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~ Abstract—This paper investigates the introduction of biolog- Presented in this paper is an approach that introduces bio-
ically inspired intelligence into virtual assembly. It develops an |ogically inspired intelligence into virtual assembly. The discus-
approach to assist product engineers making assembly-related gjqns start with a brief survey of the research topics directly re-

manufacturing decisions without actually realizing the physical . : .
products. This approach extracts the knowledge of mechanical lated to this work. The focus then turns to the introduction of

assemb|y by a||owing human Operators to perform assemb|y human expertise Of mechanical assembly and the incorporation
operations directly in the virtual environment. The incorporation  of a biologically inspired neural network into the development
of a biologically inspired neural network into an interactive of a virtual assembly system. The benefits of flexibility become
assembly planner further leads to the improvement of flexible  o\;iqent with the capability of an interactive assembly planner to

product manufacturing, i.e., automatically producing alternative d It fi bl f inal d
assembly sequences with robot-level instructions for evaluation produce alternalive assembly sequences irom a singie user-de-

and optimization. Complexity analysis and simulation study fined sequence. Finally, this paper concludes with simulation

demonstrate the effectiveness and efficiency of this approach. study and discussions on experiment results.
Index Terms—Flexible manufacturing, mechanical assembly,
neural networks, virtual reality. Il. RELATED WORK
Robot-based mechanical assembly uses robotic manipulators
|. INTRODUCTION to put together products from its component parts. Correspond-

. . ingly, virtual assembly needs to deal with the issues of robot pro-
LEXIBILITY has been recognized as a desirable featurglramming and assembly planning. In addition, it has to handle

_in manufacturing systems to ensure higher quality whilg,e challenges created by applying technologies such as virtual
maintaining an increasing diversity of products. Driven by tht%ality and neural networks.

highly competitive market, researchers in a wide range of ap-
plication areas, including engineering, economics, and manage-Robot Programming

ment, have worked on the development of a variety of methOdSRobotic manipulators fit machinery parts together by per-

to achieve their specifi.c _goa!s and/or subgpals thr'o'ugh this.fefgfming assembly tasks in specified sequences. Each task in-
ture. In particular, flexibility in product design anticipates Si%tructs a robotic manipulator to perform an assembly operation

nificant improvements in terms of responsiveness to the markgﬁ,d to establish a mating relationship between objects. The old-

_s_pee_d of pro_duct development, and saving in prototypes and \f&5hion online robot programming requires human operators to
ification testing [25].

- ) i . hysicall teachi dant. It ds the actual -
Accordingly, virtual assembly fulfills design flexibility by physica’y move a teaching pendant. 1t recores fhe actual move

king in th ter It | hvsical obiects wit ents of joints and uses them to control robots for high volume
working In-the computer. It replaces physical 0bjects Wit q,ctions. Online programming suffers from the down-time
the virtual representation of machinery parts, and provid

Probot operations, the danger imposed upon human operators,

advanced user interfaces for human operators to_d_e5|gn %W& the difficulty of making adjustments for new products.
genera_te product prototypes, to analyze and optimize many, comparison, offline programming promotes the develop-

Yhent of automated manufacturing tools and allows for the in-

: ¢ The eliminati f phvsical totvDi gration of different technologies from a wide range of origi-
environment. - 1he-elimination ot physical protolyping an ally separated areas. There has been a number of methods de-
on-site verification makes virtual assembly a powerful tool tQ

d the lif le of facturi d to adant ch eloped for different applications [20]. They range from simple
_ret u:j:e el e-cycde Ot manutacturing and to adapt Changes gl paseqd programming interfaces to computer-aided produc-
Introduce neéw products. tion systems. The former requires long development time and
expert programmers to visualize joint motions without a phys-
ical robot, and the latter provides a full set of tools to design and
program the entire manufacturing process.
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supported b_y Natural Sciences and Engineering R’_esearc_h Council (NSERC3efeen and provide electronic mice as an interactive device
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S. X. Yang is with the Advanced Robotics and Intelligent Systems (AR'%esign/manufacturing [2]' including most of the commercial
Lab., School of Engineering, University of Guelph, Guelph, ON N1G 2W1 in th k h d The d
Canada (e-mail: syang@uoguelph.ca). systems in the market such B8B0CAD andIGRIP. The draw-
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implements directly in the computer-synthesized worki
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is two-dimensional (2-D) in nature. Decomposition of three-decution. A couple of others used the sensory reading of finger
mensional (3-D) assembly operations into 2-D suboperatiojaint bendings to map grasping operations from a user to the ma-

is a must. nipulator [11], [29]. Another practice in this category deals with
) “teaching by showing,” and developed methods of transforming
B. Assembly Planning human operations to symbolic assembly commands with data

