80,000 100,000
0

10

20

30

40

50

60

70

80

90

100

Dialogues

A
ve

ra
ge

 P
ay

of
f

Exp. 4a

Exp. 4b

Figure 4.7: Strategy convergence: Experiments 4a–4b (hard-coded greeting).

4.4.4.2 Slot Ordering

In a hotel booking task, there is probably no standard order in which slot values are

requested. It is entirely possible that a hotelier could ask for any piece of information

first (e.g. check-in date, duration, room type). In other domains, however, it is more

natural to ask the user for some pieces of information first. For example, in a travel

information or booking system, it would seem very unnatural to ask a user for a

preferred return date before asking for the date of the outward journey. Of course,

the user should be able to take the initiative and answer the questions in any order s/he

wishes. Nevertheless, in order to maximise user satisfaction, it makes sense to encode

domain knowledge of this nature.

Inspection of the logs of the learned strategies showed that the three slots were

requested in random order. This is not surprising since there was nothing in the

learning framework (state representation, reward function etc.) that would encourage

the learner to ask for slot information in a certain order. Therefore, in applications

where slot ordering is important, the learner needs some indication that this is part of

the overall goal. Otherwise, realising such a goal would simply be wishful thinking on

the part of the developer.
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Figure 4.8: Strategy convergence: Experiments 4c–4d (slot ordering).

The requirement to ask for slot values in a specific order can be encoded in a number

of ways. For example, the ordering could be incorporated into an initial hand-coded

strategy that is later optimised by learning. Similarly, the slot ordering could be

included in an initial strategy created using a corpus and supervised learning methods

(cf. Henderson et al., 2005). Another approach is to simply have a dialogue act that

asks for the next unfilled slot in an ordered list (Cuayáhuitl et al., 2006b).

Alternatively, we can encode this domain knowledge in the reward function. That is,

the developer can insert a rule into the reward function that generates a large penalty

if something undesirable occurs. Within the current framework, an example could be

represented informally as: “if slot z is asked for before slot x or y then the current

reward = -100,000”. This approach makes it easy for a developer to hand-code events

that should always (or never) happen. It is important that a developer retains control

over the behaviour of a learned strategy.

Experiments 4c–4d illustrate this idea. Experiment 4c is the same as 2c. Experiment 4d

sets up the order of slots to be filled as Date, Duration and RoomType. To implement

this slot ordering, the reward function assigned an immediate negative reward if a slot

was filled or confirmed before an ‘earlier’ one. For example, the act of asking the user

for the Duration slot value before the Date was filled or confirmed was assigned a

reward of -100,000. In the plot of the strategy convergence (Figure 4.8) it can be seen

that implementing this ordering effect did take longer to learn.
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4.4.5 Other experiments

A number of additional experiments were conducted in order to examine other

approaches to improving the performance of the strategy learner. These approaches

included: (i) varying XCS learning parameters; (ii) investigating the effect of positional

semantics; and (iii) implementing an automatic termination criteria. It is not necessary

to present all of the results in graphical or tabular form. In the following sections I will

only summarise the results for each of these approaches.

4.4.5.1 XCS learning parameters

The values for the XCS learning parameters used in the previous experiments were

given in section 4.3. General guidelines for selecting these values are given in Butz

and Wilson (2002). It was instructive to vary the value of some of these parameters

to see what effect, if any, they had on the learning of dialogue strategies. More

specifically, I experimented with: the number of microclassifiers (N), the learning

rate (β); the discount factor (γ), the crossover rate (χ) and the mutation rate (µ). In

some experiments, results were slightly improved; in other cases performance was

drastically diminished. However, no consistent improvements were achieved. Personal

communication with members of the XCS community confirmed that few of the

parameters were ever changed. For example, Lanzi (2006) reported that “practically

speaking, many of the parameters could be regarded as system constants” .

4.4.5.2 Positional semantics

In the context of learning classifier systems, positional semantics refer to how the

same state information can be represented in different ways in the condition part

of a classifier rule (Schuurmans and Schaeffer, 1989). For example, in Experiment

2c, the condition part of an XCS rule consisted of a seven bit string representing

the seven boolean variables: GreetingFirst, DateFilled, DurationFilled, RoomFilled,

DateConfirmed, DurationConfirmed, RoomConfirmed. For example, the string

“1100100” meant that the user was greeted at the start of the dialogue and that the

Date slot had been filled and confirmed.
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A simple example of altering the positional semantics is to set the condition string

to represent the boolean variables in a different order (e.g. GreetingFirst, DateFilled,

DateConfirmed, DurationFilled, DurationConfirmed, RoomFilled, RoomConfirmed).

Several experiments were conducted with alternative arrangements for the state

representation. No differences in the generated strategies were detected. Discussions

with members of the XCS community confirmed that no-one had observed issues with

alternative positional representations.

4.4.5.3 Termination criteria

The use of automatic termination criteria has already been identified as one of the

challenges for implementing a reliable dialogue strategy learner (see section 2.4.7).

For XCS, one mechanism for auto-termination has been outlined (Kovacs, 1997).

However, it is suggested that this mechanism is successful only if the environment

is deterministic, which is not the case with dialogue systems. No other methods for

automatic termination have been found in the XCS literature.

I experimented with a number of alternative termination criteria. In one experiment,

the algorithm was terminated when X% (e.g. 95%) of the last Y (e.g. 500) training

dialogues contained the same strategy. In another experiment, the algorithm was

terminated when 95% of the last Y (e.g. 1000) training dialogues had approximately

the same total payoff. A number of XCS parameters were also investigated as possible

candidates for detecting convergence (e.g. system error, fitness etc.). However, none of

these approaches produced results that were consistent enough to be used reliably. If

we are to build a software tool for learning dialogue strategies, it is important that the

strategy learner terminates automatically when an optimal solution has been generated.

This is an area for future research. However, for the purpose of developing dialogue

strategies experimentally, visual inspection of strategy convergence plots are sufficient.

4.5 Discussion

These preliminary experiments demonstrated that XCS can be used to develop dialogue

strategies that are optimal with respect to a reward function. This learning framework

was used to develop a slot-filling strategy for a simple hotel booking task. The
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generated strategies exhibited a number of behaviours that are essential for a good

dialogue strategy. For instance, the learned dialogue strategies took account of simple

models of error recognition to adapt its behaviour accordingly (e.g. to ask for several

slot values if recognition accuracy is high, otherwise to ask for slot values one at a

time). The strategies also made use of explicit and implicit confirmation prompts.

It should be noted, however, that it was straightforward to verify whether a learned

strategy was optimal with respect to its reward function. In more complex, stochastic

environments (i.e. simulated users) assessing the ‘optimality’ of a learned strategy is

much more difficult.

The experiments also demonstrated how domain knowledge can be incorporated into

a learned strategy. This can serve two purposes. Firstly, to produce a behaviour that

might not otherwise occur. The requirement that slots be filled in a certain order is a

very good example (section 4.4.4.2). Although this addition increased the time taken to

learn the optimal strategy, such a requirement might be considered essential for certain

tasks. Therefore, it is important to be able to facilitate such a requirement. By contrast,

domain knowledge can also be used to accelerate learning, dramatically in some cases.

For example, by removing the subgoal of greeting the user at the start of a dialogue

(an obvious thing to do), the dialogue strategy in section 4.4.4.1 was generated much

more quickly, requiring approximately 2,000 training dialogues instead of 20,000.

4.6 Summary

The XCS algorithm can be employed to develop useful dialogue strategies for an

information-seeking (slot-filling) task. In these preliminary experiments, the learned

strategies exhibited a number of essential behaviours in conjunction with a variety

of simple simulated user types and models of recognition error. These preliminary

experiments have helped to answer the questions of what can be achieved with XCS

and how. However, the size of the state-action space is very small. The largest space

contained 1024 unique state-action pairs. What is required now is to scale up to a more

realistic problem requiring a much larger state-action space.



