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Abstract—This paper investigates the introduction of biolog-
ically inspired intelligence into virtual assembly. It develops an
approach to assist product engineers making assembly-related
manufacturing decisions without actually realizing the physical
products. This approach extracts the knowledge of mechanical
assembly by allowing human operators to perform assembly
operations directly in the virtual environment. The incorporation
of a biologically inspired neural network into an interactive
assembly planner further leads to the improvement of flexible
product manufacturing, i.e., automatically producing alternative
assembly sequences with robot-level instructions for evaluation
and optimization. Complexity analysis and simulation study
demonstrate the effectiveness and efficiency of this approach.

Index Terms—Flexible manufacturing, mechanical assembly,
neural networks, virtual reality.

I. INTRODUCTION

F LEXIBILITY has been recognized as a desirable feature
in manufacturing systems to ensure higher quality while

maintaining an increasing diversity of products. Driven by the
highly competitive market, researchers in a wide range of ap-
plication areas, including engineering, economics, and manage-
ment, have worked on the development of a variety of methods
to achieve their specific goals and/or subgoals through this fea-
ture. In particular, flexibility in product design anticipates sig-
nificant improvements in terms of responsiveness to the market,
speed of product development, and saving in prototypes and ver-
ification testing [25].

Accordingly, virtual assembly fulfills design flexibility by
working in the computer. It replaces physical objects with
the virtual representation of machinery parts, and provides
advanced user interfaces for human operators to design and
generate product prototypes, to analyze and optimize man-
ufacturing processes, and to verify and control work-floor
implements directly in the computer-synthesized working
environment. The elimination of physical prototyping and
on-site verification makes virtual assembly a powerful tool to
reduce the life-cycle of manufacturing and to adapt changes or
introduce new products.
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Presented in this paper is an approach that introduces bio-
logically inspired intelligence into virtual assembly. The discus-
sions start with a brief survey of the research topics directly re-
lated to this work. The focus then turns to the introduction of
human expertise of mechanical assembly and the incorporation
of a biologically inspired neural network into the development
of a virtual assembly system. The benefits of flexibility become
evident with the capability of an interactive assembly planner to
produce alternative assembly sequences from a single user-de-
fined sequence. Finally, this paper concludes with simulation
study and discussions on experiment results.

II. RELATED WORK

Robot-based mechanical assembly uses robotic manipulators
to put together products from its component parts. Correspond-
ingly, virtual assembly needs to deal with the issues of robot pro-
gramming and assembly planning. In addition, it has to handle
the challenges created by applying technologies such as virtual
reality and neural networks.

A. Robot Programming

Robotic manipulators fit machinery parts together by per-
forming assembly tasks in specified sequences. Each task in-
structs a robotic manipulator to perform an assembly operation
and to establish a mating relationship between objects. The old-
fashion online robot programming requires human operators to
physically move a teaching pendant. It records the actual move-
ments of joints and uses them to control robots for high volume
productions. Online programming suffers from the down-time
of robot operations, the danger imposed upon human operators,
and the difficulty of making adjustments for new products.

In comparison, offline programming promotes the develop-
ment of automated manufacturing tools and allows for the in-
tegration of different technologies from a wide range of origi-
nally separated areas. There has been a number of methods de-
veloped for different applications [20]. They range from simple
text-based programming interfaces to computer-aided produc-
tion systems. The former requires long development time and
expert programmers to visualize joint motions without a phys-
ical robot, and the latter provides a full set of tools to design and
program the entire manufacturing process.

Graphical user interfaces present machinery parts onto the
screen and provide electronic mice as an interactive device
for object manipulation. They are more convenient to use
than text-based interfaces, and are common in computer-aided
design/manufacturing [2], including most of the commercial
systems in the market such as and . The draw-
back, however, is that this type of human/computer interaction
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is two-dimensional (2-D) in nature. Decomposition of three-di-
mensional (3-D) assembly operations into 2-D suboperations
is a must.

B. Assembly Planning

Given a robotic manipulator and the design of a product,
the objective of assembly planning is to determine feasible and
optimal assembly sequences for the robotic manipulator to as-
semble the product from its component parts [12]. The assembly
of machinery parts by a robotic manipulator ofdegrees
of freedom creates a configuration space of degrees of
freedom. A point in the configuration space defines a partic-
ular state of a workcell. Considering the original layout of the
workcell and the final scene of an assembled product as the ini-
tial and destination points in the configuration space, a feasible
assembly sequence then corresponds to a continuous, safe, and
realizable path that connects the two points [21].

