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Abstract— This paper describes the integration of perceptual
guidelines from human vision with an AI-based mixed-initiative
search strategy. The result is avisualization assistantcalled ViA,
a system that collaborates with its users to identify perceptually
salient visualizations for large, multidimensional datasets. ViA
applies knowledge of low-level human vision to: (1) evaluate
the effectiveness of a particular visualization for a given dataset
and analysis tasks; and (2) rapidly direct its search towards
new visualizations that are most likely to offer improvements
over those seen to date. Context, domain expertise, and a
high-level understanding of a dataset are critical to identifying
effective visualizations. We apply a mixed-initiative strategy that
allows ViA and its users to share their different strengths and
continually improve ViA’s understanding of a user’s preferences.

We visualize historical weather conditions to compare ViA’s
search strategy to exhaustive analysis, simulated annealing, and
reactive tabu search, and to measure the improvement provided
by mixed-initiative interaction. We also visualize intelligent agents
competing in a simulated online auction to evaluate ViA’s percep-
tual guidelines. Results from each study are positive, suggesting
that ViA can construct high-quality visualizations for a range of
real-world datasets.

Index Terms— computer graphics, perception, search, user
interfaces, visualization

I. I NTRODUCTION

A N important problem in computer graphics is visualization,
the conversion of collections of strings and numbers (or

datasets) into images that viewers can use to explore, discover,
and analyze within their data [37], [46]. The rapid growth in
our ability to generate, capture, and archive vast amounts of
information has dramatically increased the need for effective
visualization techniques. Unfortunately, methods to display in-
formation in useful and meaningful ways have not always kept
pace.

Numerous research efforts are now underway to identify new
visualization algorithms [27], [28], [53]. One promising approach
is the use of guidelines from visual perception. The human visual
system can detect certain image properties very rapidly, often
in only a few hundred milliseconds. Visualization techniques
that harness human perception have the potential to significantly
increase data throughput and improve viewer comprehension. The
need to consider perception during visualization was highlighted
as an important research issue in the original NSF report on
scientific visualization [37], and it continues to offer the potential
to improve a wide range of visualization algorithms [27], [28],
[53].

Our specific interest in this paper is the visualization ofmul-
tidimensionaldatasets that encode multiple attributes. Consider
a datasetD representingn data attributesA = (A1, . . . , An),
n > 1 and containingm data elementsej , D = (e1, . . . , em).
Each element encodes one value for every attribute,ej =

{aj,1, . . . , aj,n}, aj,i ∈ Ai. One way to visualizeD is to

selectn visual featuresV = (V1, . . . , Vn) to represent eachAi.
FunctionsΦ = (φ1, . . . , φn) map the domain ofAi to the range
of displayable values inVi, φi : Ai 7→ Vi. Described in this way,
visualization is the selection of a data-feature mappingM(V, Φ),
together with an evaluation of a viewer’s ability to comprehend
the images generated byM . Results from human psychophysics
can be used to construct perceptually effectiveM that allow
viewers to rapidly and accurately understand their data.

Fig. 1 presents a multidimensional visualization of a simulated
supernova collapse, a massive explosion that occurs at the end of
a star’s lifetime. We visualize slices through the flow volume
using nonphotorealistic brush strokes built from guidelines on
perception and aesthetics. Stroke color represents flow magnitude
(dark blue for low to bright pink for high), stroke orientation
represents flow direction, and stroke size represents flow pressure
(larger for higher). Anecdotal feedback from our astrophysics
collaborators at North Carolina State University confirms that the
visualizations provide important advantages, particularly during
analysis of data attribute interactions [17], [52].

Since most users are not visualization researchers, they cannot
be expected to know how to construct effective visualizations.
Even if users have experience in building visual representations
for their data, they often repeat the same basic design strategy.
This can lead to a number of inefficiencies. For example, it is
difficult to determine if the resulting visualization is of a high
quality, or if there are simple ways it could be improved. Offering
only a single visualization mapping can also limit data analysis.
Providing a collection of visualization designs that show the
same data in different ways will often provide new insights into
important properties that exist in the dataset.

Our goal is to empower our users by providing access to
existing visualization knowledge. To do this, we propose avisu-
alization assistant, a mixed-initiative artificial intelligence search
system that helps users construct visualizations for their data. We
defined a number of requirements for this system, specifically,
that its operation and resulting visualizations are:

• effective: the data-feature mappings that produce the visu-
alizations must display data in ways that allows viewers to
rapidly and accurately complete their analysis tasks,

• multidimensional:the resulting visualizations should be ca-
pable of representing datasets with multiple values encoded
at each data element,

• transparent:viewers must be able to understand and guide
the assistant (e.g. by changing the initial inputs, or through
built-in interaction mechanisms) to impose constraints, to
define preferences, or to maintain context specific to the data
being visualized,

• application independent:the assistant should not depend
on properties specific to a particular application area or
dataset type, but instead should be capable of producing
visualizations for a range of different domains, and
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Fig. 1. A painterly visualization of 2D flow in a simulated supernova collapse,flow direction→ stroke orientation,magnitude→ color, pressure→ size

• extensible:the assistant should easily extend to support new
visualization results as they are discovered.

The key idea is to divide the visualization process between
the computer and the end-user in a way that harnesses the
unique strengths of each participant. Since most users are not
visualization experts, details about how to construct and evaluate
a multidimensional visualization are assigned to the visualization
assistant. Usersare experts on their data, however, so they are
asked to provide information about the dataset and analysis tasks
to be performed, to make decisions about how the data can
be preprocessed, and to consider domain-specific constraints to
enforce any visual context required in the final visualizations

II. PERCEPTUALFOUNDATIONS

Our visualizations are constructed from psychophysical studies
of how the human visual system “sees” fundamental properties
of color and texture in an image.

Color is a common visual feature used in many visualization
designs. This belies its complex nature, however [60]. Simple
color scales include the rainbow spectrum, the grey-red saturation
scale, and red-blue or red-green ramps [55]. More sophisticated
methods divide color along basic dimensions like luminance, hue,
and saturation to better control the differences viewers perceive
[32]. Perceptually balanced models like CIE LUV or Munsell
roughly equate perceived color difference to Euclidean distance
[8], [39]. Methods have been proposed to emphasize specific
data ranges with non-linear paths through a color model [42],
to choose color scales based on data attribute properties [45], to
control color surround errors [55], or to pick small collections of
distinguishable colors [16].

Our current color scales combine many of these findings [17].
We build paths along a monitor gamut’s boundary in CIE LUV,
either as a single spiral that monotonically increases in luminance,
or as a single loop with a constant luminance. A path is subdivided
into named regions that are parameterized to have equal arc
length. The result is a color scale that: (1) is balanced along
its length; (2) controls color surround errors; (3) can vary hue
and luminance independently; and (4) can suggest small sets of
equally distinguishable colors.

Like color, texture can be decomposed into a collection of
fundamental perceptual dimensions. Mapping data attributes to
texture properties produces texture patterns that change their

visual appearance based on the data they represent [16], [26], [56],
[58]. Texture dimensions have been identified both in computer
vision and visual perception [7], [29], [35], [40], [41], [54], [59].
For example, automatic texture segmentation measure properties
like size (or height), spatial packing density, orientation, and
regularity. Results from computer vision cannot always be applied
directly during visualization design, however, so care must be
taken to confirm the visual system’s ability to distinguish and
identify individual texture properties [16], [25], [30], [56].

Visual properties that work well in isolation do not necessarily
function with the same efficiency if they are shown together.
For example, random changes in luminance can interfere with
a viewer’s ability to recognize hue patterns [6], [16], [50]. This
interference effect is asymmetric: random variations in hue have
no effect on a viewer’s ability to perceive luminance. Both hue
and luminance interfere with texture dimensions, again in an
asymmetric manner: random hue or luminance masks texture
properties, but random texture properties have no effect on hue or
luminance [7], [16], [50]. Small but significant interference effects
also occur between texture dimensions: density or regularity can
mask small targets, and size or regularity can mask sparse targets.
We do not want to map a low-relevance attribute to a high-salience
visual feature, since this could obscure important data.