Chapter 5

Learning spoken dialogue strategies

with large state-action spaces

5.1 Overview

In this chapter, I focus on the learning of dialogue strategies where the state-action

spaces are very large. These solution spaces cannot be represented using traditional

reinforcement learning (RL) algorithms, such as Q-learning; the space and time

complexity of these algorithms with large problems are prohibitive. In the context

of RL problems, “large” means a state-action space that would require greater than,

say, one million (106) elements when represented in tabular form. In realistic spoken

dialogue applications, state-action spaces can very easily reach or exceed this figure.

I examine whether XCS can learn useful dialogue strategies by extending the hotel

booking task in the previous chapter. The strategy facilitates a greater range of system

and user acts and a richer state representation. The size of the state-action space is

4.6× 109, much too large to represent in tabular form. I also examine the effect

of reward functions. In particular, I investigate how much detail is required in the

reward function for the XCS algorithm to learn the developer’s intended goal. Finally,

I investigate the effect of different simulated environments on the learning of dialogue

strategies. I assess whether probabilistic, goal-directed hand-coded simulated users

continue to be sufficient for the development of useful dialogue strategies.
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5.2 Experimental aims

These experiments have three main aims. Firstly, I need to assess whether an

implementation of the XCS algorithm can be applied to the development of dialogue

strategies that require large state-action spaces. Secondly, I wish to investigate further

the effect of reward functions on the behaviour of learned strategies (e.g. whether they

reflect the developer’s intended goal). Thirdly, I want to investigate further whether

hand-coded simulated users are still sufficient for learning more sophisticated dialogue

strategies.

5.3 Experimental methodology

The hotel booking task presented in the previous chapter is extended in a number of

ways. First, a fourth slot value is added to the original three (check-in date, number

of nights, room type), namely location. In other words, the user should be able to

specify which location (e.g. town) s/he wishes to stay. Second, the number of system

and user dialogue acts is extended to represent a more realistic interaction (see section

5.4.1). For example, a user can ask for system utterances to be repeated, or can ask

the system for context-sensitive help. Therefore, the goal of the experimental system

remains roughly the same: to acquire values for slots while trying to minimise the

length of the dialogue. However, the system will be required to handle more complex

dialogues, resulting from a richer state representation and greater number of system

and user dialogue acts.

The dialogue strategies continued to be developed in conjunction with stochastic, goal-

directed, hand-coded simulated users. These simulations are represented by a set of

probabilistic state-action rules (Chung, 2004; Pietquin and Dutoit, 2006). An example

is given in section 5.4.3. User behaviour is conditioned on the current dialogue state

(which includes a record of the last system and user utterances) and the user goal

(e.g. fulfill a database query). I believe that this approach to implementing simulated

users is sufficient to enable the XCS-based learner to experience enough variety of user

behaviour to generate robust human-computer interaction. Naturally, this hypothesis

can only be properly tested by evaluations with human users (see Chapter 6).
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Both the XCS algorithm and the simulated users were implemented using Java JDK 1.5

(Sun, 2007). Unless specified otherwise, the XCS learning parameters (section 3.4.3)

in all experiments were: N = 1000, β = 0.2, α = 0.1, ε0 = 10, ν = 5, γ = 0.95, θGA =

50, χ = 0.8, µ = 0.04, θdel = 20, δ = 0.1, θsub = 20, P# = 0.33, pI = 12, εI = 0, FI =

0.01, pexplr = 0.5, θmna = 15 (i.e. the number of possible system actions).

In each experiment, a dialogue strategy was allowed to evolve over a fixed number

of dialogues (between 200,000 and 500,000) with a simulated user. Dialogues were

limited to a maximum of 50 system dialogue acts. The total payoff (reward) for

each dialogue was logged. Each experiment was repeated ten times (to produce an

average result). A moving average of the total payoff was plotted for each experiment

to enable visual inspection of whether convergence towards a strategy was achieved.

In the experiments that follow, it is more difficult to assess what constitutes an optimal

dialogue strategy. This is because of the larger state representation, larger system and

user action sets and the more sophisticated, stochastic simulated environment. Instead,

we can use the convergence plot to detect when strategy convergence occurs and then

inspect the logged training dialogues.

5.4 Experimental results

5.4.1 Experiment 5: A large state-action space

The chosen system and user dialogue acts are summarised in Table 5.1. The system

dialogue acts allow the system to ask the user for the slot values or to confirm these

values, either explicitly or implicitly (i.e. while asking for another slot value). The

system can restart or end the dialogue, give the user help or hand the user on to a

‘human operator’. The system can then present the results of a user’s database query.

The user dialogue acts allow the user to terminate the dialogue, ask for help, ask the

system to repeat its last utterance, start the dialogue from the beginning or provide slot

information. The user can also confirm or reject a system’s explicit confirmation of

slot values. The user can provide the system with more than one slot value in a single

utterance, including slot values that were not asked for by the system in order to reduce

the length of the dialogue. The unknown act represents a user utterance that cannot be

interpreted satisfactorily.
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System acts User acts

GREETING command(bye)

GOODBYE command(request help)

HANDOFF command(request repetition)

GIVE HELP command(restart)

RESTART answer(yes)

REQUEST INFO(check-in) answer(no)

REQUEST INFO(nights) provide info(check-in) *

REQUEST INFO(roomType) provide info(nights) *

REQUEST INFO(location) provide info(roomType) *

REQUEST INFO WITH IMPCONF(check-in) provide info(location) *

REQUEST INFO WITH IMPCONF(nights) unknown

REQUEST INFO WITH IMPCONF(roomType)

REQUEST INFO WITH IMPCONF(location)

EXPCONF(lo+med confs) * multiple slot values can be

DBASE RESULTS provided in a single utterance

Table 5.1: System and user dialogue acts for Experiment 5.

State variable Possible values Cumulative state space size

check-in confidence empty, lo, med, hi 4

nights confidence empty, lo, med, hi 16

roomType confidence empty, lo, med, hi 64

location confidence empty, lo, med, hi 256

check-in times asked 1..10 2,560

nights times asked 1..10 25,600

roomType times asked 1..10 256,000

location times asked 1..10 2,560,000

last user act 11 values (see Table 5.1) 28,160,000

last system act 15 values (see Table 5.1) 422,400,000

Table 5.2: State representation for Experiment 5.
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The state variables used to represent the dialogue state were based on literature relevant

to developing information-seeking tasks (e.g. McTear, 2004) and studies of dialogue

strategy learning (Henderson et al., 2005; Pietquin and Dutoit, 2006; Frampton and

Lemon, 2006). In common with many information-seeking tasks, the recognition

confidences were represented by one of four values: ‘empty’, ‘lo’, ‘med’, ‘hi’. A

record of the number of times each slot was asked for or confirmed by the system was

necessary to indicate that a dialogue was not progressing sufficiently, perhaps due to

the persistent (simulated) misrecognition of a particular slot. In such a situation, the

system should pass the user on to a human operator. The list of state variables and their

possible values are given in Table 5.2. The third column in this table serves to illustrate

how the size of the state space can grow rapidly. With 422,400,000 unique states and

15 system actions, this means that the size of the state-action space was 6.3×109.

The reward function was defined as: (i) a value of 100 is assigned if all four slots have

a confidence value of ‘hi’ and a database query is actioned ; (ii) a turn penalty (-1) is

assigned to each turn taken by the system. In the simulated environment, there are two

ways for a slot to have a high confidence level: (i) it is given a ‘hi’ confidence when the

value is provided by the user; or (ii) the simulated user responds positively to a system

confirmation prompt.

In spite of the large state-action space, a strategy, which appears optimal with respect to

the reward function, is learned within approximately 60,000 training dialogues (Figure

5.1). Inspection of the logs of the training dialogues show that the system does indeed

learn to fill slots with high confidence, using confirmation prompts where necessary.

Dialogues are terminated with a call to the database query action (DBASE RESULTS).

However, the logs also show that the system does not achieve all the desirable

behaviour, given the range of available system and user dialogue acts. For example,

it never hands off to a human operator, nor does it give help when requested to do so.

These kinds of responses would lead to a low level of user satisfaction in a real system.

These strategy deficiencies are not surprising, since we are “programming by reward”.

