ELSEVIER

Available online at www.sciencedirect.com

ScienceDirect

Computer Standards & Interfaces 31 (2009) 98 —109

GOMPUTER STANDARDS
& INTEREACES

www.elsevier.com/locate/csi

Mechanisms for communication between business and IT experts

Haim Kilov ®*, Ira Sack®

Independent Consultant, and Stevens Institute of Technology, United States
b Stevens Institute of Technology, United States

Received 24 February 2007; accepted 18 November 2007
Available online 28 November 2007

Abstract

The paper shows how a system of important concepts and approaches proposed by system thinkers (such as philosophers, mathematicians,
engineers, and computing scientists) and described in international (ISO) standards has been used to understand and specify various kinds of
business and IT systems, and to base IT work on a solid foundation that has been used for communicating with non-IT experts, thus establishing
successful and meaningful interactions between business and IT experts and organizations. These common elegant concepts — such as
abstraction, system, structure, relationship, composition, pattern, name in context, etc. — come from exact philosophy and mathematics. They
have been stable for centuries, and have been successfully used in theory, in industrial practice (including international standards), and in teaching
of business and IT modeling. The essential stable semantics of these fundamental concepts and of systems specified using them ought to be clearly
separated from the accidental (often IT-industry-imposed excessively complex and rapidly changing) details. The paper includes two case studies
of applying the approach — with demonstrable success — in a large financial institution and in a leading publishing company.

© 2007 Elsevier B.V. All rights reserved.

Keywords: System of concepts; Semantics; Business-IT communication; RM-ODP; General Relationship Model (GRM)

1. Introduction

The proverbial communication gap between business and IT
experts has been a sad reality for quite a while. This has led to
substantial problems in information system design and devel-
opment including significant monetary losses together with loss
of customers’ trust and patience [15]. As noted in Computer-
world (October 11, 1999), “85% of IT departments in the US
fail to meet their organizations’ strategic business needs”. More
recently, almost the same percentage (84%) was cited in Com-
puterworld (May 9, 2005) as the percentage of top executive
MBA candidates (at the Fisher College of Business at Ohio
State University) with full-time jobs who “when asked to recall
personal experiences related to IT, cited very negative
situations”. At the same time, not all IT projects fail: in some
environments business and IT experts do communicate in a
successful manner. Therefore, it would be instructive to

* Corresponding author.
E-mail addresses: haimk@acm.org, hkilov@stevens.edu (H. Kilov),
isack@stevens.edu (I. Sack).

0920-5489/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.¢s1.2007.11.001

determine — and make explicit — some properties of successful
business-IT communication.

The essential role of communication in human society was
emphasized, for example, by Ludwig von Mises in his classical
book “Human Action” [42]: “It is always the individual who
thinks. Society does not think any more than it eats or drinks.
[...] There is joint action, but no joint thinking. There is only
tradition which preserves thoughts and communicates them to
others as a stimulus to their thinking. [...] The foremost vehicle
of tradition is the word. Thinking is linked up with language and
vice versa. Concepts are embodied in terms. Language is a tool
of thinking as it is a tool of social action”. Certainly, people who
want to communicate successfully should use not only (and not
even mainly!) the same terms — see the section about names
below — but rather the same system of concepts. (As an
example, the same important concepts in [21] are expressed
both in English and in German.) On a smaller scale, the ability
of an organization to enable and sustain an environment in
which effective communication takes place substantially
contributes to the success of that organization [40, p. 329].
Therefore it is clear that “understanding of each other’s domains
by the business and IT functions” [40, p. 329] is of utmost

mailto:haimk@acm.org
mailto:hkilov@stevens.edu
mailto:isack@stevens.edu
http://dx.doi.org/10.1016/j.csi.2007.11.001

H. Kilov, I. Sack / Computer Standards & Interfaces 31 (2009) 98—109 99

importance. As observed in [52], shared domain knowledge
was found to influence both short- and long-term alignment
between business and IT objectives. Alignment is conceptua-
lized as a state or an outcome [6,10] having both intellectual and
social dimensions. The intellectual dimension is defined as “the
state in which a high-quality set of interrelated IT and business
plans exists”, while the social dimension is defined as “the state
in which business and IT executives [...] understand and are
committed to the business and IT mission, objectives, and plans”
[51]. Similarly, “communications maturity ensur[es] ongoing
knowledge sharing across organizations” [40, p. 71] which is
necessary for proper interaction with customers [40, p. 362],
partners, competitors, consultants, regulators, and so on.

Thanks to the division of labor, experts can concentrate —
and achieve a lot — in their specific areas of expertise.
Furthermore, they can, and should, use the achievements of
other experts (in their own and other areas) as and when needed.
In order to do that, it is necessary to use a common system of
basic concepts for communication. This system of concepts
does not belong to any specific area of expertise, but rather is
used as a fundamental one in all of these areas. When we want
to understand “what is there” in a specific area of expertise (that
is, when we discover an ontology of that area) and when we
communicate our understanding to others (that is, when we
represent the ontology in some manner), we have to use such
fundamental common concepts. And the importance of under-
standing and properly using these concepts increases in those
areas of expertise that are less specialized, such as the area of
information technology, especially, understanding and proper
handling of complexity.

2. A system of common concepts

Where do these common concepts come from? As Mario
Bunge noted, “all factual sciences, whether natural, social, or
mixed, share a number of philosophical concepts ... and a
number of philosophical principles” [8]. More specifically,
technologists “who work on general theories of systems, control
theory, optimization theory, the design of algorithms or
simulation are applied philosophers of sorts, since they use
philosophical concepts, such as those of event and system, and
philosophical principles, such as those of the existence and
lawfulness of the external world” [7]. This is where business
and IT experts can and should find a common ground for
understanding and therefore communication.

In order to succeed, the fundamental concepts — rather than
various rapidly changing IT-industry-imposed fashionable “new
things” [15] — ought to be used in an explicit manner. These
concepts are stable, and have been so for centuries. At the same
time, proper exactification of some of these concepts became
possible only more recently, thanks to the developments in exact
philosophy, semiotics, mathematics, and computing science. In
particular, it has been necessary for success to abstract away
from the (extreme) complexities often imposed by software and
service vendors, and to go “back to basics” [30].

We will see that the same fundamental system of concepts
has been used both in exact philosophy and in important IT-

based work, such as international standards (for example, RM-
ODP — the Reference Model of Open Distributed Processing
[26]). These concepts have been successfully used not only in
theory, but also in industrial practice of business system
modeling, design and development (see, for example,
[33,16,39]), as well as in teaching (using information modeling
and RM-ODP, with an appropriate very small subset of UML
used for representation purposes) in a unit on modeling of a
suitable IS course (such as data and knowledge management)
for students of management, MBAs, IT, etc. [37].

Many philosophical foundations of these fundamental
concepts have been exactified by Mario Bunge. Other thinkers,
such as Wittgenstein [57] and F. A. Hayek [20,21], also
contributed a lot. Some fundamentals go back to Aristotle: for
example, there exists a very important difference between the
Aristotelian and a prototypical (example-based) approach to
modeling [41,36]. The former provides for the intension of the
model; the latter — despite being buzzword-compliant in some
popular IT-based methodologies — provides for its probably
incomplete extension. When we use the former, we can always
find out whether a fact corresponds to the model, while when
we use the latter, we often cannot do that. In the same manner as
testing of a program can show an error but cannot demonstrate
that the program is correct (E. W. Dijkstra), examples are
helpful to illustrate an ontology, but are inadequate when we
want to create and communicate it. After all, testing of a
program, or of an ontology (that is, using examples to check it),
differs significantly from creating and understanding it.

