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Abstract—This paper presents a continuous investigation on
performance analysis with sensitivity analysis. As an effort to
develop a systematic approach to improve the performance of
service-oriented software systems, the original work introduced
a statistical approach of two-factor-based sensitivity analysis to
software performance analysis. The goal of generating accurate
performance feedback, however, was only partially achieved as
performance analysis needs to consider more factors. This paper
presents a generalization for the statistical method to handle
multiple factors. In addition, it gives detailed discussions on
sensitivity analysis with three factors, and provides experiment
results to demonstrate the need and advantages of analyzing
multiple factors at the same time.

I. INTRODUCTION

The dramatically increased software complexity in the
past decades has made productivity and time-to-market the
major concerns of software industry. Traditional approaches
of software development failed to cope with sophisticated
applications of computer systems. In comparison, Component-
Based Development (CBD) allows software systems to be
developed from pre-produced parts, thus improving the pro-
ductivity, quality, and maintainability of software products.
CBD helps to increase productivity and reduce development
efforts through larger-grained software reuse [13].

In addition, Service-Oriented Architectures (SOA) has
gained a lot of attention in recent years [21]. As a new
technology of dealing with the challenge of interoperability
of systems in heterogeneous environments, SOA helps IT
organizations to support alignment with business requirements
that are changing at an increasing rate. A service-oriented ar-
chitecture consists of a collection of services that communicate
with each other, and the inter-service infrastructure becomes
Web services-based when services communicate by means of
the Internet. SOA promises the benefits of enhanced compo-
nents reuse, improved reliability, and reduced development and
deployment costs [12].

Software performance plays a key role in the success of
software development, and now becomes even more important
in the practice of component-based and Web service-based
software systems [3]. As system architecture determines the
quality of software, performance effects of architectural de-
cisions can be evaluated at an early stage by constructing
and analyzing quantitative performance models that capture
both performance attributes of software components and their
interactive characteristics as well. It is cost-effective to push

performance analysis back to the early stage of architectural
design.

The software industry has been actively working on the
underlying technology for the design, implementation, and
application of Web services and their interactions [1], [16], [8],
[9], [7], [14]. Meanwhile, there is a growing body of research
that studies performance analysis of software systems. Some
researchers examine the role of software architecture in de-
termining different quality characteristics in general [18], [2],
while several others focused on performance characteristics in
particular [20], [19]. In performance analysis, the robustness
and reliability of analysis methods are a main issue [15], [6],
[5].

There are typically three steps in performance evaluation of
software architectures. The first step transforms the annotated
UML model of a software architecture into a performance
model, such as layered queuing network model (LQN). The
second step then uses a performance analysis tool, such as
the LQN solver, to conduct experiments on the performance
model. Experiment results provide useful information for the
predication of software performance, and are fed back in the
last step for designers to refine software architecture.

Nevertheless, accurate results of performance analysis need
to take sensitivity analysis into account, which should take
place between the second and third steps before performance
analysis results are used as feedback for architecture adjust-
ments. For example, the introduction of security and cache
behavior as individual factors to architecture reliability analy-
sis helped to improve analysis results [17]. The investigation,
however, was preliminary, and no attention was given to
the interactions between factors that have great effects on
system performance. Currently, little research has been done
in sensitivity analysis for service-oriented software systems.

The authors of this paper reported last year an investigation
on performance analysis with sensitivity analysis [22]. By
applying the techniques of Design of Experiment (DOE), the
previous work developed a statistical method to quantitatively
analyze two-factor-based sensitivity of software performance.
The method was able to analyze performance sensitivity in
relation to both individual factors and their interactions. This
paper further generalizes the presented method of sensitivity
analysis to handle multiple factors. Experiment results pro-
vided at the end of this paper demonstrate that multi-factor-
based sensitivity analysis produces more accurate results.
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.variation df mean square F distribution

A a-1 MSA=SSA/(a-1) FA
0 =MSA/MSE

B b-1) MSB=SSB /(b-1) FB
0 =MSB /MSE

A×B (a-1)(b-1) MSAB=SSAB /(a-1)(b-1) FAB
0 =MSAB /MSE

Error abc(n-1) MSE=SSE /abc(n-1)
Total abcn-1 MST =SST /abcn-1

TABLE I
TWO-FACTOR VARIANCE TABLE

II. SENSITIVITY ANALYSIS OF SOFTWARE PERFORMANCE

This section first studies the underlying mechanism of
two-factor-based sensitivity analysis, and then extends the
mechanism for multi-factor-based sensitivity analysis.