Our visualization designs focus on visual features that are
easily recognized, both in isolation and in combination. We map
individual data attributes to features in ways that draw a viewer’s
focus of attention to important areas in a visualization. The ability
to harness low-level human vision is attractive, since:

• high-level exploration and analysis tasks are rapid and accu-
rate, usually requiring 200 milliseconds or less to complete,

• the time to perform a task is independent of the number of
elements in the display, and

• different features can interact with one another to mask
information; psychophysical experiments allow us to identify
and avoid these visual interference patterns [15]–[17].

III. A RCHITECTURE

Numerous systems exist with extensive capabilities for the pre-
sentation of data, for example, Vis5D, AVS, or the Visualization
Toolkit (vtk) [21], [48]. What these systems lack is a method of
suggesting to usershow to represent their data in ways that are
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best-suited to their specific analysis and exploration needs. This
is exactly the problem that we are trying to address.

Some previous work in visualization has investigated automat-
ing the selection of a visual mappingM . Wehrend and Lewis
built a classification system to describe visualization techniques
in a domain-independent manner [57]; these classifications are
used to try to suggest an appropriateM . A similar technique is
described by Lohse et al. [33]. Robertson uses a natural scene
paradigm to guide the choice of visual representations for data
[43], [44]; this methodology identifies the types of information
conveyed by a particular representation, then tries to match these
to the underlying characteristics of a dataset. Mackinlay proposes
automated methods that measure expressiveness and effectiveness
to develop 2D graphical presentations [34]. Beshers and Feiner
apply similar rules to build graph-based “worlds within worlds”
to visualize multidimensional data [4]. Senay and Ignatius extend
Mackinlay’s work to 3D using a visualization system built on
heuristic rules [49]. Gallop proposes data models and structures
to classify visualizations [12]. Rogowitz and Treinish describe a
rule-based visualization architecture for representing continuous
surfaces [45], built on perceptual rules to guarantee that ann-
fold increase in an attribute’s value results in a perceptualn-fold
increase in the visual presentation for that value. Bergman et al.
[3] describe a colormap tool that uses system-generated and user-
provided information about a dataset to limit a viewer’s choice
of color scales during visualization.

Unfortunately, the construction of the perceptual rules used
by these systems is often left as work-in-progress. As well, the
techniques include a number of potential limitations, for example:
(1) only oneM is recommended for each type of dataset; (2) the
parameters used to categorize a dataset are relatively coarse, so
many differentD will map to the sameM ; and (3) there is no
simple way to intelligently modifyM to support context or user
preferences. Design galleries [36] address the first limitation by
converting input parameters to images via a mapping function;
a set of images maximally dispersed from one another can be
automatically identified, arranged, and displayed to provide an
overview of how different inputs affect the resulting image.
Although expressive, perceptual knowledge and expertise are still
needed to select the “best”M for the user’s visualization and
exploration needs.

A. ViA

We propose an AI-based visualization assistant called ViA
[18], [19], built with perceptual guidelines from human vision,
heuristic AI search strategies, and mixed-initiative interactions.
ViA collaborates with its users to design high quality, perceptually
salient visualizations that are well-suited to the underlying data
and analysis needs.

ViA begins by asking a short set of questions about the dataset
and the user’s analysis tasks. These initial constraints allow ViA
to evaluate the applicability of different visualization mappings
M . Users can modify the constraints, either through mixed-
initiative interaction during the search process, or after a set of
visualizations are proposed by ViA. Once the dataset properties
and analysis tasks are defined, ViA begins constructing and testing
visualizations. A potential mappingM is decomposed into itsn
data attribute-to-visual feature pairs(Ai, Vi). For each pair, an
evaluation engineassesses the use of visual featureVi. The engine
returns a normalized evaluation weight to rate the effectiveness

of the pairing. For pairings with low weights, an engine may also
return one or morehints on how the pairing could be improved,
together with an estimated evaluation weight increase if the hint
were applied.

The simple strategy of exhaustively searching the state space
of all possible data-feature mappings forM with the largest
evaluation weight quickly becomes infeasible, even for small
numbers of data attributes and visual features. Allowing users
to add, remove, or modify their initial inputs while ViA runs
changes the evaluation constraints, further increasing the number
of different visualizations that must be considered.

Rather than applying a brute-force approach, ViA tries to
restrict its searches to locations that are most likely to contain
high-quality mappings. The search algorithm collects weights and
hints for all the attribute-feature pairs inM . Chains of non-
conflicting hints are bundled withM and placed on a priority
queue in order of estimated evaluation weight improvement. The
chain with the largest expected improvement is then removed
from the queue and applied toM to form a new mappingM ′. M ′

is evaluated in an identical manner, producing new hints that may
lead to even better visualizations. This allows the search engine
to focus on mappings that have a high probability of representing
better visualizations. Searching continues until the queue is empty,
or until a user-specified stopping conditions is reached.

B. User Input

Users are asked to enter a small amount of application-
independent information prior to initiating a search. These inputs
are used as an initial set of constraints when candidate visualiza-
tions are evaluated. For each data attribute, the user defines:

• attribute importance:a normalized importance weight, to
order the attributes and to identify which attributes are most
important to the user,

• spatial frequency:the spatial frequency of the attribute’s
values (high or low); an initial guess is made by ViA, and
can be accepted or modified by the user,

• continuous or discrete:whether the data represents discrete
values, or samples from an underlying, continuous data
source1, and

• task: the analysis tasks, if any, the user wants to perform
on the attribute; ViA supports searching for a specific value
(search), identifying spatial boundaries between regions with
common values (boundary detect), estimating the number or
ratio of data with a particular value (estimate), and tracking
regions with common values as they move over time (track).

These properties were derived in part from our own experiences in
decomposing domain-specific analysis requests into fundamental
analysis tasks, and from existing automated visualization systems
and task analysis research, which use many of these same
properties to drive their visualization selection strategies.

C. Evaluation Engines

Evaluation engines are the basic building blocks that determine
the quality of a given visualizationM . The evaluation is based in
part onM ’s perceptual strengths and limitations, and in part on
the data being visualized, the user’s stated interests in the data,
and the analysis tasks the user wants to perform.

1ViA currently supports numeric data only, so nominal data is not consid-
ered
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Fig. 2. ViA’s architecture, made up of a datasetD, initial inputs from a user, a mixed-initiative search algorithm, and visual feature evaluation engines

Evaluation engines are categorized by visual feature. ViA
currently includes engines for luminance, hue, size, density,
orientation, and regularity. This design makes it easy to extend
ViA to include new visual features. Once sufficient perceptual
knowledge is available, a new engine can be implemented and
integrated directly into ViA’s search algorithms.

An evaluation engine performs four different classes of tests
for each attribute-feature pair(Ai, Vi):

1) Spatial frequency:Certain visual features are best applied
to either high or low spatial frequency data (e.g. luminance
is appropriate for high spatial frequency data, while iso-
luminant hues are better suited for low spatial frequency
patterns). ViA checksAi’s spatial frequency against what
Vi can best support.

2) Interference:Visual features can interact with one another,
causing visual interference patterns (e.g. luminance can
mask hue patterns, and luminance and hue can mask texture
patterns). Features that lie near the top of the visual salience
hierarchy should not be used to represent data attributes
with low importance. ViA searchesM for cases where less
salient visual featuresVj are mapped to more important
data attributesAj , that is,Vj < Vi but impj > impi.

3) Task type:Different visual features are best-suited for dif-
ferent types of analysis tasks. ViA checks to see which tasks
a user has asked to perform on attributeAi, to determine
whetherVi can support the given task fully, partially, or not
at all.