Consequently, assembly planning faces the problem of path
searching in an ( )-dimensional configuration space. As-
sembly planning in theory is impossible as the required com-
putation time grows exponentially with the dimension of the
configuration space. In practice, it is common to reduce the
complexity by making assumptions. Free-flying objects, for in-
stance, simplify the problem into a logical planning problem
[26]. However, it is only a subproblem of assembly planning
as it leaves robotic execution out of assembly plans. Among the
approaches that work on the complexity problem, the most in-
fluential are the numerical potential field, connectivity charac-
terizing, and sequential frameworks [7].

Assembly planning at its current stage has to leave the ac-
tual motion of objects out of the planning process. The majority
methods classified under interactive planning, such as the one
in [5], are in fact dealing with mechanical disassembly. Disas-
sembly planning is fundamentally different from assembly plan-
ning as it provides only a subset of assembly sequences and con-
siders a restricted set of allowable moving directions [19]. Other
methods simplify mechanical assembly to pick-and-place oper-
ations as a way of avoiding motion planning, yet assembly plan-
ning without the actual movement of machinery parts is hardly
useful in practice.

C. Virtual Reality

The recent development of virtual reality has changed the way
that human operators interact with computers. New devices,
such as head-mounted display and data glove devices, become
affordable and more reliable. They extend user interface from
the classical 2-D to a 3-D space. Virtual reality provides a new
means of immersing production engineers in a computer-syn-
thesized working environment for them to interact with the vir-
tual machinery parts, specifying and visualizing assembly ac-
tivities. Though virtual reality technology is still under devel-
opment, researchers have already begun investigating its appli-
cation in industry manufacturing.

The most straight forward application includes those that ex-
plore the sensing capability of data glove devices. By requiring
human operators to put on data gloves while manipulating phys-
ical objects, a paper in [23] presented a method to collect human
movement of objects for the integration of task planning and ex-

ecution. A couple of others used the sensory reading of finger
joint bendings to map grasping operations from a user to the ma-
nipulator [11], [29]. Another practice in this category deals with
“teaching by showing,” and developed methods of transforming
human operations to symbolic assembly commands with data
glove devices [16].

Other applications emphasize more on the advantages that
virtual reality offers to human/computer interaction. Data glove
devices in this case become an instrument to construct human
hands into the virtual environment. It makes possible for direct
manipulation of virtual objects [18], [24]. In addition, virtual
reality may go beyond reality by allowing object manipulation
at the conceptual level, i.e., to act at a distance [9]. An increasing
number of projects has started paying attention to the overall
environment that could eventually allow production engineers to
plan, evaluate, and verify the assembly of mechanical products
in the computer [10].

D. Neural Networks

Path planning is a typical application area of neural networks
in robotics. Most models use global methods to search the pos-
sible paths in the entire workspace [1]. As a result, they suffer
from the same computational complexity as assembly planning
does. Other models also have the problem of undesired local
minima, which may create traps in some cases such as concave
U-shaped obstacles [28]. Path planning with penetration growth
distance shows the advantage of searching over collision paths
[17], and has the capability of generating optimal, continuous
robot paths. Unfortunately, the neural-network approaches that
work with static environments only are not suitable for interac-
tive applications such as virtual assembly.

There is a number of models developed for real-time motion
planning through learning. For instance, combining an adaptive
sensory-motor mapping model and an online visual error cor-
rection model may produce the trajectory of robot manipula-
tors at run time [14]; and dynamic navigation of a mobile robot
without any collisions is possible through unsupervised learning
[15]. Since learning-based path planning cannot perform prop-
erly in fast changing environments, virtual assembly cannot use
the neural networks whose operation relies on explicit learning
or cost optimization.

III. I NCORPORATION OFINTELLIGENCE

The advantage of virtual assembly does not come from a
simple imitation of the activities that take place in the phys-
ical world during mechanical assembly. Instead, its approach of
working in the computer creates the opportunity of integrating
a wide range of features into a seamless environment. This sec-
tion discusses the design of a hand-based user interface and the
construction of a biologically inspired neural network. The next
section then discusses their application in knowledge extraction
and real-time path planning in a virtual assembly system.