The reward function describes the intended goal, albeit at a very high level. In other

words, the learner will not acquire behaviour that it is not rewarded to do so. Therefore,

a reward function should indicate that it is important to responding appropriately

to requests for help, or hand off to a human operator when the dialogue is proving

problematic. This result highlights an important aspect of learning dialogue strategies.
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Figure 5.1: Strategy convergence: Experiment 5 (large state-action space).

5.4.2 Experiment 6: Reward functions

In this experiment, the reward function is extended to address the issues raised in

Experiment 5. That is, it is crucial that the reward function accurately reflects the

intended goal. Thus far, there is nothing in the reward function to motivate it to hand

off to a ‘human operator’ when things are not going well. Similarly, a repeated request

for help from the simulated user appears insufficient to motivate the system to provide

help when required. Therefore, some model of punishment for ignoring user requests

is required. The extended reward function is presented in Table 5.3. This type of

reward function has been used in similar studies (e.g. Frampton and Lemon, 2005).

100 for filling all four slots with high confidence

50 for handing off to a human operator

-50 for each ignored user request for help, repetition, or restart

-1 for each turn taken

Table 5.3: Extended reward function for Experiment 6.



Chapter 5. Learning spoken dialogue strategies with large state-action spaces 79

0  125,000 250,000 375,000 500,000
0  

10

20

30

40

50

60

70

80

90

100

Dialogues

A
ve

ra
ge

 P
ay

of
f

 Exp. 5

 Exp. 6

Figure 5.2: Strategy convergence: Experiment 6 (extended reward function).

The convergence plot for this new reward function shows that the learner takes longer

to converge on a strategy (Figure 5.2). It seems likely that it has to learn a more

sophisticated strategy and this takes more time. Inspection of the training logs show

that the system now responds immediately to requests for help and occasionally hands

off to the human operator when the simulated channel noise makes it difficult to fill

some slots with high confidence. Also, the final average payoff is less than that in

Experiment 5 since handing off results in a terminal reward of 50 (rather than 100 for

filling the four slots).

5.4.3 Experiment 7: Simulated users

I have argued that a hand-coded, probabilistic, rule-based simulated user can generate

sufficiently varied behaviour for the XCS algorithm to learn effective dialogue

strategies. I have experimented with a number of alternative rules and representations.

A pseudocode description of a typical user model is given in Figure 5.3. The variables,

LUA, LSA and CUA refer to the last user act, the last system act and the current user act

respectively. The purpose of the simulated user is to fill slots and generate the CUA.

The variation in user behaviour is controlled by the probabilities associated with the

rules. This simple framework can generate a wide variety of simulated user behaviour.
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main

if LUA = ’command(bye)’ and is not done then CUA = ’command(bye)’

if LUA = ’command(help)’ and is not done then CUA = ’command(help)’

if LUA = ’command(help)’ and is done then fill a slot

if LUA = ’command(restart)’ and is not done then CUA = ’command(restart)’

if LUA = ’command(restart)’ and is done then reset state variables

if LUA = ’command(repetition)’ and is not done then LUA = ’command(repetition)’

if LUA = ’command(repetition)’ and is done then set LSA to previous LSA

if LSA = ’EXPCONF’ and slot X = ’lo’ then

set slot X = ’hi’ with probability P = 0.50, CUA = answer(yes)

else CUA = answer(no)

if LSA = ’EXPCONF’ and slot X = ’med’ then

set slot X = ’hi’ with probability P = 0.70, CUA = answer(yes)

else CUA = answer(no)

if LSA = ’REQUEST WITH IMPCONF(X)’

fill slot X with probabilities: ’lo’ [P=0.20], ’med’ [P=0.30], ’hi’ [P=0.40]

fill confirmable slots with probabilities: ’med’ [P=0.30], ’hi’ [P=0.50]

if LSA = ’REQUEST INFO(X)’ then

fill slot X with probabilities: ’lo’ [P=0.20], ’med’ [P=0.40], ’hi’ [P=0.30]

CUA = ’command(bye)’ with probability P = 0.02

CUA = ’command(help)’ with probability P = 0.04

CUA = ’command(restart)’ with probability P = 0.03

CUA = ’command(repetition)’ with probability P = 0.07

fill a slot with probability P = 0.80

else CUA = ’unknown’

fill a slot

X = randomly selected empty slot

CUA = provide info (X) with correct value with probability P = 0.8

assign confidence of selected slot to:

’lo’ [P=0.25]

’med’ [P=0.25]

’hi’ [P=0.50]

else CUA = provide info (X) with incorrect value

assign confidence of selected slot to:

’lo’ [P=0.50]

’med’ [P=0.35]

’hi’ [P=0.15]

Figure 5.3: Pseudocode example of a simulated user.
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The purpose of this experiment was to examine the effect of learning a dialogue

strategy in one simulated environment and executing the learned strategy in another

environment. This is important because we need to assess whether dialogue strategies

developed by XCS are highly dependent on the simulated environment. If this is the

case, it implies that a dialogue strategy learned in conjunction with a less than realistic

simulated environment may perform very poorly with real users (Schatzmann et al.,

2006).

For the purpose of comparison, three different types of simulated user were defined.

User A was designed to act as a less cooperative user; user B was more cooperative

and user C was highly cooperative. Dialogue strategies were learned in conjunction

with each of these users. The performance of the three learned strategies were then

compared using a three-fold cross validation procedure. That is, the strategy learned

using each simulated user was tested against 10,000 simulated test dialogues with all

three simulated users (Table 5.4).

Sim. user (training) Sim. user (testing) Average Payoff

A A 79.85

A B 80.90

A C 83.34

B A 80.31

B B 82.00

B C 83.24

C A 79.98

C B 81.28

C C 83.01

Table 5.4: Cross validation results for simulated users in Experiment 7.

The average payoff shown in these cross-validation results show that there is little

difference between the three users. Test dialogues with User C have slightly better

payoff because it has a higher probability of filling slots. Similarly, test dialogues with

User A have slightly lower payoff because it is less cooperative. Inspection of the

training logs indicate that the learned strategies execute the expected behaviour in a
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variety of conditions. For example, where slot values are filled with low or medium

confidence, they are confirmed by the system. The system also provides help or repeats

a question when requested to do so by the user. When all four slots are filled with high

confidence, the system ends the dialogue with a call to the database. When slots prove

too difficult to fill, the system passes the user to a ‘human operator’. It seem reasonable

to conclude that the learned strategies are effective.

5.5 Discussion

Large state-action spaces are an important requirement for learning dialogue strategies

in realistic tasks (Henderson et al., 2005). However, large state-action spaces cannot be

represented using tabular RL methods, such as Q-learning. These experiments show

that the XCS algorithm can develop dialogue strategies that employ a large state-action

space. This is an important result – large state-action spaces can be tackled effectively

using XCS.

The dialogue strategies developed in these experiments were optimal with respect to

pre-defined reward functions. This is what was intended. In fact, this is the point of

learning in sequential decision making – to “program by reward”. However, it was

also shown that the reward function must reflect the intended goal, albeit at a very

high level. Otherwise, the behaviour required by the developer will never be learned.

However, it is not always obvious what should be included in the reward function and

what should be left to the learning algorithm to discover. In the context of spoken

dialogue systems, further work will be required to understand more fully, the level of

detail that is required in the reward function.

The use of stochastic, hand-coded simulated users appears to be sufficient for the

development of sensible dialogue strategies. It could also be argued that hand-coded,

rule-based simulated users make it relatively easy to test the performance of a learned

dialogue strategy in particular circumstances. For example, it might be desirable to

assess how a dialogue system copes with certain extreme user behaviours such a very

low level of user cooperativity. It is less obvious how this might be achieved with a

data-driven user simulation.
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Finally, it should be noted that the learned dialogue strategies all appear to behave

in a sensible manner. In fact, it appears that the dialogue strategies developed here

would compare favourably with those developed by an experienced system developer

using the traditional test-and-refine method (section 2.3). However, this is an informal

observation. To assess the performance of a learned dialogue strategy more rigorously,

an evaluation with human users is necessary.