4) Attribute type:Different visual features work better with
either continuous or discrete data. ViA comparesVi’s capa-
bilities to Ai’s domain, and to the total number of unique
values ofAi contained inD.

Each test is weighted evenly, comprising 25% of the total evalu-
ation score. Their sum is returned as the final evaluation weight
for the current(Ai, Vi) pairing in M . Alg. 1 shows a pseudo-
code overview describing how the orientation evaluation engine
operates. Although the specifics for number of recommended
values, maximum number of allowed values, invalid task and
domain pairs, weight penalties, and so on vary between engines,
their basic structure is identical.

We considered different ways to penalize flaws in a visualiza-
tion mapping, including some that were fairly complicated. In the
end, we decided to begin with a simple set of weight reductions,
for example, 1 or 0 for supporting a particular constraint, or a
liner increase in a penalty as the mapping moves away from a

known optimal value. This strategy was selected as a starting
point for two reasons. First, past research in artificial intelligence
has show that very simple weighting schemes for automated
search can often produce results that are as good as more
complicated techniques [9]. Second, choosing basic, recognizable
values makes it easier to critique and correct the performance of
each evaluation engine.

Results to date for real-world datasets have been positive, to the
extent that although we are considering minor improvements to
the evaluation engines’ weighting schemes, we are not planning
wholesale changes to the underlying strategies they employ. As
long as the existing approach continues to return good results, we
intend to leave the evaluation framework intact.

D. Hints

Weights allow the search algorithm to compare different visu-
alizations, but they do not offer any clues on how to improve
them. Since the evaluation engines have the specific knowledge
needed to provide this information, they are also responsible
for proposing possible improvements for each(Ai, Vi) they test.
These suggestions are returned in the form of hints, a specific
modification toM together with an estimate of how muchM will
improve if the modification is applied. The lower the evaluation
weight for a particular attribute-feature pair, the more hints the
evaluation engine is likely to return.

Four types of modifications can be suggested within a hint:
1) Feature swap:Swap featuresVi andVj (e.g. in a situation

where visual interference is occurring betweenVi andVj).
2) Importance weight modify:Increase or decrease the impor-

tance weight of attributeAi by a set amount.
3) Discretize:Bin Ai’s values into a fixed number of equal-

width intervals.
4) Task remove:Remove a task a user has stated he may want

to perform onAi.
A hint’s expected improvement weight is calculated directly from
the penalty for the flaw it is meant to correct. For example, a
hint by the orientation evaluation engine to reduce the number
of unique values from above the maximum allowed to below
the maximum recommended would have an estimated weight
improvement of 0.25 (i.e. it will increasedomain wt from 0 to
1, improving the overall evaluation weight by14 , see also Alg. 1).

E. Search Algorithm

Once hints are collected, they are bundled together to formhint
chains. Not all combinations of hints are valid. Each evaluation
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Input : Attribute Ai mapped to orientation
Output : Evaluation weight, hints for (Ai,orientation)

if domain is continuousthen domainwt = 1.0;1

else if unique vals≤ max recommendthen domainwt = 1.0;2

else3

if unique vals> max allowthen domainwt = 0.0;4

else domainwt = 1.0 - ( unique vals / max allow );5

hint to discretize to max recommend values;6

forall lower salience features Fdo7

if unique vals≤ max recommend for Fthen8

hint to swap features toF;9

freq wt = 1.0;10

interferewt = 1.0;11

forall V ∈ (Color, Luminance) do12

if another A uses V && A’s importance< importance13

then
interferewt = 0.0;14

hint to swap features with attributeA;15

diff = | importance - A’s importance|;16

if diff < min importance diffthen17

hint to make importance -= diff;18

hint to makeA’s importance += diff;19

taskwt = 1.0;20

forall T ∈ (estimate/continuous, search/continuous) do21

if task and domain match Tthen22

if T is (estimate/continuous)then taskwt = 0.25;23

else if T is (search/continuous)then taskwt = 0.5;24

if importance< min importance wtthen25

hint to remove taskT;26

wt = ( domainwt + freq wt + interferewt + taskwt ) / 4.0;27

if wt < min release wtthen28

forall attributes A not mapped to any featuredo29

hint to release feature toA;30

return wt, hints31

Alg 1. Pseudo-code for the orientation evaluation engine

engine works independently to improve its own attribute-feature
pair, so different hints can conflict with one another. For example,
one hint might suggest discretizing attributeAi (discretize hint),
while another might recommend swappingAi to use a different
visual feature (feature swap hint). The basic rule for identifying
conflicting hints is straight-forward: a data attributeAi or visual
featureVi can be modified by at most one hint in a chain. Hint
chains that include conflicting hints are discarded.

Once valid hint chains forM are identified, they are inserted
onto a priority queue ordered by the expected improvement in
M ’s weight. The expected improvement is defined as the sum of
M ’s current weight plus the largest expected improvement in the
chain (i.e. the expected improvement for the hint with the largest
improvement weight), together with a bonus for the length of the
chain. Longer chains are favored over shorter ones, since these
have a higher potential to improveM ’s overall evaluation weight.
Moreover, a longer chain moves farther fromM ’s current position
in the search space, helping to escape from local maxima.

The search algorithm proceeds by removing the hint chain at
the top of the queue and applying it to the mappingM that
generated the chain’s hints. This produces a new visualization
M ′ that is likely to have a better evaluation weight thanM . If
ViA has not seenM ′ previously, it is evaluated, generating new
hints and hint chains that are added to the queue. This allows the
search algorithm to restrict its efforts to small areas of the much
larger search space of all possible visualizations. ViA focuses on
visualizations that are expected to have the highest evaluation
weights. The search continues until: (1) the priority queue is
empty; (2) a user-specified number of visualizations are evaluated;
or (3) a user-specified period of time passes.

Once the search is complete, ViA presents the topk visualiza-
tions. The mappings can be applied directly toD, allowing users
to view and explore their data with each candidate visualization.
The ability to show the same dataset in different ways is one of
ViA’s important strengths. Even when each proposed visualization
has a high evaluation weight, displaying the data from different
perspectives will often highlight different areas of interest to
the user. ViA removes the need to manually construct multiple
visualizations, a task that can be difficult when both perceptual
and dataset constraints must be considered. It also avoids the
tendency of a visualization expert to design visualizations using
common procedures or templates, producing visualizations with
similar structures and therefore potentially less power to display
the data in significantly different ways.

IV. M IXED-INITIATIVE INTERACTION

Researchers in human-computer interaction have pursued nu-
merous important goals. One area investigates intelligent agents
that try to automatically identify and complete a user’s tasks. An-
other studies interfaces for direct manipulation. A third approach
integrates these techniques, combining automated services and
user control to form mixed-initiative interaction [1].

Mixed-initiative interaction allows participants to contribute
their unique strengths towards solving a common goal [5], [10],
[38]. The basic idea is that initiative (i.e. control) should shift
depending on who is most qualified to solve the current step
of a problem. Humans have knowledge of high-level goals, and
are guided by principles that are often difficult or impossible to
fully automate. A computer excels at managing low-level details
and performing repetitive tasks. Humans can formulate and plan,
collect and evaluate relevant information, supply estimates for
uncertain factors, and perform visual and spatial reasoning. Com-
puters can rapidly conduct systematic searches, and manage and
communicate large volumes of data. Mixed-initiative algorithms
try to minimize the number of explicit actions required of the user.
They also focus on asking the user to perform high-value actions,
where answers provide additional knowledge for automatically
handling future decisions.