A. Hand-Based Human/Computer Interaction

The main difficulty of introducing human expertise into as-
sembly planning roots in the inconsistent ways of object ma-
nipulation in the physical and virtual worlds. Window-based
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human/computer interaction is not sufficient for the task of spec-
ifying three-dimensional assembly operations, and the use of
virtual reality devices does not need to limit to data collection
only. By properly exploiting the object manipulation capability
of data glove devices, an operator may handle the virtual repre-
sentation of machinery parts in a similar way as in the physical
world, and eventually become capable of engaging in the plan-
ning activities.

In a virtual environment, all objects are graphics models that
follow no physical restrictions. The hand cannot pick up any
objects in the virtual environment as they tend to run through
each other like ghost objects. A hand-based user interface uses
the continuous measurement from a space tracker to determine
the position and orientation of the hand. It also uses the sensory
inputs from a data glove device to signal the bending of figure
segments in terms of joint angles. A combination of different
hand postures may activate different control commands or ini-
tiate the gesture sampling for motion specification [22].

In particular, a closing hand triggers thehold command to
make a selection or uphold an action; an open hand impliesfree ,
which releases an item in possession or frees the hand from con-
straints; apoint sign invokes items for selection; and an “OK”
sign means time toquit , i.e., to terminate a running process.
Shown in Fig. 1 is a state transition diagram [4] of the hand.
The posture and gesture start as two concurrent states. They
function in the super state of “continuous modes,” generating
control commands and motions.

Before the hand picks up an object, thehold command works
primarily with free for hand adjustment. It releases the hand
from the continuous control mode. The motion of the hand in the
physical world no longer contributes to the motion in the virtual
environment. In such a way, the hand is able to prepare itself to a
desired position or orientation. Object manipulation begins with
apoint command, which prompts up a space menu in the virtual
environment and activates menu selection. A casting ray from
the hand then highlights the menu item it hits, which becomes
selected when followed immediately byhold .

If the selected item is labeled as “reference,” the control goes
into a remote selection mode, in which a user selects graphics
features to define reference coordinate systems. The first feature
selected by a combination ofpoint andhold commands is the
start point of an axis and the second one is the end point. The
first pair of features defines the major axis; and the second
pair defines the minor axis. Reference definition operates in
an “action-at-a-distance” fashion, which is available only in a
virtual environment as physical limits do not permit conceptual-
level object manipulation.

Alternatively, the selection of another menu item “motion”
starts physical-level object manipulation. It checks for the in-
tersection between the hand and the machinery parts to see if
the hand touches any object. Ahold posture grabs the object in
touch, and makes it to move together with the hand until afree

posture releases it. In either the “reference” or “motion” mode,
a quit command returns the control to the menu state. One of
them is in active until the selection of menu item “done.” During
the interaction, remote selection reduces required motion, and
direct manipulation maps grab-move-release actions to the ac-
tual operations.

Fig. 1. State transition diagram of “Hand.”

In addition to the listed items, two assembly operations are
implied in gestures at the release of an object. They areslide and
screw . Theslide command slides an aligned part into its posi-
tion. It triggers the sliding motion of an object along the major
alignment axis. This command is activated with a pushing ges-
ture when the object reaches to a proper alignment. Thescrew

command differs fromslide in the way it becomes active. It
triggers the rotation of an object down to its alignment, which
happens with a proper alignment and a twisting gesture. Both
sliding and screwing operations result in a full alignment of ob-
jects by the computer.

B. Biologically Inspired Neural Network

The original model of the biologically inspired neural
network used electrical circuit elements to describe a patch
of membrane in biological neural systems [8]. Let be
the voltage across the membrane, and be the constant
membrane capacitance. The following state equation then
describes the dynamics of

(1)

In the equation, , , and are parameters that repre-
sent respectively the saturation potentials for the potassium ions,
sodium ions, and passive leak current in the membrane. Corre-
spondingly, the conductance in each of the three channels is,

, and .
After setting to 1, a shunting equation takes its form by

substituting , , , , , and
with notions , , , , , and respectively

(2)

In particular, is the neural activity of theth neuron in the
2-D membrane. Parameters, , and are three nonnegative
constants describing the passive decay rate, the upper and lower
bounds of respectively. is the excitatory input and is
the inhibitory input to the neuron.