It is very instructive to notice that essential concepts and
structuring rules defined in the RM-ODP standard are based
on the same fundamentals from exact philosophy, as well as
on mathematics — “the art and science of effective reasoning”
(E. W. Dijkstra). This international standard was created to
support the definitions of “the basic concepts to be used in the
specifications of the various components which make up the
open distributed system” [26]. While such a standard may
seem to be very specific and useful only in computer-based IT
environments, open distributed systems exist not only — and not
even mainly — in computer-based environments: such systems
have existed and have been described in all kinds of human
endeavor, for example, in a market economy [2,42], or in
reasoning about purposeful behavior [22]. As an example, it
was very easy and enlightening to show how the concepts and
structuring rules defined in RM-ODP perfectly apply to a
precise specification of a specific open distributed system — a
banking clearing house — based on a century-old text [14] and
still — without changes but perhaps with some refinements —
applicable now [29].

Similarly, we observe that crucial business concepts have
been known and explicitly used for a long time; they were
clearly expressed, for example, in works by Adam Smith. And
we also observe, with great pleasure that Smith’s — more
specialized — Wealth of Nations was based on philosophical
foundations laid in his Theory of Moral Sentiments. This paper
shows how the system of important concepts and approaches
proposed by these thinkers has been used to understand and
specify essential fragments of the ontologies of various business

100 H. Kilov, I. Sack / Computer Standards & Interfaces 31 (2009) 98—109

and IT systems, and thus to establish successful communication
between business and IT experts.

3. What’s in a name: A (relatively) familiar example

The abysmal notion of “meaningful names” has existed in IT
for quite a while [28]. This notion is not [T-specific: as observed
by F. A. Hayek in his thought-provoking and eloquent Chapter
“Our poisoned language” ([23], Chapter Seven), “while we
learn much of what we know through language, the meanings of
individual words lead us astray: we continue to use terms
bearing archaic connotations as we try to express our new and
better understanding of the phenomena to which they refer”.
The inadequacy of “meaningful names” in IT was recognized by
Grace Hopper as early as in 1957: “[w]hile the computation of
the square root of a floating decimal number remained the same
in Pittsburgh, Los Angeles, and New York, the computation of
gross-to-net pay obviously did not remain the same even in two
installations in the same city” [25]. As a modern-day example,
consider relying on “data names” — instead of an explicit
information model — in XML within the context of Semantic
Web (for a criticism and a semantics-based approach, see [39]).
The need for semantic information integration based on
meaning rather than on “data” and tools (none of which
integrates data beyond the syntactic level) has been emphasized
for a long time, and is becoming acknowledged in popular
industrial publications [50] where, for example, we encounter
references to “a hundred different meanings” of such terms as
“on-time percentage” or “customer profitability”. Let us try to
exactify the concept of a name.

We start with observing that synonyms and homonyms exist:
the same thing (or action, or process, or relationship) may have
different names, and the same name may denote different things
(or actions, etc.). Although many IT-based approaches promote
the apparent need to determine and impose the “only correct
name” of a thing, other names of that same thing, including
nicknames and abbreviations, have been (and will be) used in
business anyway, leading to various and often serious problems.
It is counterproductive, for example, to try to determine which
of the 50 or more somewhat different types of things, all named
“patient” by various groups of HMO stakeholders in different
contexts, is a real patient, and which of them, therefore, are “not
real patients”. To distinguish between these different types of
things with the same name, we explicitly use contexts, such as
“this is what emergency calls a patient”, or “this is what
insurance company XXX calls a patient”. (If from an insurance
company’s viewpoint a patient is the person who pays insurance
premiums then the statistical datum stating that 40% of male
patients have been pregnant at some point in time could be
understood...)

We continue with observing that in business, the context of a
name may not always be made explicit, and may change even
within the same narrative — even the same sentence — presented
by a single person. Questions about semantics, determined to a
large extent by the context, can always be (informally) asked
and answered, although in many business situations this is not
done because it is wrongly assumed that “everyone knows what

XXX is”. Since interactions with computer-based systems
require a substantially more disciplined approach to using
names, a strict discipline may often be imposed — often
implicitly — on using “the same meaningful name” to denote
apparently “the same thing”. Such approaches often lead to
failures.

There is no need to invent new and better approaches in order
to solve the “name problem”. Philosophers have noted that
names by themselves do not convey any meaning: as stated by
Wittgenstein, “[o]nly the proposition has sense; only in the
context of a proposition has a name meaning” [57]. Similarly,
semiosis was defined by Charles Saunders Peirce as “an action,
or influence, which is, or involves, a cooperation of three
subjects, such as a sign, its object, and its interpretant, this tri-
relative influence not being in any way resolvable between
pairs... If this triple relation is not of a degenerate species, the
sign is related to its object only in consequence of a mental
association, and depends upon habit” [49]. The concept of an
interpretant is very close to the concept of a context within
which a name is being considered [31]. Clearly, the context
itself — the set of relevant relationships defining the structure of
the relevant domain (that, is, a fragment of the ontology) — has
to be defined in an explicit manner. Correspondingly, David
Hilbert noted that the content of elementary geometry does not
suffer any changes if we replace the words “point”, “line”, and
“plane” by the terms “chair”, “table”, and “bar” [58].

This philosophy-based approach provided a solid foundation
of the system of corresponding RM-ODP definitions [26]: a
name is “a term which, in a given naming context, refers to an
entity”, and an identifier is “an unambiguous name, in a given
naming context”. Clearly, the same entity may have several
names and several identifiers in the same naming context. These
definitions are based on semantics and apply to any system,
independently of whether it does or does not use computer-
based information technology. And there has been no need to
use IT-specific (or any buzzword-compliant and thus “rapidly
changing”) concepts for these definitions. They have been
distilled, taking into account the appropriate philosophical
foundations, from a huge body of industrial data and business
modeling experience, including a lot of work in proper handling
of data input described, for example, in [17,28,36]. It is a pity
that the same old mistakes in name treatment and data input
handling have still been encountered in many, and varied
(failed) present-day IT-related activities (some of them may be
described in articles with titles referring to “data quality” or
“semantic integration”). To avoid such mistakes, it is essential to
base the IT work on a solid foundation that, as we have seen, can
also be used for communicating with non-IT experts.

A moderately detailed model of “name in context” based on
the definitions discussed above was presented, for example, in
[29]. This model — as any other business model, for that matter —
substantially uses a very small number of generic relation-
ships, such as composition and subtyping. The semantics of
these relationships was precisely defined, for example, in RM-
ODP using philosophical foundations such as those described
by Mario Bunge [7,9] or by F. A. Hayek [21]. Thus, business
and information modeling does not start with a blank sheet of

H. Kilov, I. Sack / Computer Standards & Interfaces 31 (2009) 98—109 101

paper, but rather reuses essential business patterns such as
generic relationships. Note that various business patterns
based on composition were precisely described and used by
such system thinkers as Adam Smith ([55], Book One,
Chapter VI — the example of a price of commodity as a
composition' of rent, labor and profit), F. A. Hayek [20,21],
Ludwig von Mises, and others.

4. On systems and relationships

All too often, existing systems or those that are supposed to
be built, are represented by “experts” using various kinds of
box-and-line diagrams the semantics of which is either unclear
or too vague to be of any use. Although some readers of such
diagrams may have a warm and fuzzy feeling about them,
especially if some names used in the diagrams happen to be
familiar, different readers will usually have quite different
understanding of the meaning of these diagrams. Often, the
narratives describing the diagrams are either unclear or
concentrate only on examples (compare with the contrast
between the Aristotelian and prototypical approaches to
modeling referred to above). Specifying an existing system or
designing a new one on such a basis leads to serious problems
and often to failures.