A number of mixed-initiative systems have been presented in
the literature. Lookout extends Microsoft Outlook by scanning
new email messages and collaborating to schedule appointment
requests [23]. TRAINS95 constructs optimal transportation routes
in the presence of uncertainty (e.g. changing weather and traffic
conditions, unexpected events, and so on) [11]. AIDE (Assistant
for Intelligent Data Exploration) applies AI planning techniques to
help users analyze univariate and bivariate statistical relationships
[51]. Design-A-Plant uses an animated pedagogical agent to teach
botanical anatomy and physiology to middle school students [31].
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One important consideration is how to manage uncertainty
about a user’s goals during problem solving. A common solution
is to use Bayesian agents to model goals and construct utility
measures based on probabilistic relationships [22]. Combining
statistical models of user goals with the expected utility of action
or inaction forms a critical component of a mixed-initiative system
[23].

A. Mixed-Initiative Search

If a user’s initial inputs were fixed, or if ViA’s evaluation
weights were insensitive to changes in these inputs, the ability
to support modifications as the search unfolds would not be
necessary. Unfortunately, these assumptions do not hold. Many
of ViA’s hints (e.g. discretize, importance weight modify, or task
remove) require explicit changes to the user’s initial constraints
or to the data itself. These hints represent situations where ViA
suggests:If a change can be made to the format of the data or
the users’ choices about what they want to do with the data,then
a significantly better visualization may be available. The question
becomes, should ViA accept the change a hint recommends?

Certain considerations can be used to help with this decision.
Larger changes to the data or the user’s inputs are less likely
to be allowed. The probability of a hint being accepted may be
higher if its expected improvement weight is larger. Finally, the
way a hint was managed in the past can provide clues about
future decisions. For example, if ViA was previously told not to
discretize an attribute, new discretize requests are less likely to
be accepted.

More formally, consider a situation where the user has a desired
goal stateG, and a hint suggests performing a given operationO

(e.g. discretizing an attribute, or changing its importance weight).
One simple way to resolve the hint is to ask the user each
time a change is desired. This often produces a long sequence
of requests that quickly lead to situations where users answer
without significant consideration (e.g. always answering “Yes”
or “No”). Allowing ViA to decide whether or not to applyO
has its own drawbacks. Even with sophisticated heuristics, ViA
cannot correctly anticipate how its users want to proceed for every
operation. A fully automatic approach does not allow ViA to
benefit from a user’s expertise about the data.

Instead of relying on either extreme, we extend a probabilistic
utility model proposed by Horowitz to guide ViA’s actions [23].
For any operationO and goal stateG, there are four possible
actions: applyingO when the goal isG, applyingO when the goal
is not G, not applyingO when the goal isG, and not applying
O when the goal is notG. We denote the utility of these actions
u(O, G), u(O, !G), u(!O, G), and u(!O, !G). If we assumeO is
designed to facilitate achievingG, thenu(O, G) > u(!O, G) and
u(!O, !G) > u(O, !G). Given evidence to dateE observed by ViA,
the probability thatG is a valid goal state is denotedp(G|E). We
can now compute the expected utility for acceptingO:

eu(O|E) = p(G|E)u(O, G) + p(!G|E)u(O, !G)

= p(G|E)u(O, G) + (1 − p(G|E))u(O, !G)
(1)

Similarly, the expected utility for rejectingO is:

eu(!O|E) = p(G|E)u(!O, G) + (1 − p(G|E))u(!O, !G) (2)

By comparingeu(O|E) andeu(!O|E), we can determine whether
accepting or rejectingO produces a higher expected utility. Fig. 3

p(G|E) = 0.0

u(O,!G)

u(!O,!G)

u(D,!G)

u(O,G)

u(!O,G)

u(D,G)

p*
!O,D

p*
O,Dp* p(G|E) = 1.0{

utility of dialog > utility of automatic action

u(!O) u(O) u(D)

Fig. 3. Utility curves for automatically accepting operationO, for automat-
ically rejecting!O, and for querying the user through a dialogD

graphs the two utility curvesu(O) and u(!O), and identifies
a break-even probabilityp∗ where either accepting or rejecting
O leads to the same expected utility. For allp(G|E) < p∗,
we automatically rejectO, and for all p(G|E) ≥ p∗ we can
automatically acceptO.

A final factor to consider is the value of interacting with the
user. IfG is valid, the utility of asking the user and then applying
O is higher than automatically rejectingO (since this incorrectly
definesG as not valid), but lower than automatically applying
O (since additional work is required by the user to validate
G). That is, given a dialog actionD, u(!O, G) < u(D, G) <

u(O, G). Similarly, whenG is not a valid goal state,u(O, !G) <

u(D, !G) < u(!O, !G). The utility of presenting a dialogu(D)

can be added to the probability graph (Fig. 3). This defines a
probability region whereeu(D|E) is higher than botheu(O|E)

and eu(!O|E). In this region the best choice is to ask the user
how to proceed. Given the intersection points betweenu(!O) and
u(D) at p∗!O,D and betweenu(O) andu(D) at p∗O,D, we can now
define ViA’s actions as:

1) p(G|E) ≤ p∗!O,D, automatically rejectO
2) p(G|E) ≥ p∗O,D, automatically acceptO
3) p∗!O,D < p(G|E) < p∗O,D, ask the user aboutO

When a dialog is presented, the user’s answer is important for
more than simply deciding aboutO. The choice changesE, the
evidence observed about the probability ofG, allowing us to infer
more information aboutp(G|E).

B. ViA’s Expected Utility Graph

In order to evaluate a hint to perform operationO, we need the
six utility valuesu(O, G), u(O, !G), u(!O, G), u(!O, !G), u(D, G),
and u(D, !G). For a visualizationM with an overall weightw,
and a hint to perform operationO with an expected improvement
wO, the four utilities for accepting or rejectingO are defined as:

• u(O, G) = w+wO, applying a hint the user wants increases
utility by O’s expected improvement weight.

• u(O, !G) = 0, applying a hint the user does not want reduces
utility to zero.

• u(!O, G) = w − wO, not applying a hint the user wants
reduces utility by the improvement thatO could have pro-
vided.

• u(!O, !G) = w, not applying a hint the user does not want
provides no improvement or penalty.

Two additional values are used to determine the expected utility of
presenting a dialog to the user. Aconservation factor0 ≤ f ≤ 1

defines a user’s level of concern about allowing ViA to make
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Fig. 4. Probability graphs for ViA’s hints: (a)importance weight modify,
initial graph (dashed) withimpi = 0.4, updated graph (solid) after accepting
imp′i = 0.3 andimp′i = 0.5, but rejectingimp′i = 0.2 andimp′i = 0.6; (b)
discretize, initial graph (dashed) withu unique values, updated graph (solid)
after acceptingd = 7 ranges, but rejectingd = 5 ranges

decisions without consultation. A valuef = 1 indicates the user
is very conservative, and wants to review all decisions ViA makes.
The importance weightimpi of Ai is also considered. Operations
on more important attributes are more likely to generate requests
to the user. Given these additional weights, the two utilities for
presenting a dialogD are defined as:

• u(D, G) = w + (f × impi × wO), presenting a dialog for
a hint the user wants increases utility to betweenw and
w + (impi × wO), depending onf and impi.

• u(D, !G) = f × impi × wO, presenting a dialog for a hint
the user does not want decreases utility to between0 to
impi × wO.

The utility values allow us to build utility graphs that definep∗!O,D

and p∗O,D. ViA automatically rejectsO when p(G|E) ≤ p∗!O,D,
automatically acceptsO when p(G|E) ≥ p∗O,D, or queries the
user whenp∗!O,D < p(G|E) < p∗O,D.

C. Conditional Probability Graphs

The final value needed to process a hint isp(G|E), the
conditional probability that users want goalG based on their
previous interactions with ViA. Initial probability graphs are built
for each attributeAi for the hints importance weight modify,
discretize, and task remove. Feature swap hints can be managed
automatically, since they depend on perceptual rules alone.