5.6 Summary

XCS can learn dialogue strategies where large state-action spaces are required. This is

an important advantage of this evolutionary algorithm over traditional reinforcement

learning algorithms, such as Q-learning. In realistic spoken dialogue applications,

large state-action spaces are often required. In an extension of the hotel booking task

presented in the previous chapter, a state-action space with 6.3× 109 unique state-

action pairs, was represented. In spite of this, effective dialogue strategies were learned

by XCS. It was also shown that reward functions must encapsulate all the required

behaviour, albeit at a high level of abstraction. Finally, the use of hand-coded simulated

users appears to be sufficient for the development of sensible dialogue strategies.

However, to assess the performance of a learned dialogue strategy more accurately,

an evaluation with human users is required. This is the goal of the next chapter.
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Evaluation

In the previous chapter, I demonstrated that the XCS algorithm and a hand-coded

simulated user can be employed to learn dialogue strategies that require large state-

action spaces. This is an important result for two reasons.

Firstly, practical dialogue strategies almost inevitably require state representations

that are too large to be represented in tabular form. This means that traditional

reinforcement learning algorithms cannot be applied. Some form of state

generalisation is required. A key feature of the XCS algorithm is its ability to

generalise quickly over large state spaces. Secondly, it was possible to learn useful

strategies without the use of any pre-existing corpus of dialogues. The stochastic, goal-

directed models of user behaviour were sufficient. Clearly, hand-coding a simulated

user is much less time-consuming than collecting a corpus and using supervised

learning algorithms to induce a model of user behaviour.

However, two questions must be addressed. First, can this approach produce a dialogue

strategy that would perform well in a working spoken dialogue system, with real

users? Second, would such a learned strategy perform as well as one devised by

an experienced system developer? A framework for generating dialogue strategies

quickly is of little use if the resulting performance is evaluated poorly by real users, or

is inferior to hand-coded strategies. Therefore, I conducted an evaluation with human

users of a dialogue strategy developed by XCS. I compared its performance with a

baseline hand-coded strategy. Both strategies controlled a flight booking system using

a live database.
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In this chapter, I begin with a summary of previous work on evaluating learned

dialogue strategies and highlight the important differences between this work and the

present study. I outline my experimental aims and present a methodology based on

the flight booking domain. I present the evaluation results and a discussion of their

implications.

6.1 Related work

To date, three studies have evaluated learned strategies with real users. In both

the ELVIS (Walker, 2000) and NJFun (Litman et al., 2000) systems, elements of a

hand-coded strategy were improved by applying reinforcement learning. In ELVIS, a

speech-based email reading system, evaluations of the optimised strategy indicated

that users preferred the use of: (i) system initiative (rather than mixed initiative);

(ii) summarisation of emails by either subject or sender, depending on the context,

but not both; (iii) automatic reading of the first email in a group without prompting by

the user to do so. The NJFun system provided users with information about things to

do in New Jersey. The system asked users for a preferred: (i) activity type; (ii) location;

(iii) time of day (morning, afternoon or evening). The system provided the user with

a list of activities matching the chosen criteria. The improved strategy resulted in an

increase in task completion from 52% to 64%.

More recently, an evaluation of the TownInfo system compared a complete hand-coded

strategy with a learned strategy (Lemon et al., 2006). The system allowed users to

ask for information on hotels, bars and restaurants for a fictitious town depicted on a

visual display. The learned strategy was previously used for a flight booking system

but was mapped on to a tourist information task by changing system actions, prompts

etc. The behaviour of the learned strategy remained the same. The learned and hand-

coded strategies were compared by asking 18 participants to each perform 10 tourist

information tasks (5 with the learned strategy, 5 with the hand-coded strategy). The

evaluation results showed that users’ perceived task completion of dialogues involving

the learned strategy was comparable with the hand-coded one but required less time

to complete, i.e. 3.3 system turns less per dialogue. The results also demonstrated that

learned strategies could be ported between domains.
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The present study differs from these systems in several important ways. Firstly, the

ELVIS and NJFun systems use very small state spaces for learning – 18 and 62 unique

states respectively. This makes learning much more feasible but also means that much

fewer global strategies can be explored. This study makes use of state space that is

much too large to represent in tabular form (i.e. > 109 state-action pairs), making

traditional reinforcement learning techniques unworkable. However, this allows a

global strategy to be learned. The TownInfo system also employs a very large state

space, employing linear function approximation to generalise over the state space

(Henderson et al., 2005)

Secondly, this study allows users to interact with a live flight booking system, with

over 250,000 unique flight queries available. This has important consequences for

confirmation strategies. The NJFun system acts as an interface to an experimental

version of a real application, containing only “149 distinct database entries” (Singh

et al., 2000, page 3). The ELVIS system is also experimental; it is not clear from the

system description just how large the implemented email folders are. The TownInfo

database contains details of only six hotels, six bars and six restaurants. The study

acknowledged that the reporting of query results “would be more of a problem with a

much larger database” (Lemon et al., 2006, section 6.3).

Thirdly, in terms of the strategies learned, all three studies use RL only to improve

existing strategies. In the case of NJFun and ELVIS, learning was used to optimise

some, but not all, of the choices available in the hand-coded strategies, such as the

type of initiative to use (system versus mixed). In TownInfo, RL was used to improve

a strategy that was first created by applying supervised learning methods to a corpus

of human-computer dialogues. Therefore, this study is unique in terms of learning a

complete dialogue strategy from scratch instead of improving an existing hand-coded

or previously learned strategy.

Most importantly, the present study differs from all three previous studies in its absence

of a training corpus. The strategies developed in each of these previous studies were

based on corpora of human-computer dialogues. In the ELVIS and NJFun systems,

corpora of 219 and 311 human-computer dialogues respectively were collected for

the learning of an initial sub-strategy. The learned strategy for the TownInfo system

was derived from the Communicator corpora, which took several months to collect,

transcribe and annotate; it contains over 2000 human-computer dialogues.
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This study is fundamentally different from the others since the omission of a training

corpus dramatically reduces the development time. However, the question remains

whether this approach will be successful with real users.

6.2 Experimental aims

This evaluation has two main aims. Firstly, to investigate whether evolutionary

learning, in conjunction with a hand-coded simulated user, can generate a dialogue

strategy that is positively evaluated by real users. More specifically, can the learned

strategy achieve an acceptable level of performance using established objective and

subjective evaluation metrics (e.g. Walker et al., 2000)?

The second aim is to examine whether the learned strategy compares favourably with

one that is developed for the same task using the traditional test-and-refine method.

How does the learned strategy compare with the hand-coded strategy using the same

evaluation metrics? If the learned strategy performs as well as the hand-coded one but

requires much less time to develop, this study will provide an important contribution

to the field of dialogue strategy learning.

6.3 Experimental methodology

To evaluate the effectiveness of a learned strategy with real users, the following

approach was taken. Firstly, a useful, realistic evaluation task was selected. Secondly,

I implemented an end-to-end dialogue system, complete with speech and language-

processing modules. The system’s dialogue manager was designed to facilitate the easy

integration of different dialogue strategies. To properly evaluate a learned strategy,

I first designed a state-of-the-art hand-coded baseline strategy. This involved the

selection of an appropriate set of dialogue acts and a state representation. The same

dialogue acts and a subset of the state features were then used to generate a learned

strategy. An evaluation framework was developed to allow the complete dialogue

system to work interchangeably with the hand-coded and learned strategies. Using this

framework, the performances of the hand-coded and learned strategies were compared.

This comparison was based on an evaluation by human participants.
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6.3.1 A flight booking system

The chosen evaluation system was based on the flight booking domain. This

domain has been used to evaluate dialogue strategies in a number of large-scale

systems and research programmes, most notably the Communicator project (Walker

et al., 2000, 2001). This programme provided a common system architecture and

evaluation framework, allowing a variety of commercial and research teams to compare

the performance of both individual system modules and complete systems. The

Communicator project served as a useful model for the present study.

This evaluation is based on the web-based flight booking system of FlyGlobeSpan, an

Edinburgh-based airline. At the time of writing, FlyGlobeSpan serves over 50 unique

routes, primarily between Scotland and Europe. At the time of evaluation, the winter

schedule was in operation (October to March). For this evaluation, users were asked

for four slot values: departure and destination cities (depValue and destValue) and dates

for the outward and return journeys (outValue and retValue).