Again, as in the name example above, let us try to exactify
the concept of a system together with some related concepts. To
quote Mario Bunge, “[e]very system can be analyzed into its
composition (or set of parts), environment (or set of objects
other than the components and related to these), structure (or set
of relations, in particular connections and actions, among the
components and these and environmental items) and mechan-
ism (or set of processes peculiar to it, or that make it tick)” [8].
Moreover, analysis means “breaking down a whole into its
components and their mutual relations” [9]. These approaches
were not invented by Bunge — they have been known and used
for centuries. For example, Walter Bagehot in Lombard Street
observed in 1873: “[t]he objects which you see in Lombard
Street, and in that money world which is grouped about it, are
the Bank of England, the Private Banks, the Joint Stock Banks,
and the bill brokers. But before describing each of these
separately we must look at what all have in common, and at the
relation of each to the others” [2]. Thus, the concepts of a
relation and of composition are of essence in analysis (and
system design) work. Observe also that in order to understand
individuals we ought to consider relationships between them:
“individuals are merely the foci in the network of relationships™
[21]. Clearly, we need to concentrate on relationship semantics,
and in doing so we emphasize, in particular, that a line between
two boxes is not a relationship since its semantics has not been
specified (also, most relationships are not binary).

From the considerations above it follows that the same kind
of approach may and should be used to understand business

! See the precise definition of the composition relationship below. While
Adam Smith did not use this definition explicitly, his treatment of this example
clearly demonstrates his excellent understanding of composition semantics.

and IT systems, and that the same concepts and constructs may
be used to analyze® and design such systems. Furthermore, the
structure of composite processes may be understood in the
same manner as the structure of composite (“whole”) things,
so that the same kinds of relationships may be used in
analyzing (and designing) both things and processes. In this
manner, it becomes possible to define and use a small number
of concepts and constructs for understanding and describing
any kind of system. When the semantics of these concepts is
defined in an explicit manner clear to both business and IT
experts (so that it can be explained on a proverbial back of an
envelope), these experts can easily communicate: they will use
the same system of concepts for creating their explicit
ontologies, in the same manner as different people use the
same well-defined and easily explainable system of concepts
to create and use various kinds of roadmaps, from those in
nicely bound atlases to those scribbled on a napkin. And in the
same manner as the semantics of every relationship between
things in a roadmap is conceptually clear — or can be easily
explained — to any user of a roadmap, the semantics of every
relationship between items in an ontology should be
conceptually clear or be easily explainable to every user of
the ontology. Fortunately, this is not too difficult since the
number of basic relationships is quite small, and their
semantics has been clearly defined.

As noted above, a system of such concepts was specified, for
example, in international standards such as RM-ODP and the
General Relationship Model (GRM [27]). These approaches to
creation and use of ontologies and to system analysis (and
design) in general have been applied both in academia (teaching
and research) and in industry — in various business and IT areas
including finance, insurance, telecommunications, document
management, organizational modeling, managerial decision
making, business process change, metadata management,
business and IT system architecture, and many others
[16,36,34,29,31,33,39,44,47]. Furthermore, these approaches
have substantially influenced various OMG (Object Manage-
ment Group) standards, such as the Relationship Profile of the
UML profile for Enterprise Distributed Object Computing, the
Model-Driven Architecture (MDA), etc.

4.1. Composition

One of the most important concepts in system thinking is that
of a composition relationship. It is defined in RM-ODP as “[a]
combination of two or more [items] yielding a new [item], at a
different level of abstraction. The characteristics of the new
[item] are determined by the [items] being combined and by the
way they are combined” [26]. Similar definitions have been
provided by philosophers, notably, by Bunge and Hayek. It
follows that the concept of emergent properties of the composite
is the essential one to understand and use composition. Whereas

2 This applies to the analysis both of business systems and of IT systems. The
latter often have to be explicitly analyzed because “it does what it does” is not
an adequate characterization of an IT system by its vendor (or by anyone else).

102 H. Kilov, I. Sack / Computer Standards & Interfaces 31 (2009) 98—109

in some cases the values of these properties may be easily
determined by a computer-based system (e.g., the total number
of pages in a paper document composed of sections), in other —
more interesting — cases the values of the emergent properties
have to be determined by humans (e.g., the abstract of such a
document).

We may want to distinguish between various degrees of
novelty of emergent properties. In some cases, we follow
Bunge’s definition of emergence and look at radical novelty:
“[a] property of a system is emergent if it is not possessed by
any component of the system. Examples: [...] being alive (an
emergent property of cells), perceiving [...] and social structure
(a property of all social systems)” [9]. In certain other cases, the
novelty is not radical at all (the emergent properties may, for
example, result from the relationships of the composite to its
environment), while in many cases the degree of novelty of
emergent properties is between the two extremes: consider the
various degrees of social significance in various groups of
individuals as described in [45]. This degree of novelty need not
be fixed: for example, we can differentiate a group of people
who met for the first time for some purpose from that group that
functions as a team with social and other bonds. When the latter
is disbanded (for example, by management), the bonds still
remain, and therefore the team as a composite (perhaps of a
different kind) still exists.

A composition relationship is in most cases not binary: the
invariant that determines the emergent properties of the
composite refers to all its components rather than only to one
of them. Moreover, in understanding and using compositions
we refer to the emergent properties of the composite, and
therefore “definitions” of compositions that do not refer to
property determination miss the essential semantics of the
defined concept. These inadequate definitions lead to failures
but still have been widely used in popular IT-based (more
specifically, tool-based) modeling approaches because handling
various kinds of emergent properties — and of property
determination in general — is not easy and more often than
not cannot be automated. In this context, we observe that the
definitions of the essential generic relationships — composition,
subtyping and reference [31] — are all based on property
determination.

A property of any system (including a software system) is
emergent if it is not possessed by any of the components of that
system. Any complex system can be described in this manner.
The observation about abstraction layers in software was made
as early as in the 1960s, by Dijkstra, Hoare, and others. With
respect to information modeling, the same kind of observation
about any system was made, for example, in [36, pp. 30-31].
Similarly, as noted above, composition has been defined as a
form of abstraction in RM-ODP. Examples of emergent
properties of software systems may include reliability, execu-
tion speed, complexity, maintainability, and what a system of
intelligent agents “knows”. Even more specific examples
include: a data warchouse as a composition of databases
(together with its metadata and with ways of handling data
quality issues); a database as a composition of data model,
DBMS, schema, files, and code (including that for handling

data quality issues!)’; the Google® search engine as a
composition of “whatever is inside”; etc. Thus, competitive
advantage may be considered as an important example of an
emergent property of the Google® search engine while most
properties of its components (with the exception of the user
interface simplicity) are not visible to its users.

In understanding systems we often distinguish between
different kinds of composition. For example, the distinction
between a traditional and a modern corporation as described in
[13] may be exactified as the distinction between a hierarchical
and a non-hierarchical composition of parts of that corporation
[31]. In a similar manner, we may distinguish between a
traditional and modern industry: the former is composed of
industry-specific technologies, and this composition is hier-
archical because the technologies pertain only to “their” specific
industry, while the latter is composed of various technologies,
and this composition is non-hierarchical because many
technologies are not specific to that industry and thus are
reused as components by various industries [31]. Clearly, such a
rough draft of the ontology of an industry or of a corporation —
at a very high abstraction level — may be scribbled on the back
of an envelope and successfully used by (high-level) stake-
holders for demonstrably reasonable decision making. Note that
the semantics of all elements, and especially of all relationships
between elements, in these back-of-an-envelope presentations is
well-defined and can be easily explained to existing and new
stakeholders.

4.2. Business patterns

Composition is not the only important concept in systems
thinking.

Business and IT modeling activities should never start with a
blank sheet of paper. By using business patterns (also known as
templates — “specifications of the common features of a
collection of [items] in sufficient detail that an [item] can be
instantiated using it” [26]) and discovering where such patterns
can be instantiated in various business and IT system contexts,
analysts or designers make their work substantially easier and at
the same time more challenging: they can handle more complex
systems without the need to reinvent basic constructs over and
over again. In other words, the essence of analysis and design
work can be described as pattern matching in context.