A. Study of Two-Factor-Based Sensitivity Analysis

A typical service-oriented software architecture includes a
set of components. Every component has several parameters
as input variables, and the values of parameters can be either
discrete or dividable into discrete segments. Factors are input
variables to a software system whose changes in value effect
the performance of the system. The objective of sensitivity
analysis is to evaluate software systems in regard to their
sensitivity to factor variations, and to determine the effects
of factor variations on performance analysis in a quantitative
manner.

Suppose A and B are two factors that take values at different
levels whose indices are i and j respectively, where 1 ≤ i ≤ a
and 1 ≤ j ≤ b. Illustrated in Eq. 1 is a model for a
two-factor factorial experiment with n observations per factor
combination conducted in a completely randomized setting.

Yijl = µ + Ai + Bj + ABij + εijl (1)

In the model, the population mean µ produces the average of
all observations for 1 ≤ l ≤ n. In particular, Ai is the effect
of the ith level of factor A, Bj is the effect of the jth level
of factor B, ABij is the joint effect caused by the interaction
between Ai and Bj , and εijl is a random error component.
Correspondingly, sensitivity analysis needs to determine the
individual and joint effects of factors A and B on system
performance based upon observations from experiments.

Let yi. denote the total of all experiment observations under
the ith level of factor A, y.j under the jth level of factor B, yij

for the ijth combination of factors A and B, and y .. the grand
total of all the observations. The following set of equations
defines population mean ȳ.. and marginal means ȳi., ȳ.j , and
ȳij for factor A, factor B, and their combination respectively.

yi. =
b∑

j=1

n∑
l=1

yijl ȳi. =
yi.

bn
(2)

y.j =
a∑

i=1

n∑
l=1

yijl ȳ.j =
y.j

an
(3)

yij =
n∑

l=1

yijl ȳij =
yij

n
(4)

y.. =
a∑

i=1

b∑
j=1

n∑
l=1

yijl ȳ.. =
y..

abn
(5)

In the next equation defines the total sum of squares (SST ).

SST =
a∑

i=1

b∑
j=1

n∑
l=1

(yijl − ȳ..)2

=
a∑

i=1

b∑
j=1

n∑
l=1

[(ȳi. − ȳ..) + (ȳ.j − ȳ..)

+ (ȳij − ȳi. − ȳ.j + ȳ..) + (yijl − ȳij)]2

=
a∑

i=1

b∑
j=1

n∑
l=1

(ȳi. − ȳ..)2 +
a∑

i=1

b∑
j=1

n∑
l=1

(ȳ.j − ȳ..)2

+
a∑

i=1

b∑
j=1

n∑
l=1

(ȳij − ȳi. − ȳ.j + ȳ..)2

+
a∑

i=1

b∑
j=1

n∑
l=1

(yijl − ȳij)2

=bn

a∑
i=1

(ȳi. − ȳ..)2 + an

b∑
j=1

(ȳ.j − ȳ..)2

+ n

a∑
i=1

b∑
j=1

(ȳij − ȳi. − ȳ.j + ȳ..)2

+
a∑

i=1

b∑
j=1

n∑
l=1

(yijl − ȳij)2

By introducing a set of sum-of-square symbols SSE , SSA,
SSB , and SSAB for random errors, factor A, factor B, and
the interactive factor between A and B respectively, the above
relationship results in a set of equations in Eq. 6–9.

SSA =
1
bn

a∑
i=1

y2
i. −

y2
..

abn
(6)

SSB =
1
an

b∑
j=1

y2
.j −

y2
..

abn
(7)

SSAB =
1
n

a∑
i=1

b∑
j=1

y2
ij −

y2
..

abn

−SSA − SSB (8)

SST =
a∑

i=1

b∑
j=1

n∑
l=1

y2
ijl −

y2
..

abn
(9)

SSE = SST − SSA − SSB − SSAB (10)

For each sum of squares, there is an associated degree of
freedom (df) that represents the number of independent vari-
able (Table I). Each sum of squares divided by its degrees
of freedom produces a mean square (MS). Individual factor
effects and their joint effects are finally decided by comparing
their F distribution values F0 with a cumulative F distribution
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. source of variation degree of freedom mean square F distribution