Given a robotic manipulator and the design of a produd|ove devices [16].
the objective of assembly planning is to determine feasible andOther applications emphasize more on the advantages that
optimal assembly sequences for the robotic manipulator to agtual reality offers to human/computer interaction. Data glove
semble the product from its component parts [12]. The assembBvices in this case become an instrument to construct human
of m machinery parts by a robotic manipulator lofdegrees hands into the virtual environment. It makes possible for direct
of freedom creates a configuration spacerof- k degrees of manipulation of virtual objects [18], [24]. In addition, virtual
freedom. A point in the configuration space defines a particeality may go beyond reality by allowing object manipulation
ular state of a workcell. Considering the original layout of thatthe conceptual level, i.e., to act at a distance [9]. An increasing
workcell and the final scene of an assembled product as the inismber of projects has started paying attention to the overall
tial and destination points in the configuration space, a feasisiavironment that could eventually allow production engineers to
assembly sequence then corresponds to a continuous, safe @, evaluate, and verify the assembly of mechanical products
realizable path that connects the two points [21]. in the computer [10].

Consequently, assembly planning faces the problem of path
searching in anrt + k)-dimensional configuration space. As-D. Neural Networks

sembly planning in theory is impossible as the required com-path planning is a typical application area of neural networks
putation time grows exponentially with the dimension of thg, yohotics. Most models use global methods to search the pos-
configuration space. In practice, it is common to reduce thgyle paths in the entire workspace [1]. As a result, they suffer
complexity by making assumptions. Free-flying objects, for ifrom the same computational complexity as assembly planning
stance, simplify the problem into a logical planning problemoes. Other models also have the problem of undesired local
[26]. However, it is only a subproblem of assembly planningyinima, which may create traps in some cases such as concave
as it leaves robotic execution out of assembly plans. Among theshaped obstacles [28]. Path planning with penetration growth
approaches that work on the complexity problem, the most igistance shows the advantage of searching over collision paths
fluential are the numerical potential field, connectivity charac[17], and has the capability of generating optimal, continuous
terizing, and sequential frameworks [7]. robot paths. Unfortunately, the neural-network approaches that
Assembly planning at its current stage has to leave the ggork with static environments only are not suitable for interac-
tual motion of objects out of the planning process. The majorigye applications such as virtual assembly.
methods classified under interactive planning, such as the ongpere is a number of models developed for real-time motion
in [5], are in fact dealing with mechanical disassembly. Disagtanning through learning. For instance, combining an adaptive
sembly planning is fundamentally different from assembly plaRensory-motor mapping model and an online visual error cor-
ning as it provides only a subset of assembly sequences and G@gtion model may produce the trajectory of robot manipula-
siders arestricted set of allowable moving directions [19]. Othg{rs at run time [14]; and dynamic navigation of a mobile robot
methods simplify mechanical assembly to pick-and-place opgfithout any collisions is possible through unsupervised learning
ations as a way of avoiding motion planning, yet assembly plan5]. Since learning-based path planning cannot perform prop-
ning without the actual movement of machinery parts is hardf|y in fast changing environments, virtual assembly cannot use
useful in practice. the neural networks whose operation relies on explicit learning

C. Virtual Reality or cost optimization.

The recent development of virtual reality has changed the way . | NCORPORATION OEINTELLIGENCE

that human operators interact with computers. New devices ]
such as head-mounted display and data glove devices, becomENe advantage of virtual assembly does not come from a

affordable and more reliable. They extend user interface fropfnPI€ imitation of the activities that take place in the phys-
the classical 2-D to a 3-D space. Virtual reality provides a neff@! world during mechanical assembly. Instead, its approach of
means of immersing production engineers in a computer-syorking in the computer creates the opportunity of integrating
thesized working environment for them to interact with the vid Wide range of features into a seamless environment. This sec-
tual machinery parts, specifying and visualizing assembly a#2n dlscu_sses the.de5|gn ofg hapd—based user interface and the
tivities. Though virtual reality technology is still under devel€onstruction of a biologically inspired neural network. The next
opment, researchers have already begun investigating its apﬁgtlon th_en discusses thelr _apphc_:atlon in knowledge extraction
cation in industry manufacturing. and real-time path planning in a virtual assembly system.