Importance Weight Modify. An importance weight modify hint
requests to changeAi’s importance weight fromimpi to imp′i,
for example, to remove visual interference between attributesAi

andAj by reversing their importance ordering.
Given Ai with importance weightimpi, the initial importance

weight probability graph assignsp(G|E) = 1 for weight impi,
and p(G|E) = 0 for weights 0 and 1. Linear interpolation is
used to compute probabilities between these three points. A user’s
responses to importance weight modify hints (accept or reject)
update the probability graph. For example, considerAi with
impi = 0.4 (Fig. 4a). Suppose ViA suggests changingimpi

first to 0.3 and then to0.5, both of which the user accepts,
then ViA suggests weights of0.2 and 0.6, both of which the
user rejects. The updated probability graph is shown in Fig. 4a.
All 0.3 ≤ impi ≤ 0.5 are now assumed to be accepted, and all
impi ≤ 0.2 and impi ≥ 0.6 are assumed to be rejected. Linear
interpolation is used to estimate probabilities over the unknown
regions0.2 < impi < 0.3 and0.5 < impi < 0.6.

Discretize. A discretize hint requests thatAi be divided intod

equal-width ranges, for example, to reduceAi to a distinguishable
number of unique values.

Ai’s initial discretization probability graph assignsp(G|E) = 1

for no discretization (i.e. for any hint withd ≥ u), andp(G|E) =

0 for a discretization ofd = 0. Linear interpolation is used to
compute probabilities between these endpoints. A user’s responses
to discretize hints (accept or reject) update the probability graph.
ConsiderAi with u > 7 unique values (Fig. 4b). Suppose ViA
suggests discretizingAi to d = 7 values, which the user accepts,
then ViA suggests discretizing tod = 5 values, which the user
rejects. The updated probability graph is shown in Fig. 4b. Alld ≥
7 are now assumed to be accepted, and alld ≤ 5 are assumed to
be rejected. Linear interpolation is used to estimate probabilities
over the unknown region5 ≤ d ≤ 7 (i.e.p(G|E) = 0.5 for d = 6).

Task Remove.A task removal hint requests that a task assigned
to Ai be removed from consideration. This hint is generated when
visual featureVi representingAi cannot support the given task.

Task removal operations are binary in nature, since there are no
“parameter values” attached to the request. An initial probability
p(G|E) = 1 − impi is used to estimate how likely a user
is to accept the hint. A single query fixes the task removal
probability. If a user allows the task removal, the probability is set
to p(G|E) = 1. If a user rejects the task removal, the probability
is set top(G|E) = 0.

V. EVALUATION

In order to evaluate ViA’s performance, we considered three
separate components. First, we measured ViA’s ability to locate
the best visualization mappings, compared to an exhaustive search
of all possible visualizations, and to the common simulated
annealing and tabu search algorithms. This provides evidence
that ViA’s hint-based search algorithm can locate high-quality
visualizations, hopefully in significantly fewer steps than are
required for exhaustive search.

Second, we studied how adding mixed-initiative interaction
affects the quality of the visualizations ViA recommends, and
how well it buffers a user from having to answer repeated queries
about how the search should proceed.

Both the search and mixed-initiative investigations were con-
ducted using a real dataset containing historical weather condi-
tions. We concluded by applying ViA to a very different kind
of dataset representing artificial intelligence agents competing in
a simulated e-commerce auction environment. Researchers from
this project used ViA’s visualizations to identify important new
strategies the agents employed during the competition.

A. Search Performance

We began by comparing ViA’s search capabilities to an ex-
haustive search of all possible visualization mappings, and to
two common artificial intelligence search algorithms: simulated
annealing (SA) and reactive tabu search (RTS). Three metrics
were calculated to measure performance:

1) Optimality: the evaluation weight of the best mapping found
by an algorithm.

2) Efficiency:the number of visualization mappings evaluated
by an algorithm to find the first optimal mapping.

3) Completeness:the number of optimal mappings an algo-
rithm finds, relative to the total number of mappings with
the maximum evaluation weight.

The number of visualizations in a search space depends on the
number of data attributesn and the number of available visual
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TABLE I

WEATHER DATASET ATTRIBUTES AND ASSOCIATED PROPERTIES

Attr Domain Freq Task Impt
temperature discrete (u = 7) high search 1.0
wind speed discrete (u = 23) low boundary 0.75

pressure continuous low boundary 0.15
precipitation discrete (u = 82) high search 0.75

featuresv. Given n ≥ v, the total number of visualization
mappings is

(n
v

)
v!. If users modify their initial constraints, the

number of states will increase rapidly, since a change toAi means
that any visualization mapping containingAi may evaluate to a
new weight and set of hints.

We used a meteorological dataset containing weather conditions
collected and averaged by the Intergovernmental Panel on Climate
Change (IPCC) for the years 1961 to 19902. Monthly averages for
eleven separate weather conditions are provided at1

2

◦
latitude by

1
2

◦
longitude steps for positive elevations throughout the world.

In order to limit the size of the search space during exhaustive
searching, we focused onn = 4 data attributes: meantemperature,
wind speed, pressure, and precipitation over the continental
United States. Table I summarizes the attributes and the initial
inputs that were provided to ViA. We allowed ViA to consider
using v = 4 visual features to represent the weather data: color,
density, orientation, and height. We also pre-selected how users
respond to each type of hint for each attribute. This allowed us
to fully specify a search space with 1,680 nodes containing all
possible combinations of visualization mappings and user inputs.

Simulated Annealing. Simulated annealing (SA) is a heuristic
technique that applies a probabilistic model to iterate towards a
global optimum in a large search space. SA has been compared
to cooling metals to a minimum crystalline structure through an
annealing process, where the metal is set to a high temperature
and slowly cooled to maintain an approximate thermodynamic
equilibrium. If the energy function of the physical system is
replaced by an objective function, the progression towards a
ground state represents iterating towards a global optimum. SA
performs gradient descent by picking a random move, then
allowing the move if it improves the current state, or allowing
it with probability less than 1 if it does not. This probability is
lower when a move produces a larger decrease in the current
state, and when the current temperature of the system is lower.
As with the annealing process, avoiding local maxima depends
on the choice of the initial and final temperatures, and the change
in temperature as each cooling step is applied [14], [47].

SA begins with an initial data-feature mappingM that evaluates
to weight w. All permissible operations onM (e.g. discretize,
feature swap, and so on) are generated, with one being randomly
selected and applied to produceM ′. If M ′ has a higher evaluation
weight w′ > w, it is automatically accepted, otherwise it is
accepted or rejected with a probability based onw − w′ and
T , a monotonically decreasing current temperature of the system.
This process continues until a final system temperature is reached.
Mappings located during the search with the highest evaluation
weights are then returned by the system.
Reactive Tabu Search.One drawback of SA is that, due to
the random selection of operators, it can become trapped in a
cycle. Tabu search (TS) allocates additional memory to remember

2http://ingrid.ldeo.columbia.edu/SOURCES/.UEA/.CRU/
.New/.CRU05/.climatology/.c6190/

previous states, allowing it to avoid this problem [13], [47]. At
each iteration in the search process, the most recently visited
nodes are marked as tabu, and are not considered when making
the next move. The size of the recently visited node list affects the
algorithm’s performance. Strict-TS treats any node ever visited as
tabu. This leads to slow convergence, however, since previously
visited nodes act as barriers to improved areas of the search
space. Fixed-TS treats the lastp nodes visited as tabu.p must
be chosen to be large enough to avoid cycles, but small enough
not to overconstrain the search. Reactive-TS (RTS) variesp

dynamically [2]. RTS maintains a separate, long-term memory of
all nodes visited. Whenever a node is repeated, the tabu list size is
increased. A separate, slower mechanism reduces the size of the
list when new nodes are located. If the number of node repetitions
becomes significant, a diversification stage is applied to escape
the local maxima by making a random walk to a different region
of the search space.