For this evaluation to be realistic, the SDS should exhibit many of the features that

are typical of state-of-the-art spoken dialogue systems. In other words, it should allow

users, with a variety of expertise, to accomplish the goal of booking a flight in a flexible

manner, using a natural vocabulary. More concretely, the evaluation system should

contain the following features:

• open speech recognition grammar

• highly intelligible and natural speech output

• natural language interpretation and generation

• connection to live flight database

• mixed-initiative, allowing users to be over-informative

• recognition threshold-based confirmation prompts (explicit and implicit)

• context-sensitive help facility

• allow users to end dialogue prematurely

• handoff to human operator when dialogue is not progressing

• interchangeable use of hand-coded and learned strategies
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This flight booking system did not include a facility for constraint refinement. This is

where a user can repeatedly refine the parameters of the database query in order to find

the desired information. This is a complex task in itself (Demberg and Moore, 2006;

Polifroni and Walker, 2006) and was beyond the scope of this evaluation. Therefore,

in this evaluation system, a task was considered to be completed when the system

retrieved the results from the database for the user’s initial query.

6.3.2 System outline

The design of the implemented system followed the traditional architecture for spoken

dialogue systems (section 2.2.2). In other words, the system comprised self-contained

modules for: (i) speech recognition; (ii) speech synthesis; (iii) natural language

parsing; (iv) natural language generation; (v) database connectivity; and (vi) dialogue

management. All of the modules were implemented as Java objects using JDK 1.5.

This system integrated existing modules for speech recognition and synthesis with

hand-coded modules implementing: language parsing, language generation, database

connectivity and dialogue management. The speech recogniser used was the speaker-

independent HMM-based Sphinx-4 system available from Carnegie-Mellon University

(Lamere et al., 2003). The speech synthesiser was a unit selection-based synthesiser

purchased from Cepstral Inc (Cepstral, 2007). The natural language parser consisted

of a hand-coded set of pattern matching rules and some code to parse dates. Similarly,

the language generator was a relatively simple template-based system, comprising a set

of rules for combining canned text with slot values. The module for retrieving flight

details was a small suite of webscraping programs that connected to the FlyGlobeSpan

website.

Finally, the dialogue manager was made up of two sections: (i) a sub-module for

updating the dialogue state according to the user’s last utterance; (ii) two instances of

a sub-module for choosing the next system dialogue act based on the current dialogue

state (one was the hand-coded strategy, the other was a strategy learned by XCS). All

of these modules were coordinated by the main evaluation program. For each dialogue,

the evaluation program could control whether the dialogue manager should select the

next system action using the hand-coded strategy or the learned one.
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6.3.2.1 Dialogue acts

The chosen system and user dialogue acts are summarised in Table 6.1. They are based

on the dialogue acts used in the previous chapter on large state-action spaces. The

system dialogue acts allow the system to ask the user for the slot values or to confirm

these values, either explicitly or implicitly. The system can restart or end the dialogue,

give the user help or hand the user on to a human operator. Finally, the system can

present the results of a user’s database query.

System acts User acts

GREETING command(bye)

GOODBYE command(request help)

HANDOFF command(request repetition)

GIVE HELP command(restart)

RESTART answer(yes)

REQUEST INFO(depValue) answer(no)

REQUEST INFO(destValue) provide info(depValue) *

REQUEST INFO(outValue) provide info(destValue) *

REQUEST INFO(retValue) provide info(outValue) *

REQUEST INFO WITH IMPCONF(depValue) provide info(retValue) *

REQUEST INFO WITH IMPCONF(destValue) unknown

REQUEST INFO WITH IMPCONF(outValue)

REQUEST INFO WITH IMPCONF(retValue)

EXPCONF(lo+med confs) * multiple slot values can be

DBASE RESULTS provided in a single utterance

Table 6.1: System and user dialogue acts for the evaluation system.

The user dialogue acts allow the user to terminate the dialogue, ask for help, ask the

system to repeat its last utterance, start the dialogue from the beginning or provide slot

information. The user can also confirm or reject a system’s explicit confirmation of

slot values. The user can provide the system with more than one slot value in a single

utterance, including slot values that were not asked for by the system in order to reduce

the length of the dialogue. The unknown act represents a user utterance that cannot be

interpreted satisfactorily.
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6.3.2.2 State representation

The state variables used to represent the dialogue state were based on literature relevant

to developing flight booking systems and the state representation used in the previous

chapter on large state-action spaces. In common with many information-seeking tasks,

the slot values and associated recognition confidences were stored. For this application,

the confidence value received from the speech recogniser was mapped on to one of four

values: ‘empty’, ‘lo’, ‘med’, ‘hi’. It is also usual to record the number of turns taken

so far, the most recent user act and the previous system act. During the development

of the hand-coded strategy, the penultimate system act was also used. A record of the

number of times each slot was asked for or confirmed by the system was necessary to

indicate that a dialogue was not progressing sufficiently, perhaps due to the persistent

misrecognition of a particular word. In such a situation, the system should pass the

user on to a human operator. The list of state variables and their possible values are

given in Table 6.2.

State Variable Possible values

turn number 1..50

departure value ‘edinburgh, ‘glasgow’ etc.

destination value ‘barcelona’, ‘nice’ etc.

outward date value 01/11/06 .. 31/03/07

return date value 01/11/06 .. 31/03/07

departure confidence empty, lo, med, hi

destination confidence empty, lo, med, hi

outward date confidence empty, lo, med, hi

return date confidence empty, lo, med, hi

departure times asked 1..10

destination times asked 1..10

outward date times asked 1..10

return date times asked 1..10

last user act 11 values (see Table 6.1)

last system act 15 values (see Table 6.1)

2nd last system act 15 values (see Table 6.1)

Table 6.2: State representation for the evaluation system.
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6.3.2.3 User vocabulary

The user vocabulary was based on an analysis of the transcriptions for the

Communicator evaluations (Walker et al., 2001), in addition to a number of other

words that seemed appropriate for the intended application. Naturally, the vocabulary

included the names of the airports used by the FlyGlobeSpan web site. The user

vocabulary also included the facility for specifying dates (e.g. “the tenth of March”,

“January fifteenth”).

A series of tests was conducted to determine the appropriate size of the user vocabulary

in order to minimize speech recognition errors. In the end, a corpus of 202 sentences

was used to create a language model containing 389 trigrams, 398 bigrams and 179

unigrams. This was sufficient to create a keyword grammar, enabling the language

parser to generate appropriate user dialogue acts. The recognition grammar was open,

in the sense that all words in the recognition vocabulary could be recognised at any

point in the dialogue. Examples of the user vocabulary and how they were parsed into

user dialogue acts is given in Table 6.3:

User utterance User dialogue act

“I want to quit” command(bye)

“I need some help” command(request help)

“Say that again” command(request repetition)

“I want to start over” command(restart)

“yes, that’s correct” answer(yes)

“no, that’s wrong” answer(no)

“I’m flying from Edinburgh provide info(depValue=‘edinburgh’,

to Barcelona” destValue=‘barcelona’)

Table 6.3: Examples of user vocabulary and corresponding dialogue acts.

6.3.3 A hand-coded strategy

A hand-coded strategy was developed as a baseline for comparison with the learned

strategy. The hand-coded strategy was tested and refined eight times until what was

considered an optimal strategy had been developed. The strategy was based on the
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requirements for system performance, outlined in section 6.3.1. The hand-coded

strategy drives the system to elicit values from the user for the four slots. Where

slot values do not have an associated high (‘hi’) recognition confidence, the system

confirms these slot values – explicitly if the confidence is low (‘lo’) and implicitly if

the confidence is medium (‘med’). The system provides the user with context-sensitive

help when asked by the user, giving examples of what the user might say. It allows

the user to take the initiative by answering a different question to the one that was

asked. The user can also give more information than was asked for, thereby reducing

the length of the dialogue. Finally, the greeting prompt, “How can I help you today?”,

allows the user to control the flow of dialogue from the beginning . All of these features

could be implemented using the chosen dialogue acts and state representation.