The most straight forward application includes those that ex- )
plore the sensing capability of data glove devices. By requiriny Hand-Based Human/Computer Interaction
human operators to put on data gloves while manipulating phys-The main difficulty of introducing human expertise into as-
ical objects, a paper in [23] presented a method to collect humsambly planning roots in the inconsistent ways of object ma-
movement of objects for the integration of task planning and emipulation in the physical and virtual worlds. Window-based
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human/computer interaction is not sufficient for the task of spec &

ifying three-dimensional assembly operations, and the use contintous modes y discretl states
virtual reality devices does not need to limit to data collectior ,ﬁ—__\__@;"‘”s”"”e”a‘”e metion—

only. By properly exploiting the object manipulation capability gesture e

of data glove devices, an operator may handle the virtual repre—; dofcheck hand motion @
sentation of machinery parts in a similar way as in the physici " [_____ | ______ [

“point”

world, and eventually become capable of engaging in the pla
ning activities. posture

In a virtual environment, all objects are graphics models th: \ \“mh“" han shipes | it —>(@)
follow no physical restrictions. The hand cannot pick up an),
objects in the virtual environment as they tend to run througjﬂg_ 1. State transition diagram ofand”
each other like ghost objects. A hand-based user interface uses

the con.t|.n uous me_asure.ment from a space tracker to determlnﬁ] addition to the listed items, two assembly operations are
the position and orientation of the hand. It also uses the sensgr.

. i X . ; %Iied in gestures at the release of an object. Theylafe and
inputs from a data glove device to signal the bending of flgur(;%’_elw_ The slide command slides an aligned part into its posi-
segments in terms of joint angles. A combination of diﬁereqt

. ; ion. It triggers the sliding motion of an object along the major
hand postures may activate different control commands or "yl'ignment axis. This command is activated with a pushing ges-
tiate the gesture sampling for motion specification [22].

| feul losing hand tri theld dt ture when the object reaches to a proper alignment.sthev
rllpar |c|u a;_r, a c05|rrllg|d an ?gg.ers ‘ rforg”_‘a”_ O command differs fromstide in the way it becomes active. It
make a selection or uphold an action; an open hand imphes triggers the rotation of an object down to its alignment, which

WhiGh releases an itgm in pos;ession or free§ the hand from R ppens with a proper alignment and a twisting gesture. Both
sf[ramts, apozn.t sign |qvo!<es items fo.r selection; e}nd an “OK sliding and screwing operations result in a full alignment of ob-
sign means time tqu:t, 1.e., to terminate a running process; cts by the computer
Shown in Fig. 1 is a state transition diagram [4] of the han!je. '

The posture and gesture start as two concurrent states. TBeBjologically Inspired Neural Network

function in the super state of “continuous modes,” generatin . . . N
P g gThe original model of the biologically inspired neural

control commands and maotions. . L i
network used electrical circuit elements to describe a patch

Before the hand picks up an object, thédd command works g membrane in biclogical neural systems [8]. L&, be
primarily with free for hand adjustment. It releases the han )
e voltage across the membrane, arlg be the constant

from the continuous control mode. The motion of the hand in the ; . .
. X L . embrane capacitance. The following state equation then
physical world no longer contributes to the motion in the thuaI\]] X .
. ) : escribes the dynamics f,
environment. In such away, the hand is able to prepare itself to &
desired position or orientation. Object manipulation begins with  dV;,,
apoint command, which prompts up a space menuin the virtual™

“holdifree ™

= _(Ep + Vm)gp + (ENa - Vm)gNa

environment and activates menu selection. A casting ray from —(Ex +Vi)gx. (1)
the hand then highlights the menu item it hits, which becomes
selected when followed immediately lyid. In the equationFEr, Ey,, and E, are parameters that repre-

If the selected item is labeled as “reference,” the control gossnt respectively the saturation potentials for the potassium ions,
into a remote selection mode, in which a user selects graphaeglium ions, and passive leak current in the membrane. Corre-
features to define reference coordinate systems. The first featspendingly, the conductance in each of the three channgls is
selected by a combination gbint andhold commands is the gy, andg,.
start point of an axis and the second one is the end point. Thefter settingC,, to 1, a shunting equation takes its form by
first pair of features defines the major axdsand the second substituting, + V.., g,, En, + E,, Ex — E,, gn,, andgx
pair defines the minor axis. Reference definition operates inwith notionsz;, A, B, D, S, andS;™ respectively
an “action-at-a-distance” fashion, which is available only in a
virtual environment as physical limits do not permit conceptual- dz; = —Az; + (B — x;)8¢(t) — (D + z;)Si(t).  (2)
level object manipulation. dt