As with SA, RTS begins with an initial data-feature mappingM

that evaluates to weightw. The node containingM is placed on
the tabu list, and all permissible operations onM are generated.
The move that producesM ′ with the largest evaluation weight
w′ is applied. RTS continues searching local non-tabu mappings,
diversifying as necessary, until a stopping condition is reached.
Mappings located during the search with the highest evaluation
weights are returned by the system.

Performance Results.Given the meteorological dataset, initial
user inputs, and allowed modifications to the inputs, an exhaustive
search of all 1,680 nodes identified 21 optimal mappings, each
with an evaluation weight ofw = 0.844. We ran ViA’s hint-based
search, simulated annealing, and reactive tabu search to compare
their performance to this complete evaluation.

How each search proceeds depends in part on its starting
position within the state space. By default, ViA builds an initial
data-feature mapping at starting positionS0 by sorting the data
attributes by importance weight, then assigning visual features in
order of perceptual salience. This maps the most salient visual
features to the most important data attributes, and produces good
results in practice. In addition toS0, we selected five additional
starting positionsS1, . . . , S5 that were distributed throughout the
state space, and that had both high and low evaluation weights
(i.e. represented both strong and weak initial visualizations). For
eachSi, an algorithm was allowed to perform 200 evaluations,
and was then asked to return the best mappings that it found.

Hint-based search runs in a deterministic fashion. From a given
starting point, it will always evaluate the same states in the
same order. SA and RTS have random components, however, so
they can visit different nodes for a given starting position and
fixed number of evaluation steps. To address this, we ran both
algorithms from eachSi until the variance between runs fell below
a pre-selected confidence threshold, then averaged the results to
produce an overall estimate of the algorithm’s performance.

We started by calculating the number of evaluations required
to find the first optimal mapping. Averaged over all six starting
positions, hint-based search needed to perform 63.2 evaluations,
ranging from a low of 4 evaluations for starting positionS5 to
a high of 120 evaluations forS1 (Table II). SA needed 85.8
evaluations, ranging from an average low of 74 evaluations for
S3 to an average high of 98 evaluations forS0. RTS needed 84.2
evaluations, ranging from an average low of 14 evaluations for
S3 to an average high of 190 evaluations forS4.
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TABLE II

RESULTS FOR EXHAUSTIVE SEARCH VERSUSVIA’ S HINT-BASED

HEURISTIC, SIMULATED ANNEALING , AND REACTIVE TABU SEARCH

First Optimal Total Optimal
S0 S1 S2 S3 S4 S5 S S0 S1 S2 S3 S4 S5 S

Full — — — — — — — 21 21 21 21 21 21 21

Hint 76 120 102>200 14 4 63.2 3 5 3 0 4 2 2.83
SA 94 98 80 74 90 79 85.8 3 4 4 4 3 4 3.83
RTS 68 36 44 14 190 153 84.2 16 17 17 17 6 6 13.17

Interestingly, from starting positionS3 hint-based search was
unable to locate an optimal result during its 200 allowed eval-
uations. The best mapping it found had an evaluation weight
98% of the global maximum. The hint-based search arrived at
the neighbor of an optimal node, but never moved to the optimal
node itself. Moves are dictated by the hints the evaluation engines
return, and none of the hints suggested pushed the search onto
the optimal node.

Simulated annealing also failed to find optimal nodes during
some (but not all) of its runs for all six starting positions.
In every case, however, SA was able to locate mappings that
had an evaluation weight at least 97% of the global maximum.
The random nature of how SA selects its moves caused it to
miss nearby optimal mappings during approximately 23% of its
searches.

We also measured how many of the 21 optimal mappings each
algorithm identified. Hint-based search located, on average, 2.83
optimal mappings (ranging from a low of zero mappings for
starting positionS3 to a high of five mappings forS1), SA located,
on average, 3.83 optimal mappings (ranging from a low of three
mappings forS4 to a high of four mappings forS0, S1, S2, S3,
and S5), and RTS located, on average, 13.17 optimal mappings
(ranging from a low of six mappings forS4 andS5 to a high of
17 mappings forS1, S2, andS3).

RTS identified more optimal mappings, compared to the hint-
based and SA searches. This algorithm did particularly well due
to its exhaustive evaluation of local regions of the search space
(the intensification stage) before moving on to new locations (the
diversification stage). The space of visualizations we searched
during our testing contained 12 optimal mappings clustered near
one another. RTS was able to quickly identify all 12 mappings
from four of the six starting positions. In the other two cases RTS
did not diversify fully into this region. It was still able to identify
six optimal mappings, however, more than the best results for
both hint-based and SA search.

Although RTS may find more optimal mappings when the
mappings cluster together, these mappings will, by definition, be
similar to one another. This makes them potentially less likely
to highlight different aspects of the dataset, since they visualize
data in very similar ways. Hint-based search does a better job of
spreading its evaluations throughout the search space by following
promising hint chains to diversify quickly into different local
regions. This has the potential to return optimal mappings that
are very different from one another, although at the expense of a
reduction in the total number of optimal mappings identified.

None of the search algorithms produced poor results. ViA’s
hint-based search completed its 200 evaluations in less than one
second, although more time would be needed if more attributes
were included (e.g. approximately 10 seconds for six or more
attributes). There is room for improvement, however, mostly in

guaranteeing that at least some optimal mappings are located in a
timely fashion. Based on our results, we believe a combination of
hint-based diversification between regions and RTS intensification
within a region could improve our results. This algorithm is being
implemented as part of our future work.

B. Mixed-Initiative Interaction Performance

We continued our investigations by studying ViA’s recommen-
dations, both with and without mixed-initiative interaction, for
visualizing the same meantemperature, wind speed, pressure, and
precipitationattributes from the IPCC weather dataset (Table I).

ViA was executed in three separate modes. In the first, no user
interactions were conducted except for the initial input of data
properties and analysis task requirements. We denote this version
of ViA with no interaction ViA-N. Fixed cutoffs were applied to
automatically determine whether to accept or reject hints from
the evaluation engines:

• feature swap:automatically allowed, since these hints are
perceptually based and do not change the user’s initial inputs,

• importance weight modify:allowed if the difference between
the new importance weightimp′i and the original weight
impi is no more than0.15, | impi−imp′i | ≤ 0.15, otherwise
rejected,

• discretize: allowed if the number of discrete rangesd is
no less than half the number of unique valuesu originally
contained inAi, d ≥ 1

2u, otherwise rejected, and
• task remove:allowed if the importanceimpi of Ai is 0.25

or less,impi ≤ 0.25, otherwise rejected.

In the second mode, ViA runs with the mixed-initiative engine
enabled. Decisions about whether to automatically accept or reject
a hint, or to ask the user for advice, are controlled by expected
utilities. We denote this version of ViA with mixed-initiative
interaction ViA-MI.

Finally, we ran ViA with full, explicit interaction. The user
is asked to accept or reject each importance weight modify,
discretize, or task remove hint. Apart from avoiding duplicate
queries, answers to past queries are not analyzed to try to infer
future answers. We denote this version of ViA with complete
interaction ViA-UI.