Again, the concept of a (business) pattern is not new at all. It
was presented, in a clear and explicit manner, by Adam Smith in
his Theory of Moral Sentiments (1759): “When a number of
drawings are made after one pattern, though they may all miss it
in some respects, yet they will all resemble it more than they
resemble one another; the general character of the pattern will
run through them all; the most singular and odd will be those
which are most wide of it; and though very few will copy it
exactly, yet the most accurate delineations will bear a greater
resemblance to the most careless, than the careless ones will
bear to one another”.

3 Compare the structure of this composition with the structure of the previous
one.

H. Kilov, I. Sack / Computer Standards & Interfaces 31 (2009) 98—109 103

Business patterns used in ontologies — and in analysis and
design in general — may be classified into fundamental (such as
“invariant”), generic (such as “composition” and “subtyping”),
business-generic (such as “contract”) and business-specific
(such as “financial derivative”, or “foreign exchange option”),
and if business-specific (or even business-generic) patterns are
not available or not known to the analyst, it is always possible to
use the less specialized generic or fundamental ones [29,31]. In
applying patterns, in creating new reusable patterns (and in
modeling in general!), it is essential to use abstraction
(“suppression of irrelevant detail” to enhance understanding
[26]) and exactification which “consists of replacing vagueness
with precision [and] is attained by using, wherever necessary,
the exact and rich languages of logic and mathematics instead of
ordinary language, which is necessarily fuzzy and poor because
it must serve to communicate people of widely different
backgrounds and interests” [8]. The same approach of using
abstraction and precision — together with a small number of
well-defined concepts — has been successfully advocated and
used by such founding fathers of computing science as E. W.
Dijkstra (for example, [12]) and C. A. R. Hoare (for example,
[24]). And, as emphasized by von Mises, “[e]conomics, like
logic and mathematics, is a display of abstract reasoning.
Economics can never be experimental and empirical. The
economist does not need an expensive apparatus for the conduct
of his studies. What he needs is the power to think clearly and to
discern in the wilderness of events what is essential from what is
merely accidental” [42].

When we understand a business (be it a traditional business or
that of some IT system) and communicate this understanding to
others we want to concentrate on a stable foundation — the
business domain — discovered by means of pattern matching in
context. These patterns do not exist in isolation: to quote
Lawvere, one of the founding fathers of modern category theory,
“comparing reality with existing concepts does not alone suffice
to produce the level of understanding required to change the
world; a capacity for constructing flexible yet reliable systems of
concepts is needed to guide the process”. In the same manner as
in science we deal with laws of nature, in business we deal with
“business laws” — “patterns satisfied by facts” (Bunge).
Furthermore, various actions including those to be accomplished
by computer-based IT systems (and described in the require-
ments for such systems) substantially refer to the things and
relationships of the appropriate domain and therefore should be
specified using the business domain model. In other words, the
(relatively stable) ontology of the domain comes first, before
discovering and formulating any (relatively volatile) system
requirements. And in the same manner as relationships are not
the same as semantic-free links connecting relationship
elements, ontologies are not the same as data dictionaries.

5. (Traditional) engineering processes and artefacts

The system of common concepts described above has been
successfully used not only in such a “new” area of technology as
information technology (including knowledge engineering), but
also in “traditional” areas of technology: after all, different areas

of technology have a lot in common [7]. Of course, “traditional”
engineers and technologists have often used terminology
different from that of this paper, but the semantics of the
systems of concepts used by them was often very similar.

As properly stressed by Mario Bunge ([7] and elsewhere)
and by many other authors, successful technology is science-
based rather than empirical. In fact, the concept of science-
based technology was discovered and formulated by the Greeks
within approximately one century, about 2300 years ago [53].
And in more modern times, a typical research and development
process in engineering that leads to creation of new or updated
artefacts may be represented by the following technological
method: “choice of field — formulation of a practical problem
— acquisition of the requisite background knowledge —
invention of technical rules — invention of artefact in outline —
detailed blueprint or plan — test [...] — test evaluation —
eventual correction of design or plan” [7]. Clearly, instantiations
of this process characterize both “traditional” engineering and
software engineering. Furthermore, this process requires
starting from the basics of the appropriate engineering (and
business) domain, as described elsewhere in this paper. While
this approach is natural for a “traditional” engineer, it has not
been so for buzzword-compliant software engineers. As noted
in the eloquent paper by Peter Amey [1], there is, for example, a
very substantial conceptual difference between diagrams used
in traditional engineering and those often used in software
engineering: in traditional engineering, “the coloured picture is
providing an abstract view of a rigorous mathematical model”,
while in software engineering, “the user of a contemporary
CASE tool is looking at [...] a vague illustration not under-
pinned by anything other than the informal design decisions of
the tool vendors”. This contrast has important social con-
sequences: Amey observes that “as an aeronautical engineer |
am amused by the idea of applying for a job at Boeing or Airbus
quoting my “skills” as: screwdriver, metric open-ended
spanners and medium-sized hammers!” — the approach all
too often used in hiring software engineers. Of course, this
harmful conceptual gap between different kinds of engineering
does not have to exist.

Thus, an engineering process starts from an ontological
model that may be refined or changed later. In engineering, as in
other areas of human endeavor (including business and social
ones), ontologically clearer conceptual models have been
shown to facilitate better problem solving within real-world
application domains. Some engineers do not use the term,
“ontology”, when they start their process, but the semantics of
starting with an ontology is there: the background knowledge
essential for success includes the ontology, the laws of nature,
and the social and technological constraints of the chosen
application area. Some authors have already been using the
ontology-related terminology (and creating and reusing engi-
neering ontologies!): for example, [5] not only describe an
ontology providing the foundation of reusable engineering
model components and show how a general and abstract
common framework “can be used and reused as generic
building blocks in ontology construction” leading to knowledge
sharing across domains, but also, for example, properly

104 H. Kilov, I. Sack / Computer Standards & Interfaces 31 (2009) 98—109

emphasize the need for viewpoints in dealing with complex
systems — a concept standardized in RM-ODP.

More recently, we have seen excellent publications that
demonstrate how to bridge the conceptual gap between
traditional and software engineering. For example, Dines
Bjorner [4] shows that effective (“pleasing, elegant, expressive,
and revealing”) specifications of all kinds — from traditional IT-
independent ones such as railroads to software ones such as
language compilation — use the same kind of structure and
approach, starting with the basics of the appropriate domain.
This kind of structure and approach is very similar to the one —
based on mathematics and exact philosophy — shown in this
paper. Indeed, both great philosophers [7] and great software
engineers [48] stressed that software engineering, knowledge
engineering and information technologies are subtypes of
technology, and that, in particular, “the introduction of
accredited professional programs in software engineering,
programs that are modeled on programs in traditional
engineering disciplines will help to increase both the quality
and quantity of graduates who are well prepared, by their
education, to develop trustworthy software products” [48].

Of course, the approach based on using ontologies in
engineering contexts has its limitations. One of the major
limitations is the difficulty of directly implementing operational
models from given starting conceptual models: “refinement”
requires invention and, in fact, an IT system specification is not
a direct refinement of the appropriate business specification but
a composition of this business specification and the chosen or
imposed technological one (based on its own ontology) [31].
Also, ontological engineering usually does not consider every
aspect of reality but uses abstraction to concentrate on its most
relevant aspects.

Finally, both in traditional engineering and in information
technology, artefacts (products and services) do not exist in
isolation but rather exist as components (subsystems) of various
systems including social and cultural ones. The external
structure of any system — including a traditional engineering
one — is a non-empty collection of relationships between
components of the system and components of its environment.
The external structure of an open system is not fixed and
possibly not completely available. The outcome of an action in
the context of an open system is always uncertain — an
observation made by von Mises [42,43]. In complex social
systems (such as the market) the behavior of acting individuals
(based on value judgments) is unpredictable, and therefore it is
possible to predict only patterns rather than the specific
outcomes [20]. Thus, the simplistic reductionist approach
often used in traditional engineering and IT, even if based on
ontologies, may fail in complex systems within their social and
cultural environment.