Alternatively, the selection of another menu item “motionin particular,z; is the neural activity of théth neuron in the
starts physical-level object manipulation. It checks for the ir2-D membrane. Parametets B, andD are three nonnegative
tersection between the hand and the machinery parts to seeoifistants describing the passive decay rate, the upper and lower
the hand touches any object.#ld posture grabs the object inbounds ofz; respectively.S¢ is the excitatory input and? is
touch, and makes it to move together with the hand unfitt@ the inhibitory input to the neuron.
posture releases it. In either the “reference” or “motion” mode, Equation (2) is useful for understanding the real-time adap-
a quit command returns the control to the menu state. Onetdfe behavior of individuals to complex and dynamic environ-
them s in active until the selection of menu item “done.” Duringnental contingencies [6]. In fact, this general shunting model
the interaction, remote selection reduces required motion, amdrks with any discrete neural network in a high-dimensional
direct manipulation maps grab-move-release actions to the apace provided the topological organization of the network char-
tual operations. acterizes the problem domain. In mechanical assembly, the task
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space isV/ -dimensional if the robotic manipulator it uses s A Target

degrees of freedom. This application then needa/adimen- Obstacles g\‘

sional discrete neural network to model the robot operations. T /\ .'
Suppose a neurofY, locates at a poing in the M -dimen- I :

sional network,g = {(qi1, ..., qu). It connects to all itsn ......0 r

direct neighboring neurond/,., p; = (p;;, --., pj,,;) and > 1o :

1 < j < n. Following the notation in (2)z, andx, denote 6 ® _—

the neural activities oiV, and N, respectively. A modification of °

to (2) produces the following shunting equation that defines the A .'\

dynamics ofN, | Object

dil? n
d_tq = —Azg+ (B —xg) [ LT+ wop, [y,
i=1
—(D+zy) | [I,] + Z Wap,clrp, — 17 | . (3) :
Jj=1 )
In (3), I, is the external inputs tdV,. The two functions

[#]* and[z]™ result inmax{z, 0} andmax{—z, 0}, respec-
tively. Parameterd, B, andD represent the passive decay rate,
the upper and lower bounds of,, respectively. Parameter

is a constant in the rand®,1], ands is an adjustable safety N ‘
factor. Especially, the symmetric weights, are determined Fi9- 2 Collision-free path at real time.
by a monotonically decreasing functigitlq — p|) of the Eu-

clidean distance betwegnandgq. For instancef(a) = p/a, neuronN, also include a sum of the weighted neural activities
if 0 < a < 7o for two positive constants andr,. Otherwise, from its direct neighbors. In such a way, it allows the network
f(a) = 0. to propagate positive neural activity through excitatory connec-
Every dimension of thé/-dimensional neural network mapstions, and to restrain the negative activities through inhibitory
to one particular joint of thé/-link robotic manipulator. In the connections.
kth dimension, the density of neurons depends on the incrementhis neural network overcomes the drawbacks of other neural
of the kth joint, and the number of neurons covers the entirgetworks. It uses only local connections among neurons, and the
range of thesth joint. The dynamics of neuron activity, in (3) computational complexity linearly depends on the neural net-
portrays the operation of assembly tasks in such a way that therks size. Moreover, the underlying dynamic neural activity
location of neuronV, in the network stands for a particular jointoperates without explicitly searching over the free workspace or
configuration of the robotic manipulator. Neurd, connects the collision paths, without explicitly optimizing any cost func-
only to its neighboring neurons in the network. A change frofiions, without any prior knowledge of the dynamic environment,
a neuron to any of its neighboring neurons triggers a changeaind without any learning procedures. It is therefore useful for
the set of joint incremental values. planning real-time optimal robot motion in dynamic situations
For any task in an assembly sequence, the neuron in the newighout the need of any learning procedures.
network that maps to the joint configuration of the robotic ma-
nipulator picking up a machinery part is a starting neuian IV. AV IRTUAL ASSEMBLY SYSTEM

and the one that maps to the completion of the assembly task ,
by the robot manipulator is the target neurSin Al the other The front-end of a virtual assembly system should be able to

neurons classify into two types. One type, denoted by &gt allow operators to specify and evaluate assembly operations di-

includes all the neurons whose location maps to a robot conff&-cuy in the virtual environment. Its final output is a set of opti-

uration that causes a collision between objects or objects amggd instruct_ions that cpntain; aI_I the details to control robotic
the robotic manipulator; the otheiV; }, counters in the rest of Manipulators implementing optimized assembly tasks.
neurons that lead to the collision-free movements of the robotic )
manipulator. A. Virtual Programming

Different external inputs to the neurons then distinguish oneAs shown in Fig. 3, a robotic manipulator is simply a set
type from another. The input, in (3) to neuron¥, is a large of graphics models in the virtual assembly system, each of
positive constan¥’, V' > B, if N, happens to be the targetwhich represents a rigid segment of the physical manipulator.
N,. I, changes te-V if N, is an elementi{N.}. Otherwise, The connection of segments forms a linkage of joints, and
I, is O for all the neurons in the set dfV,} (Fig. 2). As the the numbering of joints goes from the fixed base to the end.
starting neuron must be an element{df;}, its external input For any two adjacent joints, a homogeneous transformation
is always0. In addition, the stimuli within the receptive field of m:_, = R.(0;)T.(d;)T:(a;)R(c; 1) determines their
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Step 1. Seq e Progr ing:
For a given set of objects {P;,...P,},
define an assembly sequence as in (??).