ViA-N versus ViA-MI. Our first experiments tested the abilities
of ViA with no interaction versus ViA with a mixed-initiative
interface. Four conditions were measured: evaluation weights of
the best visualizations ViA found, the number of visualization
mappings evaluated, the total number of possible mappings over
the entire search space, and the number of queries made to the
user. ViA-N evaluated 89 of 3,840 possible mappings (2.3%), re-
turning the following mappings as the best it identified (Table III):

• w = 0.84, temperature→ orientation; wind speed(dis-
cretized tod = 12 ranges)→ hue; precipitation → size;
pressure→ coverage

• w = 0.84, temperature(discretized tod = 5 ranges)→
size; wind speed(discretized tod = 12 ranges)→ hue;
precipitation→ orientation;pressure→ coverage

Fig. 5a shows the first ViA-N mapping used to visualize average
weather conditions for the month of January. An area of high
wind speedappears in the center of the country (orange and pink
glyphs), while an area of highprecipitationoccurs in the Pacific
Northwest (larger glyphs). Highertemperatureand pressureare
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(a)

(b)

(c)

Fig. 5. Average historical weather conditions for January over the continental United States: (a) ViA-N; (b,c) two different ViA-MI
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TABLE III

SEARCHES WITH FIXED CUTOFFS(VIA-N), MIXED -INITIATIVE

INTERACTION (VIA-MI), AND EXPLICIT USER INTERACTION(VIA-UI)

Maximum Queries Hints
w Issued Accepted

ViA-N 0.84 0 5
ViA-MI, first run 0.875 6 4

ViA-MI, second run 0.94 9 8
ViA-UI, always no 0.83 20 0

ViA-UI, fixed cutoffs 0.84 43 5
ViA-UI, always yes 0.94 2,324 2,324

visible in southern Texas and Florida (a denser packing of glyphs
with a rightward orientation).

For ViA-MI, a total of six queries were made. The user
answered “Yes” to the following request:

• Discretizewind speedto 5 values?
The user answered “No” to the following five requests:

• Discretizetemperatureto 5 values?
• Discretizeprecipitation to 7 values?
• Change the importance weight oftemperatureto 0.875?
• Change the importance weight ofwind speedto 0.875?
• Change the importance weight ofprecipitation to 0.875?

Based on these responses, ViA-MI evaluated 49 of 1,920 possible
mappings (2.6%). Even with this single allowed change, ViA-MI
was able to identify better visualizations that ViA-N. The top
mappings returned by ViA-MI were (Table III):

• w = 0.875, temperature→ hue; wind speed(discretized to
d = 5 ranges)→ size;precipitation→ orientation;pressure
→ coverage

• w = 0.86, temperature→ size; wind speed(discretized to
d = 5 ranges)→ hue;precipitation→ orientation;pressure
→ coverage

Fig. 5b shows the first ViA-MI mapping used to visualize January.
The temperaturepatterns appear easier to identify with hue than
with the orientations in Fig. 5a. The strongwind speedregion in
the center of the country is visible as larger glyphs. The region
of high precipitationnow appears as a set of glyphs with a strong
rightward orientation.

We observed a number of interesting effects produced by
enabling mixed initiative interactions. Discretizingwind speedto
d = 5 ranges allowed both hue and size to visualize the attribute
(hue supports up to seven distinguishable values, and size supports
up to five values). Since ViA-N’s fixed constraints do not allow
discretizing an attribute to less than half its original number of
unique values, size could not be used by ViA-N without some
penalty. Discretizingwind speedalso allowed ViA-MI to evaluate
30 new mappings that were not considered by ViA-N.

Because the user did not allowtemperatureto be discretized,
ViA-MI did not consider 42 mappings that were evaluated by
ViA-N. By not allowing any importance weight changes, ViA-MI
eliminated an additional 40 mappings that ViA-N had to evaluate

Although ViA-MI was not allowed to discretizetemperature
below its initialu = 7 values, ViA-N did reduce it tod = 5 ranges.
On the one hand, this is an example of ViA-MI using a query
to identify and enforce a user’s preferences. On the other hand,
new visualizations of potential interest to the user were generated
by reducingtemperatureto five ranges. To gain this benefit, users
can run ViA multiple times and answer certain queries differently
to explore how their preferences and constraints affect the types
of visualizations ViA suggests.

In order to investigate this question of how user responses
affect ViA-MI’s performance, we re-ran ViA-MI, but answered
the dialog queries in a slightly different manner. A total of nine
queries were made. The user changed his answer from “No” to
“Yes” for the following three requests:

• Discretizetemperatureto 5 values?
• Change the importance weight oftemperatureto 0.875?
• Change the importance weight ofwind speedto 0.875?

Based on these responses, ViA-MI evaluated 343 of 30,720
possible mappings (1.1%), returning a visualization with an
increased weight ofw = 0.94 (Table III). The mapping assigned
temperature(discretized tod = 5 ranges, and with importance
weight reduced to 0.875)→ size, wind speed(discretized to
d = 5 ranges, and with importance weight increased to 0.875)→
hue,precipitation→ orientation, andpressure→ coverage. The
following hints were needed to improve upon the best mapping
found during the first test of ViA-MI:

• size is better-suited to representing the high spatial frequency
details intemperaturethan (isoluminant) hue, but in order to
use size without penalty, it needed to be discretized tod = 5

ranges,
• hue can be used to represent (low spatial frequency)wind

speedonce it is discretized tod ≤ 7 ranges, and
• the initial importance weights of 1.0 fortemperatureand

0.75 forwind speedwould produce visual interference (lower
importancewind speedrepresented with a more salient visual
feature hue); to remove this, the importance weight for
temperatureis reduced to 0.875, and the importance weight
for wind speedis increased to 0.875.

This demonstrates how ViA tries to use sequences of hints to
iteratively improve its visualization recommendations. All three
hints described above were needed to arrive at the final, high
quality visualization ViA suggested.

Fig. 5c shows the new ViA-MI mapping used to visualize
January. All of the weather patterns seen in the previous visu-
alizations appear in this final image. One prominent feature of
Fig. 5c is the small area of very highwind speedvisible as
bright, pink glyphs in Wyoming. This is due to the use of hue
and the discretization tod = 5 ranges. Another interesting result
is that temperatureappears less prominent in Fig. 5c, compared
to the original ViA-MI mapping in Fig. 5b. This is due to the
user accepting changes to the importance weights fortemperature
and wind speed. Although modifying the initial user inputs can
improve the visualization mapping’s evaluation weight, the user
must decide whether emphasizingwind speedat the expense of
temperatureis appropriate. ViA allows users to experiment with
these types of questions and compare the resulting visualizations
to see which mappings produce the best results for their analyses.

Because the visualizations in Fig. 5 are the “best” mappings
suggested by ViA, they are all of a high quality. This explains why
many of the differences between them are subtle. Mappings with
lower evaluation weights would exhibit larger visual differences.

ViA-UI versus ViA-MI. Next, we compared ViA-MI to a system
where the user is always asked to decide whether to accept or
reject each hint. This scenario is similar to ViA-N, since it runs
without using expected utilities to determine how to handle a hint.
Instead of applying fixed cutoffs, however, the user is required to
tell ViA how to act for each hint that is generated. Our main
interests were to see: (1) what improvement in evaluation weight
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can we obtain by asking the user to control the hint selection
process; and (2) how well ViA-MI insulates the user, that is, how
many hints does ViA-MI manage automatically.

We did not want to force our users to answer the long sequences
of queries generated during this experiment. Instead, we executed
ViA-UI in three separate scenarios. In the first, we assumed the
user rejected every hint suggested by ViA. In the second, ViA-UI
made answers identical to those made by the fixed constraints of
ViA-N. In the final scenario, ViA-UI allowed all hints.

When every hint was rejected, the search space was kept small,
resulting in 20 unique queries and a maximum visualization
weight of w = 0.83 (Table III). In the second scenario ViA-
UI mimicked ViA-N, producing 43 unique queries. The best
visualization had weightw = 0.84, identical to the ViA-N
scenario. In the final scenario, allowing every hint increased the
size of the search space dramatically, producing 2,324 unique
queries. The weight for the best visualization wasw = 0.94,
identical to ViA-MI’s second experiment.

These results suggest that mixed-initiative interaction offers
important advantages over fixed constraints or full user control,
by increasing the quality of the suggested visualizations while
protecting the user from answering numerous queries. ViA makes
requests to relax the initial constraints, but focuses on situations
where this knowledge could significantly improve the visual-
izations being generated. ViA caches responses in probability
graphs to improve the likelihood of taking automatic actions for
future hints. ViA also explains why a query is being made, and
quantifies the expected improvement of accepting the proposed
action. Keeping the number of queries small and explaining the
query’s purpose and results motivates a user to fully consider a
hint and answer knowledgeably about how to proceed.