Equation (2) is useful for understanding the real-time adap-
tive behavior of individuals to complex and dynamic environ-
mental contingencies [6]. In fact, this general shunting model
works with any discrete neural network in a high-dimensional
space provided the topological organization of the network char-
acterizes the problem domain. In mechanical assembly, the task
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space is -dimensional if the robotic manipulator it uses has
degrees of freedom. This application then needs an-dimen-
sional discrete neural network to model the robot operations.

Suppose a neuron locates at a point in the -dimen-
sional network, . It connects to all its
direct neighboring neurons , and

. Following the notation in (2), and denote
the neural activities of and respectively. A modification
to (2) produces the following shunting equation that defines the
dynamics of

(3)

In (3), is the external inputs to . The two functions
and result in and , respec-

tively. Parameters , , and represent the passive decay rate,
the upper and lower bounds of , respectively. Parameter
is a constant in the range[0,1], and is an adjustable safety
factor. Especially, the symmetric weights are determined
by a monotonically decreasing function of the Eu-
clidean distance betweenand . For instance, ,
if for two positive constants and . Otherwise,

.
Every dimension of the -dimensional neural network maps

to one particular joint of the -link robotic manipulator. In the
th dimension, the density of neurons depends on the increment

of the th joint, and the number of neurons covers the entire
range of the th joint. The dynamics of neuron activity in (3)
portrays the operation of assembly tasks in such a way that the
location of neuron in the network stands for a particular joint
configuration of the robotic manipulator. Neuron connects
only to its neighboring neurons in the network. A change from
a neuron to any of its neighboring neurons triggers a change in
the set of joint incremental values.

For any task in an assembly sequence, the neuron in the neural
network that maps to the joint configuration of the robotic ma-
nipulator picking up a machinery part is a starting neuron,
and the one that maps to the completion of the assembly task
by the robot manipulator is the target neuron. All the other
neurons classify into two types. One type, denoted by set ,
includes all the neurons whose location maps to a robot config-
uration that causes a collision between objects or objects and
the robotic manipulator; the other, , counters in the rest of
neurons that lead to the collision-free movements of the robotic
manipulator.

Different external inputs to the neurons then distinguish one
type from another. The input in (3) to neuron is a large
positive constant , , if happens to be the target

. changes to if is an element in . Otherwise,
is 0 for all the neurons in the set of (Fig. 2). As the

starting neuron must be an element of , its external input
is always0. In addition, the stimuli within the receptive field of

Fig. 2. Collision-free path at real time.

neuron also include a sum of the weighted neural activities
from its direct neighbors. In such a way, it allows the network
to propagate positive neural activity through excitatory connec-
tions, and to restrain the negative activities through inhibitory
connections.

This neural network overcomes the drawbacks of other neural
networks. It uses only local connections among neurons, and the
computational complexity linearly depends on the neural net-
works size. Moreover, the underlying dynamic neural activity
operates without explicitly searching over the free workspace or
the collision paths, without explicitly optimizing any cost func-
tions, without any prior knowledge of the dynamic environment,
and without any learning procedures. It is therefore useful for
planning real-time optimal robot motion in dynamic situations
without the need of any learning procedures.

IV. A V IRTUAL ASSEMBLY SYSTEM

The front-end of a virtual assembly system should be able to
allow operators to specify and evaluate assembly operations di-
rectly in the virtual environment. Its final output is a set of opti-
mized instructions that contains all the details to control robotic
manipulators implementing optimized assembly tasks.

A. Virtual Programming

As shown in Fig. 3, a robotic manipulator is simply a set
of graphics models in the virtual assembly system, each of
which represents a rigid segment of the physical manipulator.
The connection of segments forms a linkage of joints, and
the numbering of joints goes from the fixed base to the end.
For any two adjacent joints, a homogeneous transformation

determines their
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Fig. 3. Assembly of a die-set.

relationship, , where is the linkage’s degree of
freedom [13].

Every assembly task involves three stages of positioning [27].
The first stage specifies the pre-assembly position of an object.
It positions a virtual robotic manipulator and prepares its end
effector for object handling. The second stage takes care of the
in-assembly motion of an object. The practical nature of me-
chanical assembly requires a robotic manipulator to move the
object along a safe and realizable path through the environment.
The last stage of object positioning places the object under ma-
nipulation at its destination.