Step 2. Constraints Deduction:

Initialize an n X n deduction matrix with -9.
For each diagonal element m(i,%), i =0---n —1,
check P; and P;;; for precedence constraint,
set m(3,1) to I if they are related;
otherwise, set m(i,1) to 0.
Fori=0ton —2 with i + +,
forj=i+1ton—1with j+ +,
if m(i,%+ 1) and m(i + 1, j) are either I or -1,
set m(i,j) to -1;
else, check P; and P; for precedence constraint,

Fig. 3. Assembly of a die-set.

relationship0 < i < M, whereM is the linkage’s degree of

freedom [13]. set m(i, j) to 1 if they are related;
Every assembly task involves three stages of positioning [27]. otherwise, set m(i, j) to 0.

The first stage specifies the pre-assembly position of an object. Step 3. Sequence Generation:

It positions a virtual robotic manipulator and prepares its end Create a graph G with a levely node Pp.

effector for object handling. The second stage takes care of the Create an empty set No(0).

. . . . Set both node index i and level index & to 0.
in-assembly motion of an object. The practical nature of me- Link Node(i, k) {

chanical assembly requires a robotic manipulator to move the For j =i ton—1 with j + +,

object along a safe and realizable path through the environment. if m(i,j) =1, )

The last stage of object positioning places the object under ma- if m(l, j)! - 1 If"f every l}‘)“.Ni(k)’

nipulation at its destination. Z;:zf:hiff’;;:n'} :t k;;,elk to Pi:
In the virtual assembly system, a human operator signals the add j to N;(k); ’

pre-assembly position by grasping an object with his hand after For every 1 in Ny(k),

touching the object. This operation ensures the human hand ac- °fi?‘:nagl°mp? sf";vl‘?]f)k; }\)r;(k 1)

tually reaches to the object, which not only helps to physically ;inkﬂo;ezzski 1)‘}. ! ’

bring the end effector of a robotic manipulator to the object but

. . - Step 4. Interactive Evaluation:
also makes possible for the mapping of human grasping to the

For every path connecting Py to a leaf of G,

manipulator. Due to the lack of physical restrictions in virtual evaluate this sequence with measurements.
environments, the post-assembly position only requires the op- For every optimized sequence,
erator to bring the moving object close to its destinatiorfréa play back tasks involved in each steps;

redefine the task when necessary.

command releases the object, and the system completes the de-
sired alignment with predefined coordinate systems.

The configuration of the robotic manipulator for the pre- an
post-assembly positions corresponds to the starting neMgon
and the target neuraN, in the neural network respectively. Supossible sequences to produte The user-defined assembly
poseN,, is the neuron whose neural activity yields the biggest sequence then takes a form in the following format:
value among all the neighboring neurons oW, i.e.,z, = . (k) (k)
max{z,;, j = 1, 2, ..., v}. Given the range df/y_, J ] for Py —— Pi(k) -+ —— Pi(k) - ——— Pn(k) (4)
the kth joint of the robotic manipulator and a total number of ] . ]

), neurons in théth dimension of the network, an update fronfvhere P is a stable workstation, and(k) defines the trans-
neuronX, to neuronh,, activates the robot joints for an incre-formation of theith object?;(k), 1 < i < n. The indexk im-
mentof(ry(pr—a1), - -, rar(par—ans))s e = (o, —Ji. )/t plies that the order of objects and their associated transformation

By following the gradient ascent rule and adaptively changirfigt" be differentin different sequences, ifg(k) # Pi(+’) and
the current configuration, the neural network globally guide@(k) 7 7i(k") whenk # k.
the robotic manipulator move around in the working environ-
ment while avoiding possible collisions. The movement of tHe:
robotic manipulator at the same time brings the object under ma-An interactive assembly planner consists of four stepseef
nipulation from its starting position to its resting position. Thguence programmingonstraints deductigreequence genera-
generated collision-free path then determines the in-assemtity, andinteractive evaluatioin the specified order (Fig. 4). In
position of objects. In addition, it helps to decide the precedentte first step, the operator exercises his expertise of mechanical
relationship of objects for the construction of the deduction massembly through virtual programming to define an assembly
trix, which is to be discussed in the next subsection. sequence as in (4). The second step then extracts human exper-

When the human operator finishes with all the machinetise from the sequence and uses this knowledge to construct a
parts, his operation of putting the objects together into deduction matrix with precedence constraints.
product actually defines a sequence of assembly tasks. Suppodin initialization first sets all the elements of anx » deduc-

a productP consists of. component part®;, 1 < i < n,and tion matrix to—9. The row of this matrix stands for the parts
the user-defined sequence is ttth sequence in a total ef.  from Py (k) to P,_1(k), and its columns cover fron®; (k) to

léig. 4. Algorithm of an interactive assembly planner.