6. Case studies
6.1. A large financial institution: two teams of experts

In a large financial institution in Europe, two teams of
experts could not find a reasonable way to communicate. One of

these teams was “old-fashioned” and did not recognize the value
of object-oriented approach(es) to system analysis and design.
The other team wanted to be as “modern” as possible and
therefore wanted to base its work on the most recent object-
oriented constructs. Both teams had succeeded in completing
various projects, but they were unable to work together.

One of the authors of this paper (together with colleagues)
was invited to help (Some specifics of this work were
described in more detail in [3].). An informal but rigorous
assessment of the customer environment demonstrated that
members of both teams often relied in their modeling work
on implicit assumptions and on “box-and-line” diagrams, that
is, on diagrams with “meaningful names” in boxes and with
only binary relationships that were represented by “mean-
ingfully-named” lines. Inevitable problems due to the absence
of explicit semantics were resolved in informal and often not-
too-rigorous ways, leading to miscommunications even
within the teams and therefore to delays in completion of
projects. Nevertheless, most if not all projects had been
successful because the team members were specialists of very
high caliber.

We wanted to help the excellent experts.

In order to do that, we had proposed to base all modeling
work on a system of methodologically-, technologically- and
tool-neutral concepts, so that these concepts could not be termed
“object-oriented” or ‘“non-object-oriented”. We also recom-
mended using only those concepts that had clearly and
explicitly defined semantics. And we had shown that there
was no need to invent such a system of concepts because it had
already existed and standardized by ISO for quite a while and
had been based on exact philosophy and mathematics. (It was
the system of concepts described in this paper.) Moreover, we
proposed to reformulate the (then) most difficult problems
encountered by the teams using this system of concepts and
predicted that by doing so clarity and understandability would
be achieved both in formulating the problems and in finding
appropriate solutions.

The financial institution experts were very happy with our
proposals, especially with the fact that they would be able to use
a (small!) system of concepts, especially business patterns,
based on philosophy and mathematics rather than on a currently
buzzword-compliant tool. These patterns constituted the solid
foundation of a clear language used to communicate between
members of different teams.

We started with a short presentation of the system of
concepts and with small examples from the environment of the
financial institution. Almost immediately, it became possible to
handle one of the serious problems encountered by one of the
teams: by formulating precise definitions of the constructs in
their contexts, and specifically, by defining the kinds of generic
relationships between these constructs and other, related, ones.
Specifically, we found out and were able to express in a clear
manner understandable to all stakeholders the semantic
distinction between what was termed ‘business processes”
and what was termed “business functions”. This semantic
distinction was formulated using two different subtypes of a
composition relationship: one, an ordered composition-

H. Kilov, I. Sack / Computer Standards & Interfaces 31 (2009) 98—109 105

assembly (for business processes), and another, an unrestricted
composition (for business functions). The explicit formulation
opened the eyes of a lot of people who did not understand the
semantics of this difference before.

This modeling activity was very illuminating: we used only
(the invariants of) two types of composition and of subtyping in
order to ask questions about the business patterns — relation-
ships we looked at, and convince ourselves that we were on the
right track. We were able to present the complete semantics of
the model in one picture of moderate complexity due to the fact
that each graphical representation element we used had precise
semantics. Also, we demonstrated that the same system of
concepts can (and should) be used to model relationships
between things and between actions — no need to reinvent any
different but tool-compliant constructs for the same concepts.
Thus, magic still encountered in many discussions was replaced
with clearly defined models.

Another serious problem dealt with a problematic specifica-
tion (a fragment of an accounting business) perceived to be
precise. In that old specification, all relationships were
represented (thanks to the use of a specific tool) by named
binary links, so that the semantics of the relationships was
unclear and often missing. In the improved specification, it
became clear what links “belonged together”, i.e., constituted
the same relationship, and also what kind of a generic
relationship it was. Again, it was not difficult to formulate the
improved specification. In particular, the invariant that
distinguishes basic components of an account (postings) from
derived components (position amounts and positions) became
specified, and the distinction between basic and derived
components became clear. The relationships were more
semantically rich and were not artificially restricted by a
methodology or tool. Thus, the “business rules” that often are
“visible only in the code” could be explicitly demonstrated in
the business specification.

The substantial improvement of the old specification
happened due to the following reasons:

® generic relationships (such as different kinds of composition)
were made clearly distinguishable from application-specific
relationships obtained by instantiating the former;

® it became possible to show explicitly that a relationship
associates more than two participants;

® it was emphasized that relationship semantics (such as that of
composition, see above) includes more important and
interesting aspects — property determination — than just
cardinalities.

In this manner, the emphasis in a specification is not on links
anymore, because links in specifications are at a very low
abstraction level and correspond to goto’s in programming.
Rather, the emphasis is on higher-level precisely specified
meaningful constructs corresponding to (for example) while
loops and procedures with parameters in programming. The

4 A composition is an assembly if the existence of a composite implies the
existence of its components.

team members who have been (or had been) programmers
appreciated this comparison very much, while both the
programmers and the business experts appreciated the clarity
and simplicity of the semantics explicitly represented in the
specifications.

All team members were happy with using the system of
concepts based on fundamental ideas of exact philosophy rather
than on volatile (“here today, gone tomorrow”) and often
undefined, but methodology- and tool-compliant, constructs.
The “object-oriented” and “non-object-oriented” teams could,
and did, communicate very well, and of course, the same
applied to the business and IT stakeholders.

Finally, by providing the customer with a system of concepts
including reusable business patterns, we succeeded in empow-
ering the customer: “[t]he role of a trainer or consultant is to
empower the customer, not to make himself indispensable”
(Bertrand Meyer).

6.2. A leading publishing company: Using an ontological
approach to model a publisher's business environment and
strategy

One of the authors was hired to assist a team of a top
management consulting and systems integrating firm that had
been engaged by a paperbound publisher to transition the latter
from a paperbound environment to an emerging electronic
environment while maintaining its dominant market position.
(Some specifics of this work were described in more detail in
[54]). The consultants formed a joint development team (JDT)
which consisted of several of their own senior level systems
analysts working in conjunction with members of the publish-
er’s upper level executives and subject matter experts (SMEs).
The JDT was formed and charged with accomplishing two
objectives in a relatively short time. First, it wanted to
understand the publisher’s business environment and develop
a new brand identity based on a suite of new, profitable Internet
product and service offerings. Second, it wanted to reengineer
the publishing process and adapt emerging technologies in order
to reduce costs and minimize workcycle time.

From the outset of the project, it was evident that the board
suffered from a lack of “sensemaking” of critical aspects of the
emerging electronic environment. Who were the new compe-
titors? What was the nature of their electronic offerings? What
new physical technologies were they using? What market and
business data was available and how could they understand and
exploit it? What were the publisher’s opportunities, threats and
risks? Although the consulting company routinely handled
assignments such as this one, they felt hindered by the
publisher’s apparent inability to understand the “outside
world” and respond to questions such as these. The consultants
also wanted all members of the JDT to have a shared explicit
understanding of the publisher’s business environment before
proceeding to identify, specify, and develop a competitive suite
of integrated electronic products and services.

In fact, the publisher made available an abundance of its
business data and information to the consultants. Yet, the latter
felt that they could not successfully develop competitive web-

106 H. Kilov, I. Sack / Computer Standards & Interfaces 31 (2009) 98—109

based “solutions” through the use of the standard “business
sanctioned” in-house methodology previously employed in
their consulting practice. This methodology was based on
traditional systems development lifecycle tools and a database
of best practices and lessons learned. The consultants decided to
seek an “out-of-the-box” approach to modeling the complex,
unstructured “ocean” of data that the client company had made
available.