6.3.4 A learned strategy

For the purpose of learning a dialogue strategy, not all of the state variables listed in

Table 6.2 are relevant. For example, the values for slots themselves are not required for

learning; only the recognition confidences associated with them are required. Based on

the results detailed in the previous chapter, the following variables were chosen for a

learned strategy: (i) the four slot confidence variables; (ii) the four variables indicating

how many times each slots was asked for or confirmed; (iii) the last user act; (iv)

the last system act. This means that the size of the state space was 44× 104× 11×

15 which is approximately 4.2× 108. With 15 available system actions, this means

that the size of the state-action space was 6.3× 109. This is not an unusually large

size for a state-action space for a simple slot-filling task. However, it is clearly much

too large to enumerate all possible combinations. Consequently, traditional tabular

reinforcement learning could not be applied. This issue is the motivation to employ a

learning algorithm that can generalise over large state-action spaces (Henderson et al.,

2005; Cuayáhuitl et al., 2006a).

This state representation was used to generate a dialogue strategy in conjunction with:

(i) the set of system and user dialogue acts in Table 6.1; (ii) the reward function

presented in Table 5.3; (iii) a stochastic, goal-directed simulated user similar to Figure

5.3. The learned strategy was described by 579 XCS condition-action rules. A module

was written to input a state representation and to use the XCS rule set to generate a

new system act. This module was integrated into the evaluation framework.
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6.3.5 Experimental procedure

This experiment used a within-subjects design. Each participant was asked to perform

three simple flight booking tasks for each strategy. The order of strategy presentation

was counterbalanced to address the potential effect of order on the experimental results.

Participants were randomly allocated to one of two order conditions (hand-coded then

learned, learned then hand-coded). In the first two tasks, the goal was fixed; in the

third task, the goal was left open to the participant (Figure 6.1). Each task was then

repeated (one for each strategy), giving a total of six conversations.

1. You are spending your Christmas holidays in Florida this year.

Please book a flight from Glasgow to Orlando, leaving on

December 23rd and returning on January 10th.

2. You are attending a one-day conference at Barcelona in March.

Please book a flight from Edinburgh to Barcelona, leaving on

March 1st and returning on March 3rd.

3. You have won a free flight in FlyGlobeSpan’s Monthly Draw.

Please book any flight available in FlyGlobeSpan’s winter schedule.

Figure 6.1: Evaluation task descriptions.

Before taking part in the evaluation, each participant was told that this was an

evaluation of speech technology but was not told explicitly that dialogue strategies

were being compared. This information was given to participants after the tasks had

been completed. Participants were also asked to indicate their level of familiarity with

speech or language processing technology and also to characterise their accent. Non-

native English speakers were not included in the sample. Lastly, participants were

assured that their data would be anonymised.

For each dialogue, the user utterances were recorded. In addition, a log file was

generated for each dialogue. For each system or user turn, the folowing information

was recorded: the turn number, the system or user utterance, relevant dialogue state

variables and the cumulative elapsed time in the dialogue. An example of a logged

dialogue turn is given in Figure 6.2.
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Turn: 7

Type: System

Text: Okay, please give me the date you wish to leave.

System Act: REQUEST INFO(outValue)

Last System Act REQUEST INFO(retValue)

Slot Values: ‘edinburgh’, ‘barcelona’, ‘empty’, ‘empty’

Slot Confs: ‘hi’, ‘hi’, ‘none’, ‘none’

Slot Times Asked: 1, 1, 1, 0

Last User Act: provide info(destValue=‘barcelona’)

Time (secs): 25.19

Figure 6.2: Example of a logged dialogue turn.

After completing each task, participants were asked to complete a short questionnaire.

They were first asked whether they were able to complete the task successfully.

This response measures Perceived Task Completion (PTC). In contrast, Actual Task

Completion (ATC) is a measure of whether the system answered the query indicated

in the task. Participants were then asked to indicate their level of agreement with

five statements using a Likert scale, ranging from 1 (strongly disagree) to 5 (strongly

agree). These statements were based on subjective measures of user satisfaction used

in the Communicator evaluations (Walker et al., 2000). The measures were: Task Ease,

TTS Performance, User Expertise, Expected Behaviour and Future Use (Table 6.4).

Statement Metric

It was easy to get the information I wanted. Task Ease

I found the system easy to understand. TTS Performance

I knew what I could say or do at each point in the dialogue. User Expertise

The system worked the way I expected it to. Expected Behaviour

Based on this experience, I would use this system regularly. Future Use

Table 6.4: User satisfaction metrics.
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6.4 Experimental results

The participant sample was made up of eight males and eight females. In terms of

accent, eight were British, six were North American and two were Australasian. Of

the 16 participants, six had no experience in the use of speech or language processing

technology. Informal feedback from participants suggested that the performance of

the speech recogniser was much better with North American participants. This is not

surprising since the speech recogniser’s acoustic models were trained on American

voices. It should be noted that there was little difference between participants in the

two order conditions in terms of accent, gender and previous experience. Each of the

16 participants attempted to complete their six tasks, giving a total 96 logged dialogues.

A transcription of one dialogue (with dialogue acts) is given in Figure 6.3.

Although participants were informed that a help facility was available, no participants

asked for help. Also, no users asked to restart the dialogue. Nine of the dialogues

were stopped by participants before the task was completed. In four cases, this was by

accident, due to a false recognition of a termination keyword (“finish”, “stop”, “quit”,

“exit”). Five dialogues were terminated by users who were frustrated by poor speech

recognition. One of the dialogues was handed off by the dialogue system.

Preliminary statistical analysis examined whether there were gender differences which

would need to be controlled for in the main analysis. A series of independent t-tests

revealed no differences between male and female users. Thus, gender was not included

in any subsequent analysis. A series of paired t-tests were then conducted to examine

differences between the two systems for each of the three tasks.

6.4.1 Task completion

Table 6.5 shows the descriptive statistics for the two systems in terms of how users

evaluated each of the three tasks on all of the measures. There were no significant

differences between the hand-coded and learned strategy in either Actual or Perceived

Task Completion. Both systems performed well on both Actual and Perceived Task

Completion. Across all three tasks, there was an average of 77% Actual Task

Completion (ATC) for the hand-coded strategy compared with 81% for the learned

strategy, but this difference was not statistically significant (t(15) = -1.00, p>.30).
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System: Welcome to FlyGlobeSpan’s booking system. How can I help you today?
[ GREETING ]

User: I want to book a flight.
[ unknown ]

System: Please give the name of the city that you are departing from.
[ REQUEST INFO(depVal) ]

User: Edinburgh.
[ provide info(depVal=’edinburgh’) ]

System: So you want to travel from edinburgh. What city are you travelling to?
[ REQUEST INFO WITH IMPCONF(destVal) ]

User: Geneva.
[ provide info(destVal=’geneva’) ]

System: Okay, please give me the date you wish to leave.
[ REQUEST INFO(outVal) ]

User: December 24th.
[ provide info(outVal=’24/12/2006’) ]

System: And finally, on what date do you wish to return?
[ REQUEST INFO(retVal) ]

User: January 6th.
[ unknown ]

System: Could you please repeat that?
[ REQUEST INFO(retVal) ]

User: January 6th.
[ provide info(retVal=’06/01/2007’) ]

System: Okay, accessing the database. <DATBASE ACCESS>.
Your outward flight on Sunday, December 24, leaves at 08:30.
Your return flight on Saturday, January 06, leaves at 11:40.
The total cost of your flight is 219 pounds. Goodbye.
[ DBASE RESULTS ]

Figure 6.3: Example dialogue from the system evaluation.
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Users’ Perceived Task Completion (PTC) for the hand-coded strategy was found to

be 92% across all three tasks while for the learned strategy it was found to be 88%,

t(15) = 1.00, p>.30. Further analysis for each of the individual tasks also revealed no

significant differences.

A similar pattern was revealed for the amount of time and number of turns taken for

each task. There was no significant difference between the average time taken by the

hand-coded strategy across all three tasks (M = 61.6 secs, SD = 9.3) and that taken by

the learned strategy (M = 60.7 secs, SD = 6.4), t(15) = 0.4, p>.70). There was also no

difference in the average number of turns taken between the hand-coded strategy (M

= 13.1, SD = 3.2) and the learned strategy (M = 13.0, SD = 2.0), t(15) = 0.2, p>.80).