Interactive Assembly Planning
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P,(k),1 < k < m.Each elementin a row of the deduction ma- TABLE |

trix implies if an object must be in place before the other objects. DEDUCTION MATRIX OF DIE-SET
Atestrun of thg neural network with the quect @n its resting po- M P P, P P B b
sition then tells if such a precedence relation exist when there are P | 1 1 a1 a1 a1 -
no collision-free paths to move the other objects. Otherwise, the I’Zl 'g ; (1) '1‘ } (‘)
successful generation of a collision-free path means that there P; 9 9 9 1 1 o
is no precedence constraint between this object and another ob- PBl9 9 9 9 1 0
Ject P5 -9 -9 -9 -9 -9 0

Constraints deduction starts with the diagonal elements

m(i, 1), 1 < i < n — 1. Its value changes b if P;(k) and assembly is then demonstrated in the second group with details

Pi11(k) makes a face contact or if path generation fails Q¢ o\ raj activities and joint displacement of two robotic ma-
bring P;(k) to its destination after;1(k) is in place first. i 1at0rs during collision-free path generation. A subsequen-
Otherwise,m(i, i) is 0. Afterwards, constraints deduction ofy;5 giscussion on the experimental results gives analysis of this

the upper-right region of the matrix always tries to decide th‘Work.
precedence relationship first through symbolic inference. For
an elementn(i, j),0 <i <n —1landi < j < n,itsvalue A Assembly of a Die-Set

changes to-1if bothm(i, i + 1) andm(i + 1, j) are eithed. typical die-set for coin-making consists of three principal
or —1. When symbolic reasoning cannot reach a conclusion

the neural network is once again used to decide/f(i, 7). components. They are _ba3|ca||y a punch holdey)(a d|<_e
; holder (), and two guidepostsiX, and P;), as shown in
At the end of Step 2, all elements along the diagonal and'L_ri1 3. It also has a stamping punchsj and a metal plate
the upper-right region of the deduction matrix are reset fro 9. 2 ping p ° P

"9101.0,0r-1. Among them, an cement(i. 1) of a value - EAU21 (9 ges  feasle sauence ofassembing e
1,0 < i <n-—1andi < j < n, tells that the assembly P P 9 P

of P;(k) must be done before the assemblyi{k). Conse- stamping

quently,P’; (k) becomes a child node &f (k) in a treeG of as- Tab 2Py 2Py 2py T py T ps 5 P, (5)
sembly sequences. In Step 3 of the interactive planner, sequence

generation employs a recursive proceduir&k_Node(.) to con- In the sequence, the assembly tasks applied upon the parts are

struct the tree according to the elements of the deduction matis.the following, where each of the tasks0 < k£ < 6, defines
An assembly tree represents assembly sequences witth@pre-assembly and post-assembly positions of objject
simple directed graph [3]. In the tree, a path from the root noder, placeP; with its half-open hole facing up;
to any leaf node defines an assembly sequence. When Step 8,  stand upP; by inserting it into a guidehole;
finishes the completion o, the virtual assembly system is  r; stand upPs at the other guidehole d?; ;
able to generate different sequences from the user-defined se-, it the two corner-holes aP; on the guideposts;
quence, and evaluates them with predetermined measurements;  insertP; half-way through the bigger hole @,;
In practice, different criteria are possible, such as the numberr, slide P; on top of the half-open hole d?;.
of involved robotic manipulators, the degrees of required After the human operator finishes defining the assembly
freedom, the number of primary operations, and the lengéequence of (5) through virtual programming, interactive
linearity, and realizability of assembly sequences [26]. Whessembly planning takes place to determine the precedence
properly applied, they help to filter out the majority but theelationship between objects. Following the order of object
most promising designs for user verification. manipulation, it checks all parts one by one for precedence
constraints. The first objecP; is always on the table?,
thereforem (0, 0) in Table | is1. As P, is in a hole of P,
through alignment, thé-labeledm(1, 1) indicates that» can
Virtual assembly applies virtual reality techniques for thtake place only after,. For a similar reason, the values of both
development of computer tools that help product engineerg3, 3) andm(4, 4) arel.
to make assembly-related decisions through abstract analysidjowever, there is no reference-alignment relationship
predictive models, robot visualization, and data presentatibetween either the pair df, and P; or the pair ofP; and Fs.
without physically realizing the product and its supportinghe values ofm(2, 2) and m(5, 5) have to come from the
processes. Experiments have been conducted to examinetdisé run of path generation betweéh or P; and P, or Ps
operation of the virtual assembly system and the performanesih the neural network, and the resultdgfor both of them.
of biologically inspired intelligence. Tests covered a variety dfor the elements in the upper-right region, symbolic reasoning
machinery sets that involve different object shapes and differeakes place first. For example, the valuerof0, 1) becomes
task difficulties. —1 simply becausen(0, 1) andm(1, 1) are already labeled
Provided in this section are two groups of results for the aaith 1. In the case of ®-labeled element in the inference, a
sembly of a die-set. The first group goes through the processobieck with path generation is unavoidable. This is ho(t, 2)
virtual assembly to demonstrate the capability of producing albtains its value as:(2, 2) has &0 value.
ternative assembly sequences from a single assembly sequencgequence generation begins to construct an assembly tree
The role of the biologically inspired neural network in virtuatight after constraints deduction completes the deduction ma-