In the virtual assembly system, a human operator signals the
pre-assembly position by grasping an object with his hand after
touching the object. This operation ensures the human hand ac-
tually reaches to the object, which not only helps to physically
bring the end effector of a robotic manipulator to the object but
also makes possible for the mapping of human grasping to the
manipulator. Due to the lack of physical restrictions in virtual
environments, the post-assembly position only requires the op-
erator to bring the moving object close to its destination. Afree

command releases the object, and the system completes the de-
sired alignment with predefined coordinate systems.

The configuration of the robotic manipulator for the pre- and
post-assembly positions corresponds to the starting neuron
and the target neuron in the neural network respectively. Sup-
pose is the neuron whose neural activity yields the biggest
value among all the neighboring neurons of , i.e.,

. Given the range of for
the th joint of the robotic manipulator and a total number of

neurons in the th dimension of the network, an update from
neuron to neuron activates the robot joints for an incre-
ment of , .

By following the gradient ascent rule and adaptively changing
the current configuration, the neural network globally guides
the robotic manipulator move around in the working environ-
ment while avoiding possible collisions. The movement of the
robotic manipulator at the same time brings the object under ma-
nipulation from its starting position to its resting position. The
generated collision-free path then determines the in-assembly
position of objects. In addition, it helps to decide the precedence
relationship of objects for the construction of the deduction ma-
trix, which is to be discussed in the next subsection.

When the human operator finishes with all the machinery
parts, his operation of putting the objects together into a
product actually defines a sequence of assembly tasks. Suppose
a product consists of component parts , and
the user-defined sequence is theth sequence in a total of

Fig. 4. Algorithm of an interactive assembly planner.

possible sequences to produce. The user-defined assembly
sequence then takes a form in the following format:

(4)

where is a stable workstation, and defines the trans-
formation of the th object , . The index im-
plies that the order of objects and their associated transformation
can be different in different sequences, i.e., and

when .

B. Interactive Assembly Planning

An interactive assembly planner consists of four steps ofse-
quence programming, constraints deduction, sequence genera-
tion, andinteractive evaluationin the specified order (Fig. 4). In
the first step, the operator exercises his expertise of mechanical
assembly through virtual programming to define an assembly
sequence as in (4). The second step then extracts human exper-
tise from the sequence and uses this knowledge to construct a
deduction matrix with precedence constraints.

An initialization first sets all the elements of an deduc-
tion matrix to 9. The row of this matrix stands for the parts
from to , and its columns cover from to
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, . Each element in a row of the deduction ma-
trix implies if an object must be in place before the other objects.
A test run of the neural network with the object in its resting po-
sition then tells if such a precedence relation exist when there are
no collision-free paths to move the other objects. Otherwise, the
successful generation of a collision-free path means that there
is no precedence constraint between this object and another ob-
ject.

Constraints deduction starts with the diagonal elements
, . Its value changes to1 if and

makes a face contact or if path generation fails to
bring to its destination after is in place first.
Otherwise, is 0. Afterwards, constraints deduction of
the upper-right region of the matrix always tries to decide their
precedence relationship first through symbolic inference. For
an element , and , its value
changes to 1 if both and are either1
or 1. When symbolic reasoning cannot reach a conclusion,
the neural network is once again used to decide for .

At the end of Step 2, all elements along the diagonal and in
the upper-right region of the deduction matrix are reset from

9 to 1, 0, or 1. Among them, an element of a value
1, and , tells that the assembly
of must be done before the assembly of . Conse-
quently, becomes a child node of in a tree of as-
sembly sequences. In Step 3 of the interactive planner, sequence
generation employs a recursive procedureLink_Node(.) to con-
struct the tree according to the elements of the deduction matrix.

An assembly tree represents assembly sequences with a
simple directed graph [3]. In the tree, a path from the root node
to any leaf node defines an assembly sequence. When Step 3
finishes the completion of , the virtual assembly system is
able to generate different sequences from the user-defined se-
quence, and evaluates them with predetermined measurements.
In practice, different criteria are possible, such as the number
of involved robotic manipulators, the degrees of required
freedom, the number of primary operations, and the length,
linearity, and realizability of assembly sequences [26]. When
properly applied, they help to filter out the majority but the
most promising designs for user verification.

V. ANALYSIS AND SIMULATION

Virtual assembly applies virtual reality techniques for the
development of computer tools that help product engineers
to make assembly-related decisions through abstract analysis,
predictive models, robot visualization, and data presentation
without physically realizing the product and its supporting
processes. Experiments have been conducted to examine the
operation of the virtual assembly system and the performance
of biologically inspired intelligence. Tests covered a variety of
machinery sets that involve different object shapes and different
task difficulties.