Separate analyses by task revealed no further differences. It is very encouraging that

the learned strategy performed as well as the hand-coded one with respect to these

objective measures.

System A (hand-coded) System B (learned)

Task 1 Task 2 Task 3 Task 1 Task 2 Task 3

Time (secs.) 58.2 (16.4) 62.1 (11.9) 64.5 (11.2) 59.8 (10.1) 56.0 (16.0) 66.3 (20.8)

Turns 11.8 (4.6) 13.8 (5.3) 13.9 (4.1) 12.5 (2.4) 12.0 (5.1) 14.6 (5.5)

ATC (%) 68.8 (47.9) 81.3 (40.3) 81.3 (40.3) 75.0 (44.7) 81.3 (40.3) 87.5 (34.2)

PTC (%) 93.8 (25.0) 93.8 (25.0) 87.5 (34.2) 93.8 (25.0) 81.3 (40.3) 87.5 (34.2)

Task Ease 3.8 (1.2) 3.8 (1.1) 3.7 (1.1) 4.1 (1.0) 4.1 (1.2) 3.7 (0.9)

TTS 4.4 (1.1) 4.8 (0.5) 4.7 (0.5) 4.6 (1.0) 4.8 (0.4) 4.6 (0.6)

Expertise 4.0 (1.0) 4.3 (0.5) 4.3 (0.5) 4.4 (0.7) 4.4 (0.6) 4.3 (0.7)

Expected 3.5 (1.0) 3.8 (1.0) 3.4 (0.9) 3.8 (1.0) 3.9 (1.0) 3.7 (0.9)

Future Use 3.5 (1.2) 3.7 (1.0) 3.6 (1.1) 4.1 (0.6) 3.9 (1.1) 3.7 (1.0)

User Sat. 3.9 (0.9) 4.1 (0.5) 3.9 (0.5) 4.2 (0.5) 4.3 (0.7) 4.0 (0.5)

Table 6.5: Summary of evaluation results.

6.4.2 User satisfaction

Analyses examined all five aspects of user satisfaction separately. First, there was no

significant difference in the average perceived ease of use between the hand-coded

strategy (M = 3.8, SD = 0.8) and the learned strategy (M = 4.0, SD = 0.6), t(15) =

-1.58, p>.25).
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Second, the hand-coded strategy (M = 4.6, SD = 0.5) and the learned strategy (M =

4.7, SD = 0.5) were both rated positively and did not differ significantly on TTS, t(15)

= -0.12, p>.85.

Third, there was no difference between the two systems on expected behaviour, t(15)

= -1.45, p>.15, with the hand-coded strategy rated 3.6 on average (SD = 0.5) and the

learned strategy rated 3.8 (SD = 0.6).

On user expertise, the two systems were rated positively (hand-coded M = 4.2, SD =

0.5, learned M = 4.4, SD = 0.6) and again no significant difference was indicated, t(15)

= -1.52, p>.10.

Finally, there was a significant difference between the two systems on the extent to

which users would use the system in the future. The learned strategy was rated more

positively (M = 3.9, SD = 0.8) compared with the hand-coded strategy (M = 3.6, SD =

0.8) t(15) = -3.65, p<.01).

Further analysis by task revealed a trend approaching significance for the learned

strategy to perform better on future use for Tasks 1 (p<.06) and 2 (p<.17). No further

differences between the two systems were indicated.

6.5 Discussion

I cannot make statistical comparisons with the results of this evaluation and the

evaluation of systems reported in section 6.1. However, inspection of mean scores for

the subjective evaluation metrics suggest that the performance of this system compares

favourably to those of other systems. For example, the overall user satisfaction score

for the learned strategy in the ELVIS evaluation (Walker, 2000) was 31.7 of a possible

40 (= 79%); for the NJFun system (Litman et al., 2000), the satisfaction score was

13.29/20 (= 66 %); for the TownInfo evaluation (Lemon et al., 2006), the mean user

satisfaction score was 2.67/5.0 (= 53 %). The present study was the highest, with a

mean user satisfaction score of 4.16/5.0 (= 83 %).

Looking at task completion, the Actual Task Completion (ATC) scores for the hand-

coded and learned strategies in NJFun were 52% and 64% respectively; the mean ATC

scores for the hand-coded and learned strategies in this study were 77% and 81% .
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In the TownInfo evaluation the Perceived Task Completion (PTC) scores for the hand-

coded and learned strategies were 67.6% and 81.8% respectively. The PTC scores in

this study were 92% and 88% respectively. No other task completion results have been

reported for these systems.

Comparing this evaluation with an evaluation of the Communicator systems (Walker

et al., 2001), the results remain positive. The June 2000 Data Collection of the

Communicator programme comprised 662 dialogues, spread across nine systems. In

this evaluation the user satisfaction score was computed as the total of the five metrics

listed in Table 6.4. The reported median user satisfaction for the nine participating

systems ranged from 5.0 to 15.5 (maximum = 25). The median user satisfaction for the

hand-coded and learned strategies in the present study were 18.9 and 21.0 respectively.

Clearly, the Communicator systems are more sophisticated in terms of the range of

dialogue acts that are available and the tasks that can be completed. Additionally,

it should be stressed that these comparisons are not based on systematic statistical

analysis. Nevertheless, the results of this evaluation are very encouraging.

More importantly, these evaluation results substantiate the claim that evolutionary

reinforcement learning, in conjunction with a hand-coded simulated user, can generate

a dialogue strategy that performs as well as a hand-coded one. In terms of objective

measures – number of dialogue turns, dialogue duration and Actual Task Completion

– there is no significant difference between the learned and hand-coded strategies. In

terms of user satisfaction, one significant difference was found: the learned strategy

was rated more positively in terms of anticipated future use (p < .01). This appears

to be good news for the learned strategy. Perhaps there are some aspects of user

satisfaction that are not being properly assessed by the chosen evaluation metrics.

The fact that the learned strategy performed as well as the hand-coded one in this

evaluation is an important result. Most of the recent research on the learning of

dialogue strategies have based user simulations on training corpora. Clearly, if such

data is available then it makes sense to utilise it. However, the issue becomes what

should be done if this data does not exist. Hopefully, a lot of novel SDSs will be

developed in the future, with no pre-existing corpora available. If a corpus needs to

be collected in order to create a simulated user, the intended reduction in development

time – through the use of learning algorithms – will probably not occur. This evaluation

has demonstrated that the collection of a training corpus may not be necessary.
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6.6 Summary

In this chapter, I have presented an evaluation by real users of a dialogue strategy

generated by evolutionary reinforcement learning in conjunction with a hand-coded

simulated user. Both the learned strategy and a state-of-the-art hand-coded strategy

were integrated into an end-to-end spoken dialogue system. The dialogue system

allowed real users to make flight enquiries using a live database for an Edinburgh-based

airline. The performance of the learned and hand-coded strategies were compared.

The evaluation results showed that the learned strategy performed at a high level and

as well as the hand-coded one (e.g. 81% and 77% task completion respectively). This

is an important result because the learned strategy took only two days to develop while

the hand-coded one was refined over a period of two weeks. Therefore, the use of

XCS, an evolutionary reinforcement learning algorithm, together with a hand-coded

simulated user, is a viable approach to developing spoken dialogue strategies.
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Conclusion

7.1 Summary of contributions

Throughout this thesis, I have argued that the learning of spoken dialogue strategies

is motivated by the desire to “build good dialogue strategies quickly”. The research

presented here has combined an evolutionary learning algorithm with hand-coded

simulated users to accomplish this goal. In the process, this thesis has made several

contributions to the research field. They are summarised below. It should also be

noted that this research was undertaken in the context of spoken dialogue systems; the

research could equally be applied to text-based dialogue systems.

Evolutionary learning. This is the first application of evolutionary algorithms to the

problem of learning spoken dialogue strategies (Toney et al., 2006a,b). All previous

work in learning strategies has been based on reinforcement learning techniques.