In a world where speed frequently dictates “everything”, the
JDT decided that before proceeding further they had to model
the publisher’s current business environment. After consultation
with the author, one systems analyst proposed that an
ontological approach be taken to develop a business model
and strategy that would facilitate the publisher’s sensemaking
and establish relevant and precise communications among all
members of the JDT. The analyst asked and received permission
to introduce to the JDT a short overview of an ontological
approach as well as the rationale for adopting it. This
presentation took only about thirty minutes.

For about half of a business day, the same system analyst led
a brainstorming session in which the JDT concentrated its
efforts to identify business relationships that existed in the
current business environment. The next day an explicit and
precise business-generic model referred to as the Value Net
Information Model (VNIM) was proposed by the analyst and
adopted by the JDT. This underlying idea of this model is that a
competitive environment is founded on semantically well-
defined relationships between business players. The JDT began
its modeling by identifying customer, supplier, competitor and
complementor as the most important subtypes of business
players.

In the next few weeks, the JDT elaborated upon and refined
the initial VNIM. They created an “as is” ontological model and
then proceeded to create a “to be” ontological model that
represented the publisher’s desired future business environ-
ment. Once the “as is” and “to be” business models were
completed and accepted by the client’s business stakeholders, it
was not too difficult or time-consuming to formulate a
transitioning business strategy.

As a means to implement that strategy, necessary IT
applications and infrastructure were identified and specified
again using an ontological approach that used the same system
of concepts that had been used for the specification of the
business environment. Within a short timeframe, a suite of new
Internet products and services were implemented and put into
operation. The publisher was successfully transitioned to the e-
environment and was able to maintain its dominant marketing
position which it still currently enjoys.

The members of the JDT found that having explicit and
precise models helped generate conversation and identify new
business issues, opportunities and risks. The executives and
SMEs were able to answer the questions they previously could
not, as well as satisfactorily raise and resolve business and
technology issues that occurred along the way. The resulting
sensemaking led to greater entrepreneurial insight and the
ability to capitalize on it. The members of the JDT appreciated
that the ontological approach had broken down the usual

cultural and communication barriers that had previously existed
between business and IT. Indeed, they widely acknowledged
that the ontological approach was key to their project success.
The ontological models replaced accident (situational data) by
essence (contextualized knowledge), provided a basic founda-
tion for both business and IT strategies- and the payoffs for the
publisher were huge!

7. Conclusion: Communication, modeling, and decision
making

Communication between experts in different domains is only
possible on the foundation of a joint ontology (which is often
assumed implicitly), and therefore such an ontology is essential
for successful communication between (traditional) business
and IT experts. To create this ontology, it is necessary to use a
common system of concepts and constructs applicable to and
extensible within any specific viewpoint. Exact philosophy
defines such a system that was also standardized in RM-ODP
and GRM. RM-ODP demonstrates how the same foundation
[26] has been successfully used to define various specification
viewpoints. Similarly, Gerald Weinberg in his very pragmatic
text on general systems thinking [56] states that “the student
trained in general systems thinking can move quickly into
entirely new areas and begin speaking the language competently
within a week or so”. He further notes that mastery of a person’s
native (plus at least one non-native) language together with
mastery of mathematics are essential for success in general
systems thinking; in E. W. Dijkstra’s independent opinion, these
are the only two necessary prerequisites of a good programmer.

Since a computer-based system has to be exact, exactifica-
tion is essential in the context of such systems in information
management, business and IT modeling, decision making, etc.
Moreover, independently of whether computer-based systems
are or will be used, decision making in any system ought to be
based on clear and explicit foundations: as E. W. Dijkstra
stressed, it is pondering (or modeling) that reduces reasoning to
a doable amount. Caveats certainly exist, especially in business
systems, such as unpredictability of human actions [42] and of
the environment (open systems) [24], but it may be possible to
describe, reason about, and predict at least some essential
characteristics (“patterns” [20]) of such systems. In fact, it may
be undesirable or impossible to provide for a very detailed
model of a business domain and especially processes,
particularly when some actions are accomplished by humans
rather than by computer-based systems (or when the unpredict-
able context, such as the market context, is of substantial
importance). At the same time, precise and abstract models are
possible and desirable: “precise” is not the same as “detailed”,
and in abstract models irrelevant details are suppressed to
enhance human understanding.

Various business patterns — from fundamental to business-
generic to business-specific — based on exact philosophical
concepts have been used to provide clarity and understand-
ability in business and IT modeling, and thus to communicate
between business and IT experts. It was not necessary (nor
perhaps desirable) to use the term, “philosophy”, to establish

H. Kilov, I. Sack / Computer Standards & Interfaces 31 (2009) 98—109 107

communication between, and with, quite a few of these experts,
but the semantics of concepts could be explained and
immediately used in a relatively straightforward manner.

Summing up, a business modeling process — essential for
designing IT systems, for making business decisions (including
those about automating some fragments of the business)
demonstrably based on the essentials of that business, for
teaching new employees, and for various other purposes — is
clearly based on the synthesis of the concepts and constructs
described above. Such a process certainly cannot (and should
not) be automated. At the same time, it can be successfully
accomplished and certainly can be taught. It explicitly uses a
small number of concepts that have been well-known for
centuries and were precisely defined in literature including
international standards. It starts with creating an abstract model
of the relevant fragments of the business domain. Such a model
will be (relatively) stable and will provide a framework for more
volatile models of business processes, of business requirements
for IT systems, etc.

A business domain model is created by modelers jointly with
the business stakeholders. The discovery and creation of such a
model starts with its basics, that is, with the exactification of the
main things and relationships of the domain that are most often
implicitly assumed and used by the business stakeholders. Such
an exactification is never accomplished using a blank sheet of
paper: on the contrary, a business modeler (and often an
experienced business stakeholder) uses business patterns to ask
questions about and to exactify the essential aspects of the
business. The fundamental and basic business patterns (the
definitions of which was provided by system thinkers including
philosophers), such as invariants and generic relationships, are
always available for recognition and reuse in any business
domain, even if nothing else is known explicitly about that
domain. In most cases, business-generic patterns such as
contracts (also already defined by system thinkers) are also
available for recognition and reuse. In those cases when
business-specific patterns are not available yet, it is possible to
distill and formulate them based on the existing more generic
patterns. All of these patterns can be successfully used for
analyzing a business (or IT) domain, that is, to quote Bunge, for
breaking down the relevant business fragment into its
components and their mutual relations. Business process
models can be created later, using the stable framework of the
well-defined business domain and the same system of reusable
business patterns (recall that the same generic relationships are
valid for business domain and business process modeling).
After that, all business decisions by stakeholders can be (and
have been, see below) demonstrably based on such models —
rather than on handwaving, political pressure, buzzword
compliance, vendor pressure, and other harmful considerations.

7.1. Future work

While the concepts described in this paper have been around,
and have been successfully used both in business and IT,
unfortunately this usage has not (yet) become widely accepted,
especially in many IT environments. The tendency to write

programs before they are designed or even before they have
requirements (K. Baclawski) and before the domain within
which they (will) act has been understood, is still with us. On a
more positive note, standardization developments (and, impli-
citly, their underlying philosophical framework) described in
this paper, notably, RM-ODP and GRM, have been acknowl-
edged and even popularized in such pragmatic documents as
OMG’s UML Profile for Relationships [47] and OMG’s Model-
Driven Architecture, especially its Computation-Independent
Model (CIM) that “is sometimes called a domain model”.
Furthermore, “[i]t is assumed that the primary user of the CIM,
the domain practitioner, is not knowledgeable about the models
or artifacts used to realize the functionality for which the
requirements are articulated in the CIM. The CIM plays an
important role in bridging the gap between those that are experts
about the domain and its requirements on the one hand, and those
that are experts of the design and construction of the artifacts that
together satisfy the domain requirements, on the other” [46].