Provided in this section are two groups of results for the as-
sembly of a die-set. The first group goes through the process of
virtual assembly to demonstrate the capability of producing al-
ternative assembly sequences from a single assembly sequence.
The role of the biologically inspired neural network in virtual

TABLE I
DEDUCTION MATRIX OF DIE-SET

assembly is then demonstrated in the second group with details
of neural activities and joint displacement of two robotic ma-
nipulators during collision-free path generation. A subsequen-
tial discussion on the experimental results gives analysis of this
work.

A. Assembly of a Die-Set

A typical die-set for coin-making consists of three principal
components. They are basically a punch holder (), a die
holder ( ), and two guideposts ( and ), as shown in
Fig. 3. It also has a stamping punch () and a metal plate
( ). Equation (5) gives a feasible sequence of assembling the
die-set from its five components and placing the metal plate for
stamping

(5)

In the sequence, the assembly tasks applied upon the parts are
as the following, where each of the tasks, , defines
the pre-assembly and post-assembly positions of object.

place with its half-open hole facing up;
stand up by inserting it into a guidehole;
stand up at the other guidehole of ;
sit the two corner-holes of on the guideposts;
insert half-way through the bigger hole of ;
slide on top of the half-open hole of .

After the human operator finishes defining the assembly
sequence of (5) through virtual programming, interactive
assembly planning takes place to determine the precedence
relationship between objects. Following the order of object
manipulation, it checks all parts one by one for precedence
constraints. The first object is always on the table ,
therefore in Table I is 1. As is in a hole of
through alignment, the1-labeled indicates that can
take place only after . For a similar reason, the values of both

and are1.
However, there is no reference-alignment relationship

between either the pair of and or the pair of and .
The values of and have to come from the
test run of path generation between or and or
with the neural network, and the result is0 for both of them.
For the elements in the upper-right region, symbolic reasoning
takes place first. For example, the value of becomes

1 simply because and are already labeled
with 1. In the case of a0-labeled element in the inference, a
check with path generation is unavoidable. This is how
obtains its value as has a0 value.

Sequence generation begins to construct an assembly tree
right after constraints deduction completes the deduction ma-
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Fig. 5. Assembly tree of the die-set.

trix in Table I. The top two levels of the tree are a graph de-
scription of the first row of the matrix that links with all the
objects with a1-labeled element in this row. Therefore, element

results in a link from to in the tree. The tree then
expands node by adding its child nodes , , and . The
next level then expands the three nodes with their brothers as
the algorithm forbids becoming a child because it has two
parents and who happen to be brothers. The same rules
apply on the rest of the tree, and the final product is a tree in
Fig. 5.

Fig. 5 shows that there are ten possible sequences to assemble
the die-set, including the one defined by the operator. Although
all sequences in the tree result in the same product, the moving
paths of objects may differ due to the change of assembly order.
The in-assembly positioning of objects, therefore, always rely
on the neural network to generate collision-free paths for robotic
manipulators to accomplish the assembly tasks. For the first se-
quence in the tree, as an example, the order and operation of
assembly tasks are as below

(6)

B. Path Generation With the Neural Network

The biologically inspired neural network works with multi-
dimensional applications. For the purpose of illustration, this
group of experiments uses a projected layout of the die-set as-
sembly workcell onto a 2-D plane, as in Fig. 6. The assembly
task is to move the guidepost at the top-left area to its resting
place at the center-left region along an optimal path by a par-
ticular robotic manipulator. The goal, however, is to evaluate
the necessary robotic operations when provided with different
robotic manipulators.

For a robotic manipulator of two degrees of freedom, the
neural network has two dimensions. A neural network with 40

40 topographically ordered neurons is constructed to charac-
terize the workspace at a size of 4040. The initial values of
all neural activities in the shunting equation of (3) are zero. The
parameters are chosen as and for the pas-
sive decay rate and the upper and lower bounds; , ,

and for the neighborhood connections; and
for the external inputs. The original configuration of

the robotic manipulator locates its end-effort at(5,20)to pick up
the guidepost, and the final configuration is at(12,14)to place
the object.