V. ANALYSIS AND SIMULATION
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Table P1 P2 P3 \ PB P4 P5
P4 ‘? P6 — P5
P5 —= P§

401

35

PG P3 P4 5
P3 P2 ~ PG P4 P5
P4 -? P6 ——= P5 30
\ PS —— P6
P6 P2 P4 PS5 a5l
s ~ P2 3 P4 5 £ <
P3 P2 P4 P5 . 1 |

Fig. 5. Assembly tree of the die-set.

trix in Table I. The top two levels of the tree are a graph de-
scription of the first row of the matrix that linkB, with all the o ™~ \

objects with dl-labeled element in this row. Therefore, element o 4 R
m(0, 0) results in alink fromP, to P; in the tree. The tree then S

expands nod#; by adding its child node#, P;, andPgs. The

next level then expands the three nodes with their brothers as 0 5 A
the algorithm forbidsP; becoming a child because it has two @
parentsP, and P; who happen to be brothers. The same rules “0r
apply on the rest of the tree, and the final product is a tree in
Fig. 5. a5l
Fig. 5 shows that there are ten possible sequences to assemble
the die-set, including the one defined by the operator. Although st '

all sequences in the tree result in the same product, the moving
paths of objects may differ due to the change of assembly order. 25}

The in-assembly positioning of objects, therefore, always rely O 10O
onthe neural network to generate collision-free paths forrobotic > 20 ({7 - o
manipulators to accomplish the assembly tasks. For the first se- A5 AR
quence in the tree, as an example, the order and operation of 15} 2
assembly tasks are as below &
10 . S
Tab 1 Py 2 Py 2 Py T Py T Py L P, (6) : N, ‘ \
5F ~
B. Path Generation With the Neural Network s 0 B o @ s @
The biologically inspired neural network works with multi- (b)

dimensional appllcatlons. For th? purpose of IIIUStra“_On’ thhc‘g. 6. Collision-free moving paths. (a) Without rotation. (b) With rotation.
group of experiments uses a projected layout of the die-set as-

sembly workcell onto a 2-D plane, as in Fig. 6. The assembly

task is to move the guidepost at the top-left area to its restiHftg guidepost under manipulation has to go around from the top

p|ace at the center-left region a|ong an 0ptima| path by a p@{]d then to the bottom of the punch holder before it reaches to

ticular robotic manipulator. The goal, however, is to evaluatts destination. Fig. 7(a) shows the traveling distance along the

the necessary robotic operations when provided with differep@ndy axis, which took 61 steps to complete. In comparison,

robotic manipulators. Fig. 7(b) shows that only 17 steps is necessary for a robotic ma-
For a robotic manipulator of two degrees of freedom, tHaipulator of three-degrees of freedom to complete this task. The

neural network has two dimensions. A neural network with 4@sk, however, requires an additional dimension of 24 neurons

x 40 topographically ordered neurons is constructed to char#@t path planning and another type of robotic operation for ob-

terize the workspace at a size of 4040. The initial values of ject rotation [Fig. 6(b)].

all neural activities in the shunting equation of (3) are zero. The

p_arameters are chosends= 10 andB = D = 1 forthe pas- ¢ piscussions

sive decay rate and the upper and lower boupds;1, ¢ = 0.9,

s = —0.7 andry = 2 for the neighborhood connections; and Experiments demonstrate the capability of virtual assembly