Why use a different algorithm? There remains a number of important challenges

associated with strategy learning (see section 2.4.7). It is suggested that one particular

evolutionary algorithm, XCS, possesses a number of useful properties (e.g. rule-

based representation, ability to generalise over large state spaces) that make it an

appealing candidate for learning dialogue strategies. Furthermore, during the course

of this thesis, contact has been made with a number of research groups specialising in

evolutionary algorithms. The work undertaken has generated a great deal of interest

among some of these groups and has resulted in a proposal for collaborative research.

102
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Large state-action spaces. A key feature of the XCS algorithm is that it facilitates

the learning of strategies that require large state-action representations. In the context

of reinforcement learning problems, “large” means a state-action space that would

require greater than, say, one million (106) elements when represented in tabular

form. However, real-life SDSs usually employ state-action representations that are

much larger than this. This is arguably the most important challenge to developing

dialogue strategies for realistic tasks. Therefore, for strategy learning, some method

of generalising over a large state-action space is required. Thus far, only one study

has reported a technique for doing this (Henderson et al., 2005). However, this

work required a training corpus since it employed a hybrid supervised/reinforcement

learning framework. Therefore, this thesis is unique in learning realistic strategies for

large state-action spaces without the use of a corpus.

Hand-coded simulated users. A crucial feature of this thesis was the use of hand-

coded simulated users. Although the simulated behaviour was stochastic and goal-

directed, it was not created through the use of a training corpus. I have argued that

achieving good results with hand-coded users is essential for the rapid development

of dialogue strategies. I have also argued that hand-coded users are sufficient for

learning useful dialogue strategies. I have substantiated this claim by using a hand-

coded simulated user to generate a dialogue strategy which was positively evaluated

by real users.

Evaluation by real users. Ultimately, the effectiveness of any technique for

generating dialogue strategies can only be properly assessed through an evaluation

by real users. This thesis has presented such an evaluation. This required the

development of a complete end-to-end dialogue system, which was a time-consuming

task. Nevertheless, it was an essential part of this thesis; the empirical results

demonstrated that evolutionary learning, in conjunction with a hand-coded simulated

user, performed as well as a state-of-the-art hand-coded one. Furthermore, both the

hand-coded and learned strategies in this evaluation compared favourably with other

systems that used the same evaluation metrics.

This thesis also reported on the three previous studies that evaluated learned strategies

with real users. This study differed from those in several ways. Firstly, only one of
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the previous studies employed large state-action spaces. Secondly, this study was the

only one to make use of a large live database. Thirdly, the previous studies evaluated

strategies that were either optimised versions of existing hand-coded strategies or an

improved version of a strategy created by supervised learning. Therefore, this is the

first evaluation by real users of a strategy that was learned from scratch. Lastly, the

evaluation results of this study compared very favourably with the previous studies,

both in terms of task completion and user satisfaction.

7.2 Future research directions

The research outlined in this thesis provides a solid basis for continued research into the

rapid development of learned dialogue strategies. However, it is not yet clear whether

learning techniques are a viable alternative to the traditional test-and-refine model of

strategy development (particularly in a commercial environment). If we are to create

a software tool for automatically generating dialogue strategies, a number of other

technical challenges must be addressed. A summary of what I perceive to be the main

challenges is given below. Finally, it is important to emphasise that ongoing research

within the XCS community is tackling many of these issues (Bull, 2004; Bull and

Lanzi, 2007). I believe that this makes XCS an excellent platform for ongoing research

on learning dialogue strategies. It is hoped that a XCS-based tool can be developed for

implementing sophisticated spoken dialogue systems.

Complex tasks. So far, much of the research on strategy learning has focused on

information-seeking (slot-filling) tasks, although some work has looked at tutorial

systems (Litman and Forbes-Riley, 2006). It remains to be seen whether strategy

learning can be usefully applied to more complex tasks, requiring more sophisticated

collaboration, negotiation and planning between system and user. Moreover, very

little work has been undertaken with respect to hierarchical task structures (but see

Cuayáhuitl et al., 2006b). In time, it is expected that continued research will tackle

increasingly more complex tasks. With respect to information-seeking systems, I

would suggest that learning a dialogue strategy for a full Communicator system –

with a very large state-action space and a range of nested tasks – could be considered

a reasonable indicator that strategy learning techniques have a future.
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It would also be instructive to investigate the effect of learning dialogue strategies

using XCS with increasingly larger state-action spaces. In other words, it is important

to establish whether there is an upper bound on learning useful dialogue strategies.

To examine this, additional state variables could be incorporated into the state

representation. Equally, the range of possible values for existing state variables,

could be increased. For instance, the present speech recognition confidence values of

‘empty’, ‘lo’, ‘med’, ‘hi’ could be replaced by the integer range 0..100. Furthermore,

it would be useful to explore the relationship between the size of the state space and

the time taken to learn a dialogue strategy. Thus far, analysis of the time complexity of

XCS has been concerned only with classification (single-step) rather than sequential

(multi-step) tasks (Wilson, 1998; Butz et al., 2004). In terms of state space size,

a binary classification task with 237 unique possible states has been successfully

addressed using XCS (Butz et al., 2001).

Strategy summarisation. It is important for human developers to understand,

and learn from, the strategies generated by machine learning methods. However,

summarising learned strategies for interpretation by developers remains difficult. This

is an issue for the RL-based methods for strategy learning and for the present XCS-

based approach. In the evaluation system, the final rule set consisted of 579 condition-

action rules. While this may represent a complete mapping of the state-action space,

it is still much too large for inspection by a developer. Some method of enumerating

the most useful rules of the learned strategy is required. Recent research in the XCS

community has successfully produced compact rule sets for classification problems

(Fu and Davis, 2002). As yet, the same results have not been achieved with sequential

tasks.

Reward function selection. For an information-seeking task, it is reasonably

straightforward, in principle, to select an appropriate reward model for learning

dialogue strategies: reward slot-filling, discourage excessive turn-taking etc. However,

the selection of reward functions for more complex tasks has received very little

attention so far. This issue may prove to be a difficult stumbling block in the pursuit

of learning dialogue strategies. Therefore, it is important to pursue an increased

understanding of the effects of reward functions. Furthermore, it may be possible

to implement a method for automatically testing and selecting useful reward functions.
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Partial observability. The issue of partial observability, arising from speech

recognition errors, was described in section 2.4.7. This refers to the fact that, for a

given utterance, a dialogue manager cannot be certain of what was said by a user.

Instead, dialogue state representations typically record a recognition confidence score

for each slot value. However, several studies have shown that maintaining a distribution

of possible slot values, and associated recognition confidence scores, can improve the

performance of strategy learners. Furthermore, the advantage gained by modelling the

partial observability increases with a system’s recognition error rate. However, the

computational cost associated with modelling this partial observability while learning

dialogue strategies is very high. Consequently, only small state representations have

been used (e.g. Williams and Young, 2006). Further research is needed to fully exploit

uncertainty models with strategy learning.

Convergence detection. In contrast to many sequential decision problems, it is

difficult to precisely define an optimal dialogue strategy. Studies on dialogue strategy

learning typically present the performance of a strategy learner as a graph of some

reward measure over a fixed number of learning episodes (e.g. 100,000). Convergence

towards an optimal solution is indicated visually by the flattening of the learning curve.

If we are to build a software tool for learning dialogue strategies, it is important

that the strategy learner terminates automatically when an optimal solution has been

generated. This is a goal that is very easy to describe qualitatively but remains difficult

to implement in practice.

Comparison with other methods. It would be informative to quantitatively compare

the time taken to generate a strategy using the traditional test-and-refine (hand-coding)

approach with the use of evolutionary learning. It would also be useful to conduct

a comparative study of the learning techniques reported so far for learning dialogue

strategies (e.g. tabular RL, RL with function approximation, XCS). Such a study

should report on the space and time complexities of each technique and and on the

efficacy of the generated strategies. Ideally, this would entail an evaluation of the

learned strategies by real users. Finally, a quantitative study of the cost and benefit of

hand-coded versus data-driven simulated users should also be conducted.
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