A final point to recall is that, given the same visual features and
perceptual guidelines, ViA cannot suggest visualizations that are
better than the very best mapping hand-built by a visualization
expert. ViA’s strength is its ability to rapidly identify visualiza-
tions that are well-suited to a given dataset and analysis tasks,
without requiring any visualization expertise from its users. Our
search results demonstrate that ViA is faster and, in many cases,
more effective than the typical manual process of designing high-
quality visualizations.

C. E-Commerce Datasets

The first two studies highlight the advantages of ViA’s search
algorithm and mixed-initiative interaction model. This ignores the
question of whether the evaluation engines accurately identify
the strengths and weaknesses present in a visualization mapping.
The rules used within each engine are based on results from
controlled psychophysical experiments, specifically to address
this issue. Real-world validation is still needed to confirm ViA’s
practical usefulness, however. To address this need, we conducted
a final evaluation by visualizing intelligent agents competing in
the Trading Agent Competition3 (TAC) [18], [20]. The TAC
implements different types of online auction rules to mimic a
wide variety of market games. Intelligent auction agents compete
within the TAC to study different buying and selling strategies.
For example, during the first version of the TAC we visualized,
agents were tasked to assemble travel packages consisting of:

• a round-trip flight to Boston,

3http://tac.eecs.umich.edu

TABLE IV

TAC ATTRIBUTES AND ASSOCIATED PROPERTIES

Attr Domain Freq Task Impt
agent ID discrete (u = 8) high search 1.0

price continuous low boundary 0.5
quantity discrete (u = 10) high estimate 0.5

• a hotel reservation during the trip, and
• tickets to entertainment events during the trip.

All three products are traded in separate markets with different
auction rules. For example, hotel room auctions run as follows:

1) One economy and one luxury hotel offer sixteen rooms
every evening.

2) Each hotel-evening pair runs as a separate auction.
3) An auction ends when the simulation ends, or a random

period of inactivity passes with no new bids.
4) All rooms are sold at the sixteenth bid price (i.e. the sixteen

highest bids win, but they all pay the sixteenth bid price).

Other auctions run with slightly different rules. For airline tickets,
one flight operates every day as a separate auction, with enough
seats to satisfy any number of customers and with prices ranging
from $150 to $600, changing by±$10 every 20 to 30 seconds.
For entertainment tickets, every agent receives an initial allotment
of tickets, which they buy and sell with other agents in a stock
market fashion. As with hotels, a separate auction is held for each
evening-event combination.

We began by asking the TAC designers to identify the attributes
to visualize. They chose thetime, auction ID, agent ID, price, and
quantity for every bid made during the simulation. ViA does not
suggest spatial layout of information, so we consulted with the
TAC designers to choosetime and auction ID to define a bid’s
x and y-position on a two-dimensional grid. 3D tower glyphs
that can vary in their hue, luminance, height (size), density, and
regularity of placement were used to represent the remaining
attributes:agent ID, price,andquantity (Table IV).

After further discussion, we allowedquantity to be discretized
into (as few as) three equal-width ranges.agent ID was not
modified, since viewers need to identify specific agents during
the simulation. Finally, ViA was not allowed to change any
importance weights or discard any analysis tasks.

Based on these restrictions, a total of nineteenM were
evaluated. The smaller number of attributes and visual features,
together with the constraints on how mappings could be modified,
kept this number low (without these constraints, ViA would have
evaluated 189 separateM ). A number of promisingM remained,
for example:

• w = 0.862, agent ID→ color, price → height,quantity→
density (discretized tod = 4 ranges)

• w = 0.787, agent ID→ color, price → density,quantity→
height

Given these mappings, we chose a modified versionMf of the
first mapping for the final visualizations. Instead of using density
to representquantity, Mf varies each tower’s width. This supports
a wider range ofquantityvalues, and it uncouplesquantity from
vertical density, allowing us to use this spatial property to show
multiple bids within a commontime andauction ID.

Each year, an online round-robin competition is used to select
TAC finalists, who compete against one another at a conference
venue. Fig. 6 shows a dataset from the Fourth International
Conference on Multiagent Systems (ICMAS-00), visualized with
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hotel/airline purchase activity

“stay alive” bidstime

auction

penalty/cost tradeoff bids

Fig. 6. ICMAS-00 TAC data visualized withMf

Mf . Finalists at ICMAS used sophisticated agent strategies, many
of which are visible in our visualizations. For example:

1) Most agents deferred purchasing hotel rooms and airline
tickets until just before the simulation ended, since they
felt there was no advantage to early purchase.

2) Some agents periodically made low buy bidsb for hotel
rooms to keep the hotel auctions open.

3) Some agents made very high buy bidsb for hotel rooms at
the end of the simulation. Without a hotel room, a penalty
would apply for not completing the customer’s trip, but the
sixteenth winning bid for hotel rooms is likely to be� b,
allowing the agent to secure a room for a reasonable price.

Each of the above findings were of interest to the TAC designers.
They told us these particular techniques had not been identified
in the event logs, graphs, and statistical analyses that were
previously employed to study agents’ actions. More importantly,
these approaches represent major strategies. For example, agents
that bid on hotel rooms using a minimum penalty-cost tradeoff
won the ICMAS-00 TAC.

VI. CONCLUSIONS ANDFUTURE WORK

The paper describes ViA, a semi-automated visualization as-
sistant designed to construct high quality multidimensional visu-
alizations by combining knowledge of human visual perception
with a mixed-initiative AI search algorithm.

Basic dimensions of color and texture are used to visualize
individual data attributes. Guidelines on how we perceive these
visual features are combined with a dataset’s properties and a
user’s analysis needs to form a space of all possible visualization
mappings. This space is explored with a hint-based search strategy
that tries to quickly locate mappings that are best-suited to
the user’s data and tasks. A mixed-initiative interaction engine
consults probability graphs and queries the user to decide when to
modify the dataset or the user’s initial inputs during the search for
better visualizations. The topk mappings are returned, allowing
the user to quickly visualize the same data in different ways to
highlight different findings of interest.

ViA’s hint-based search was compared to an exhaustive search,
simulated annealing, and reactive tabu search. The mixed-
initiative interactions were also studied to characterize the im-
provements they offer. Results for a meteorological dataset were
positive, suggesting both components provide important advan-
tages during visualization construction. We concluded by using
ViA to visualize intelligent agent activity within a simulated e-
commerce auction. Important agent strategies were found using

ViA’s visualizations, providing further evidence of the strength of
ViA’s perceptual evaluation approach.

ViA also contains a number of important limitations. Our
visualizations use visual features attached to geometric glyphs
to represent different data attributes. Certain datasets or analysis
tasks may not fit well with this approach (e.g. when a very
large number of attributes need to be displayed). ViA is designed
to be application-independent. This was done to generalize to
different problem domains, but it can also restrict how well ViA
supports certain application-specific requirements. ViA searches
for visualizations that fit either the original or any modified
user constraints. Telling users which constraints a visualization
is matched against can help them to understand how modifying
constraints affects ViA’s suggestions. Small evaluation weight
differences imply subtle variations. In these situations, users may
not agree with ViA about which visualization is the “best” choice.
Finally, our evaluation of ViA’s real-world capabilities is based on
anecdotal feedback from domain experts. We have not conducted
controlled experiments to formally quantify ViA advantages over
existing analysis and visualization techniques.

These issues are being investigated as part of our plan for future
work. Other improvements are also being pursued. Based on
recently completed psychophysical studies, we are building three
new evaluation engines to include flicker, direction of motion,
and velocity of motion in ViA’s visualizations [24]. We are also
extending ViA’s search strategy to include diversification through
the existing hint-based scheme, and intensification within a local
region using a reactive tabu search. Results from our evaluations
suggest this may lead to better performance.
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