A lot of research and practical work ought to be done to
further the approach and activities described here for under-
standing, specifying and designing complex systems. At the
same time, the appropriate philosophical foundation has been
laid, and successfully, by such thinkers as Adam Smith,
Friedrich August Hayek, Mario Bunge, and others, while the
corresponding computing science and information technology
foundation based on mathematics and on work of such thinkers
as E. W. Dijkstra, C. A. R. Hoare, D. Bjorner, and others, has
also been around for a while. These foundations are
conceptually clear. Business patterns referred to in this paper
have been described in literature [29,31] and successfully used
in many industrial projects.

It would be theoretically very interesting and practically
useful to provide more complete business domain models
understandable — and usable! — to various business and IT
stakeholders and explicitly based on work of such thinkers as
Hayek, von Mises, and Bunge. Some preliminary work in these
areas already exists [31,32,38]. In this manner it would become
blindingly obvious that both academic and practical work on
ontologies, as well as on business system modeling and design
ought to be accomplished not from the tools (or languages) point
of view, but rather ought to be based on a sound and explicit
philosophical and mathematical foundation that has existed for a
long time and that has become explicitly formulated more
recently (for some explicitly formulated mathematical founda-
tions, see, for example, papers by Joseph Goguen such as
[18,19]). The underlying concepts and approaches have been
successfully taught to, and very positively assessed by, students
with backgrounds both in business and information technology
[37]. More work — including that on curricula and textbooks — is
certainly needed in this area as well.

When designing and developing a good ontological infra-
structure, there is no need to start from a blank sheet of paper.
Very interesting work in ontology development can and should
be considered, and its appropriate fragments should be
discovered, abstracted out, exactified (if needed) and reused.
Such formal ontologies as OpenCyc provide an excellent
example of an appropriate ontological infrastructure. Of course,

108 H. Kilov, I. Sack / Computer Standards & Interfaces 31 (2009) 98—109

OpenCyc does not represent well the semantics of many
elements (and especially relationships), for example, of Bunge’s
materialist ontology, but many of its definitions (such as those
in its part-whole vocabulary [11] can be extended to do so.

In the future an increasing amount of IT development will be
done by developers who are not in physical proximity with
business analysts and users, and thus the communications gap
between business and IT may become wider and thus more
challenging to bridge. It is imperative to exactify business
semantics as well as IT semantics using a common approach —
especially in those business domains in which business
applications are intended to be fully or partially automated.
But this challenge is not completely new either: recall that one
of the triggers for formulating the concepts required to describe
behavioral semantics in such standards as RM-ODP and GRM
[35] was the need — imposed by law — to separate between
specification and implementation in telecommunications.

Acknowledgments

Many thanks go to our (virtual) teachers some of whom have
been mentioned in the paper. Thanks also go to our colleagues
and students, who provided excellent food for thought in their
comments. Finally, a lot of thanks go to the organizers and
participants of the ONTOSE’2005 workshop (especially, to
Miguel-Angel Sicilia and Salvador Sanchez-Alonso) who by
means of the online discussions substantially contributed to the
clarification and improvement of the presentation of an
extended abstract of this paper.

References

[1] P. Amey, Logic Versus Magic in Critical Systems, 2001, Praxis Critical
Systems, 20 Manvers St., Bath, BA1 1PX, UK, praxis-his.com/pdfs/
Logic_versus_magic.pdf.

[2] W. Bagehot, Lombard Street: A Description of the Money Market.
Scribner, Armstrong & Co., New York, 1873.

[3] O. Bernet, H. Kilov, From box-and-line drawings to precise specifications:
using RM-ODP and GRM to specify semantics, in: H. Kilov, K. Baclawski
(Eds.), Practical Foundations of Business System Specifications, Kluwer
Academic Publishers, 2003, pp. 99—-109.

[4] D. Bjerner, Software engineering, vols. 1-3, Springer Verlag, 2006.

[5] P. Borst, H. Akkermans, J. Top, Engineering Ontologies, 1996, http://ksi.
cpsc.ucalgary.ca/KAW/KAW96/borst/kaw96doc.html.

[6] M. Broadbent, P. Weill, Developing business and information strategy
alignment: a study in the banking industry, in: J.I. DeGross, 1. Benbasat, G.
DeSanctis, C.M. Beath (Eds.), Proceedings of the Twelfth International
Conference on Information Systems, 1991, pp. 293-306.

[7] M. Bunge, in: Martin Mahner (Ed.), Scientific Realism, Prometheus
Books, 2001.

[8] M. Bunge, Philosophy in crisis, The Need for Reconstruction, Prometheus
Books, Amherst, NY, 2001.

[9] M. Bunge, Philosophical Dictionary, Prometheus Books, Amherst, NY,
2003, Enlarged edition.

[10] Y.E. Chan, S.L. Huff, D.W. Barclay, D.G. Copeland, Business strategy
orientation, information systems orientation, and strategic alignment,
Information Systems Research vol. 8 (2) (1997) 125-150.

[11] CYC, 2002, http://www.cyc.com/cycdoc/vocab/part-vocab.html.

[12] E.W. Dijkstra, The teaching of programming, i.e. the teaching of thinking.
In language hierarchies and interfaces, in: F.L. Bauer, K. Samelson (Eds.),
Lecture Notes in Computer Science, 46, Springer Verlag, 1976, pp. 1-10.

[13] P. Drucker, The next society, The Economist, 361, 2001, p. 8246,
(November 3rd—9th).

[14] C.F. Dunbar, in: O.M.W. Sprague (Ed.), Chapters on the Theory and
History of Banking, Second edition, G.P. Putnams Sons, New York and
London, 1901.

[15] B. Evans, Information Week, February 11, 2002.

[16] J.S. Garrison, Business specifications: using UML to specify the trading of
foreign exchange options, in: K. Baclawski, H. Kilov (Eds.), Proceedings
of the 10th OOPSLA Workshop on Behavioral Semantics (Back to Basics),
Northeastern University, Boston, 2001, pp. 79—84.

[17] T. Gilb, G. Weinberg, Humanized Input, Winthrop Publishers, 1977.

[18] J. Goguen, Data, schema, and ontology integration, Proceedings, Work-
shop on Combination of Logics, Center for Logic and Computation,
Instituto Superior Tecnico, Lisbon, Portugal, 2004, pp. 21-31.

[19] J. Goguen, What is a concept? in: Frithjof Dau, Marie-Laure Mugnier,
Gerd Stumme (Eds.), Lecture Notes in Computer Science, Conceptual
Structures: Common Semantics for Sharing Knowledge: 13th International
Conference on Conceptual Structures, ICCS 2005, Kassel, Germany, July
17-22, 2005. Proceedings, vol. 3596, Springer Verlag, 2005.

[20] F.A. Hayek, The theory of complex phenomena, in: Mario Bunge (Ed.),
The Critical Approach to Science and Technology (In Honor of Karl R.
Popper), The Free Press of Glencoe, London, 1964, pp. 332-349.

[21] F.A. Hayek, The counter-revolution of science, Studies on the Abuse of
Reason, The Free Press, Glencoe, Illinois, 1952.

[22] F.A. Hayek, The sensory order, Routledge and Kegan Paul Limited,
London, 1952.

[23] F.A. Hayek, The Fatal Conceit (The Collected Works of F. A. Hayek,
volume 1, The University of Chicago Press, Chicago, 1989.

[24] C.AR. Hoare, in: PJ.L. Wallis (Ed.), Programming as an engineering
profession, Software Engineering, State of the Art Report, vol. 11, No. 3,
1983, pp. 77-84.