Fig. 6(a) depicts the collision-free path to complete this task.
Due to the inability of this robotic manipulator to rotate objects,

(a)

(b)

Fig. 6. Collision-free moving paths. (a) Without rotation. (b) With rotation.

the guidepost under manipulation has to go around from the top
and then to the bottom of the punch holder before it reaches to
its destination. Fig. 7(a) shows the traveling distance along the

and axis, which took 61 steps to complete. In comparison,
Fig. 7(b) shows that only 17 steps is necessary for a robotic ma-
nipulator of three-degrees of freedom to complete this task. The
task, however, requires an additional dimension of 24 neurons
for path planning and another type of robotic operation for ob-
ject rotation [Fig. 6(b)].

C. Discussions

Experiments demonstrate the capability of virtual assembly
to integrate different technologies into a seamless environment,
and the advantages that it brings to product manufacturing.
The process of virtual programming creates a scene of product
with an assembly sequence, which in turn helps the interactive
planner to decide the precedence constraints and generate al-
ternative sequences. While the user-defined assembly sequence
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(a)

(b)

Fig. 7. Translation distances and rotation angles. (a) Without rotation. (b) With
rotation.

tells the pre-assembly and post-assembly positions, the bio-
logically inspired neural network determines the in-assembly
positioning with robot-level details.

The planning process of Fig. 4 includes constraints deduction
and sequence generations. For the elements along the diagonal
and in the upper-right region of a deduction matrix, there is a
need of checks to establish precedence relationships. Experi-
ment results indicate that a large portion of the checks uses sym-
bolic reasoning. The remaining checks use reference-alignment
relationship first and path generation the last. As for tree con-
struction, it is pure symbolic. Its complexity ranges from
to depending on the product and its components. In
comparison to completely autonomous planning with a high-di-
mensional configuration space, the presented approach of vir-
tual assembly is efficient and practical.

As for the neural network defined in (3), it is fundamentally
a high-dimensional extension of the general shunting model of
(2), whose neural activity is as stable as the original model. In
the equation, increases at a rate of , which is
proportional to not only the excitatory input but also a gain
control term . When is less than , a positive ex-
citatory contribution causes an increase in the neural activity. If

is equal to , the excitatory term becomes zero andno
longer increases, no matter how strong the excitatory contribu-
tion is. When exceeds , becomes negative and the
shunting term pulls back to , forcing to stay below .

A similar analysis applies to the last component of the general
shunting model in which the inhibitory term forces the neural
activity to stay above the lower bound . Once the neural
activity goes into the range of [ ], it stays in the range
for any of the total excitatory and inhibitory inputs. A change to

and will only change the range but not the relative value
of neural activity. In comparison, parametersand in (3)
have a fundamental impact on the proposed model. While
influences the transient response to input signals,controls the
propagation of neural activities among neurons.

The influence of parametersand on path generation is the
clearance distance from obstacles. They determine the relative
strength and the threshold of the negative neural connections
respectively. Whenis zero or is higher than the neural activity
bound, the generated path clips the corners of obstacles and runs
down the edges of obstacles, which results in the so-called “too
close” problems. On the other hand, if clearance from obstacles
is too large, the generated path stays as far as possible from the
obstacles when reaching the target, which results in the so-called
“too far” problems.

Optimality refers to automatically generating smooth, contin-
uous, and “comfortable” paths from the starting to the target con-
figurations, without suffering from the two “too” problems. The
term “real time” refers to the way that path generation reacts to
changes in the environment. Moreover, this neural network does
not suffer from local minimum, even in a complicated maze-type
environmentofmanydeadlocksituations.Targetconfiguration is
the only neural activity source. The neural activity propagation
from the target to the starting position always creates a feasible
path with obstacle clearance.

VI. CONCLUSION

This paper presents a novel approach of virtual assembly with
biologically inspired intelligence. It develops a virtual assembly
system to produce alternative assembly sequences from a single
user-defined sequence, making it flexible for product engineers
to choose the right design and a proper manufacturing process
according to predetermined criteria without the need of physical
realization. In addition, the biologically inspired neural network
provides details of robot operations for quantified analysis.

As a pilot project of the vision on “manufacturing in the com-
puter,” virtual assembly helps to identify and resolve issues re-
lated to the construction of an integrated virtual manufacturing
environment that could enhance all levels of manufacturing de-
cision and control. Through the investigation of intelligent tech-
nology and its application in virtual assembly, this paper consti-
tutes a preliminary work of this project. There are still plenty for
improvements. Further research is under active investigation in
the directions of new expansions and practical applications.
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