V' = 100 for the external inputs. The original configuration oto integrate different technologies into a seamless environment,

the robotic manipulator locates its end-effor(&20)to pick up and the advantages that it brings to product manufacturing.

the guidepost, and the final configuration iS(82,14)to place The process of virtual programming creates a scene of product

the object. with an assembly sequence, which in turn helps the interactive
Fig. 6(a) depicts the collision-free path to complete this tasglanner to decide the precedence constraints and generate al-

Due to the inability of this robotic manipulator to rotate objectdernative sequences. While the user-defined assembly sequence
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40

- Xosion x; is equal toB, the excitatory term becomes zero ardno
a5l _— = Orientation longer increases, no matter how strong the excitatory contribu-
/ \ tion is. Whenz; exceeds3, B — z; becomes negative and the
30 ‘ shunting term pulls:; back toB, forcing z; to stay belowB.
- \ A similar analysis applies to the last component of the general
y N shunting model in which the inhibitory term forces the neural
7 \ \ activity to stay above the lower boundD. Once the neural
/ N activity goes into the range oD, B], it stays in the range
1s) V2 \\\ for any of the total excitatory and inhibitory inputs. A change to
B and D will only change the range but not the relative value
1or of neural activity. In comparison, parametetsand . in (3)
ya have a fundamental impact on the proposed model. While
influences the transient response to input signatxntrols the
. . , propagation of neural activities among neurons.
ime The influence of parametetsands on path generation is the
(@) clearance distance from obstacles. They determine the relative
a0 strength and the threshold of the negative neural connections
[ Xposition . . . . ..
|~ - Ypostion. respectively. Whenis zero ors is higher than the neural activity
bound, the generated path clips the corners of obstacles and runs
down the edges of obstacles, which results in the so-called “too
close” problems. On the other hand, if clearance from obstacles
is too large, the generated path stays as far as possible from the
obstacles when reaching the target, which results in the so-called
“too far” problems.
NpTa. Optimality refers to automatically generating smooth, contin-
uous, and “comfortable” paths from the starting to the target con-
ol // figurations, without suffering from the two “too” problems. The
V4 term “real time” refers to the way that path generation reacts to
o/ changes in the environment. Moreover, this neural network does
not suffer from local minimum, even in a complicated maze-type
% = = = = = = ) environmentof many deadlock situations. Target configuration is
tme the only neural activity source. The neural activity propagation
() from the target to the starting position always creates a feasible

Fig.7. Translation distances and rotation angles. (a) Without rotation. (b) Wigath with obstacle clearance.
rotation.
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VI. CONCLUSION

tells the pre-assembly and post-assembly positions, the bioThis paper presents a novel approach of virtual assembly with
logically inspired neural network determines the in-assemblys|ogically inspired intelligence. It develops a virtual assembly
positioning with robot-level details. _ 'system to produce alternative assembly sequences from a single
The planning process of Fig. 4 includes constraints deductigBer.defined sequence, making it flexible for product engineers
and sequence generations. For the elements along the diaggighoose the right design and a proper manufacturing process
and in the upper-right region of a deduction matrix, there isgcording to predetermined criteria without the need of physical
need ofn! checks to establish precedence relationships. Expegiyization. In addition, the biologically inspired neural network
ment results indicate that a large portion of the checks uses SYiPovides details of robot operations for quantified analysis.
bolic reasoning. The remaining checks use reference-alignmengg 4 pilot project of the vision on “manufacturing in the com-
relationship first and path generation the last. As for tree Copgter,” virtual assembly helps to identify and resolve issues re-
struction, it is pure symbolic. Its complexity ranges frhn)  |5ted to the construction of an integrated virtual manufacturing
to O(n!n) depending on the product and its components. Bhyironment that could enhance all levels of manufacturing de-
comparison to completely autonomous planning with a high-dision and control. Through the investigation of intelligent tech-
mensional configuration space, the presented approach of yiioqy and its application in virtual assembly, this paper consti-
tual assembly is efficient and practical. tutes a preliminary work of this project. There are still plenty for
As for the neural network defined in (3), it is fundamentallyyyrovements. Further research is under active investigation in

a high-dimensional extension of the general shunting model@t girections of new expansions and practical applications.
(2), whose neural activity is as stable as the original model. In

the equationg; increases at a rate ¢B — =;)S;", which is
proportional to not only the excitatory inpSt™ but also a gain _ o _

| B — ). Whenz. is | hanB .. [1] K. Al-Sultan and D. Aliyu, “A new potential field-based algorithm for
control term(B — ;). Whenu; is less thanB, a positive ex- path planning,"J. Intell. Robot. Systvol. 14, no. 5, pp. 657662, Oct.
citatory contribution causes an increase in the neural activity. If ~ 1996.
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