[25] G. Hopper, Automatic Programming for Business Applications. In:
Proceedings of the 4th Annual computer applications symposium, October
24-25, 1957, Armour Research Foundation, Chicago, 1957.

[26] ISO/IEC, Open Distributed Processing-Reference Model: Part 2: Founda-
tions (ITU-T Recommendation X.902 | ISO/IEC 10746-2), 1995.

[27] ISO/IEC, Information Technology-Open Systems Interconnection —
Management Information Systems—Structure of Management Informa-
tion-Part 7: General Relationship Model, ISO/IEC 10165-7, 1995.

[28] W. Kent, Data and Reality, North-Holland, 1978 Also reprinted by
1stBooks, 2000.

[29] H. Kilov, Business Specifications, Prentice-Hall, 1999.

[30] H.Kilov, Back to basics, Requirements Engineering 6 (3) (2001) 200-203.

[31] H. Kilov, Business Models, Prentice-Hall, 2002.

[32] H. Kilov, Finding work: an IT expert as an entrepreneur, in: H. Kilov, K.

Baclawski (Eds.), Proceedings of the OOPSLA2002 Workshop on

Behavioral Semantics (Serving the Customer), Northeastern University,

Boston, 2002.

H. Kilov, K. Baclawski (Eds.), Practical Foundations of Business System

Specifications, Kluwer Academic Publishers, 2003.

H. Kilov, H. Mogill, I. Simmonds, in: H. Kilov, W. Harvey (Eds.),

Invariants in the Trenches. Object-Oriented Behavioral Specifications,

Kluwer Academic Publishers, 1996, pp. 77—-100.

H. Kilov, L. Redmann, Specifying joint behavior of objects: formalization

and standardization, Software Engineering Standards Symposium,

Brighton, UK, 30 Aug-3 Sep 1993, ISBN: 0-8186-4240-8, 1993,

pp. 220-226.

[36] H. Kilov, J. Ross, Information Modeling, Prentice-Hall, 1994.

[37] H. Kilov, I. Sack, An innovative university course in data management for

professionals, UKAIS Conference 2003, University of Warwick (UK),

April 9-11, 2003, http://www.hear-see-do.com/ukais2003/auto_abstracts.

asp.

H. Kilov, I. Sack, Exploiting reusable abstractions in organizational

inquiry: why reinvent square wheels? in: James Courtney, David B.

Paradice, John D. Haynes (Eds.), Inquiring Organizations: Moving from

Knowledge Management to Wisdom, Idea Group, 2005, pp. 337-359.

[39] T. Kudrass, Coping with semantics in XML document management,
in: H. Kilov, K. Baclawski (Eds.), Proceedings of the Ninth OOPSLA

133

—

[34

[}

[35

=

[38

=

http://ksi.cpsc.ucalgary.ca/KAW/KAW96/borst/kaw96doc.html
http://ksi.cpsc.ucalgary.ca/KAW/KAW96/borst/kaw96doc.html
http://www.cyc.com/cycdoc/vocab/part-vocab.html
http://www.hear-see-do.com/ukais2003/auto_abstracts.asp
http://www.hear-see-do.com/ukais2003/auto_abstracts.asp

H. Kilov, I. Sack / Computer Standards & Interfaces 31 (2009) 98—109 109

Workshop on Behavioral Semantics, Northeastern University, 2001,
pp. 150-161.

[40] J. Luftman, (with Bullen, C., Liao, D., Nash, E., and Neumann, C.),
Managing the information technology resource. Pearson Education
International, Upper Saddle River, NJ, 2004.

[41] O.L. Madsen, B. Moller-Pedersen, K. Nygaard, Object-oriented program-
ming in the BETA programming language, (Draft. August 11, 1992.)

[42] L. von Mises, Human Action: A Treatise on Economics, Yale University
Press, New Haven, 1949.

[43] L. von Mises, The Ultimate Foundation of Economic Science: An essay on
Method, D. van Nostrand Company, Princeton, New Jersey, 1962.

[44] J. Morabito, I. Sack, A. Bhate, Organization Modeling: Innovative
Architectures for the 21st Century, Prentice Hall, 1999.

[45] W.E. Ogburn, M.F. Nimkoff, A Handbook of Sociology, Kegan Paul,
Trench, Trubner & Co., Ltd., London, 1947.

[46] OMG, MDA Guide, 2003, Version 1.0.1, http://www.omg.org/cgi-bin/
doc?omg/03-06-01.pdf.

[47] OMG, UML Profile for Relationships, 2004, http://www.omg.org/cgi-bin/
doc?formal/2004-02-07.

[48] David L. Parnas, Software engineering programs are not computer science
programs, Annals of Software Engineering 6 (1999) 19-37.

[49] C.S. Peirce, Collected papers of Charles Saunders Peirce, vols. 1-8, The
Belknap Press of Harvard University Press, 1931, pp. 1931-1961.

[50] N. Raden, Start making sense: get from data to semantic integration,
Intelligent Enterprise vol. 8 (10) (2005) 25-31.

[51] B.H. Reich, I. Benbasat, Measuring the linkage between business and
information technology objectives, MIS Quarterly vol. 20 (1) (1996)
55-81.

[52] B.H. Reich, I. Benbasat, Factors that influence the social dimension of
alignment between business and information technology objectives, MIS
Quarterly vol. 24 (1) (2000) 81-113.

[53] L. Russo, The Forgotten Revolution: How Science was Born in 300 BC
and why it had to be Reborn, Springer Verlag, 2004.

[54] 1. Sack, A. Thalassinidis, Using information modeling to initiate business
strategies — a case study for the e-publishing industry, in: H. Kilov, K.
Baclawski (Eds.), Practical Foundations of Business System Specifica-
tions, Kluwer Academic Publishers, 2003, pp. 299-312.

[55] A. Smith, An Inquiry into the Nature and Causes of the Wealth of Nations,
London, 1776, Printed for W. Strahan; and T. Cadell.

[56] G.M. Weinberg, Rethinking Systems Analysis and Design, Little, Brown
and Company, Boston and Toronto, 1982.

[57] L. Wittgenstein, Tractatus Logico-Philosophicus, Kegan Paul, Trench,
Trubner & Co. Ltd., London, 1933, 2nd corrected reprint.

[58] ILM. Yaglom, Mathematical Structures and Mathematical Modeling,
Gordon and Breach Science Publishers, 1986.

Ira Sack is a full time Associate Professor of Manage-
ment who has been teaching at the Leslie J. Howe
School of Technology Management, Stevens Institute
of Technology, in Hoboken, New Jersey (USA) for over
26 years. He has taught in executive information
management programs at such firms as AT&T,
Solomon Smith Barney, Paine Webber, Prudential,
Johnson & Johnson, and Pearson Education, among
others. Prior to his academic career, he was a full-time
member of technical staff (MTS) at Bell Laboratories.
His current research and publications are centered in
organization modeling and organizational architecture, knowledge management,
business strategy, ontologies, and diverse areas of information systems. He is a
coauthor of the reference text, Organization Modeling: Innovative Architectures
for the 21st Century, published by Prentice Hall. He served both as the principal
investigator for two research grants and as a research consultant to the National
Agency for Space Administration (NASA) and elsewhere.

http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
http://www.omg.org/cgi-bin/doc?formal/2004-02-07
http://www.omg.org/cgi-bin/doc?formal/2004-02-07

	Mechanisms for communication between business and IT experts
	Introduction
	A system of common concepts
	What's in a name: A (relatively) familiar example
	On systems and relationships
	Composition
	Business patterns

	(Traditional) engineering processes and artefacts
	Case studies
	A large financial institution: two teams of experts
	A leading publishing company: Using an ontological �approach to model a publisher's business en.....

	Conclusion: Communication, modeling, and decision �making
	Future work

	Acknowledgments
	References