A a-1 MSA = SSA/(a-1) FA
0 = MSA/MSE

B b-1 MSB = SSB/(b-1) FB
0 = MSB/MSE

C c-1 MSC = SSC/(c-1) FC
0 = MSC/MSE

A×B Interaction (a-1)(b-1) MSAB = SSAB/(a-1)(b-1) FAB
0 = MSAB/MSE

A×C Interaction (a-1)(c-1) MSAC = SSAC/(a-1)(c-1) FAC
0 = MSAC/MSE

B×C Interaction (b-1)(c-1) MSBC = SSBC/(b-1)(c-1) FBC
0 = MSBC/MSE

A×B×C Interaction (a-1)(b-1)(c-1) MSABC = SSABC/(a-1)(b-1)(c-1) FABC
0 = MSABC/MSE

Error abc(n-1) MSE = SSE/abc(n-1)
Total abcn-1 MST = SST /abcn-1

TABLE II
VARIANCE TABLE FOR THREE-FACTOR-BASED SENSITIVITY ANALYSIS

table value Fα,df1,df2 , where α is a confidence level, df1 is
the degree of freedom associated with the numerator of the
mean square, df2 is the degree of freedom associated with the
denominator the mean square [10]. The variation of a factor or
the combined variation of two factors has significant effect on
the performance of a software system only if its corresponding
F distribution value FA

0 , FB
0 , or FAB

0 exceeds Fα,df1,df2 .

B. Multi-Factor-Based Sensitivity Analaysis

Suppose there are m factors A(w), 1 ≤ w ≤ m, each
of which takes values at different levels indexed at iv for
1 ≤ iw ≤ aw. Illustrated in Eq. 11 is a general model of m-
factor-based sensitivity analysis. Similar in format to Eq. 1,
the analysis has to consider not only individual factor effects
but also their joint effects in combinations from two up to all
the m factors.

Yi1i2···iml = µ + A
(1)
i1

+ A
(2)
i2

+ · · · + A
(m)
im

+A(1)A
(2)
i1i2

+ A(1)A
(3)
i1i3

+ · · · + A(1)A
(m)
i1im

+A(2)A
(3)
i2i3

+ A(2)A
(4)
i2i4

+ · · · + A(2)A
(m)
i2im

+ · · ·+
+A(m−1)A

(m)
im−1im

+A(1)A(2)A
(3)
i1i2i3

+ · · · + A(1)A(2)A
(m)
i1i2im

+A(2)A(3)A
(4)
i2i3i4

+ · · · + A(2)A(3)A
(m)
i2i3im

+ · · ·+
+A(m−2)A(m−1)A

(m)
im−2im−1im

+ · · ·+
+A(1)A(2) · · ·A(m)

i1i2···im
+ εi1i2···iml

(11)

For simplicity, the following discussion concentrates on the
case when m=3, but the generalization from two to three
applies to multiple factors. When three factors are under
consideration at the same time, the general model takes the
form of Eq. 12, based upon which a variance table can be
constructed in Table II by following the procedure. It takes
seven steps to determine individual factor effects and their
joint effects on system performance.

Yijlk =µ + Ai + Bj + Ck + ABij + BCjk + ACik

+ ABCijk + εijkl

(12)

1) Perform n times of experiment with A, B, and C set to
different values, which leads to a×b×c×n experiments
in total. In the experiments, each observed response
yijkl is an output of a performance metrics during
performance analysis when A, B, and C take values at
different levels indexed respectively at i for 1 ≤ i ≤ a,
j for 1 ≤ j ≤ b, and k for 1 ≤ k ≤ c.

2) Calculate the mean of performance responses by keeping
one factor constant while varying the levels of all the
other factors within their value ranges. This step results
in three group means ȳi.., ȳ.j., and ȳ..k.

yi.. =
b∑

j=1

c∑
k=1

n∑
l=1

yijkl ȳi.. =
yi..

bcn
(13)

y.j. =
a∑

i=1

c∑
k=1

n∑
l=1

yijkl ȳ.j. =
y.j.

acn
(14)

y..k =
a∑

i=1

b∑
j=1

n∑
l=1

yijkl ȳ..k =
y..k

abn
(15)

3) Calculate the means of joint performance responses ȳ ij.,
ȳ.jk, ȳi.k, and ȳijk between factors A, B, and C.

yij. =
c∑

k=1

n∑
l=1

yijkl ȳij. =
yij.

cn
(16)

yi.k =
b∑

j=1

n∑
l=1

yijkl ȳi.k =
yi.k

bn
(17)

y.jk =
a∑

i=1

n∑
l=1

yijkl ȳ.jk =
y.jk

an
(18)

yijk =
n∑

l=1

yijkl ȳijk =
yijk

n
(19)

4) Calculate overall mean ȳ... of performance responses.

y... =
a∑

i=1

b∑
j=1

c∑
k=1

n∑
l=1

yijkl ȳ... =
y...

abcn
(20)
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5) Calculate the sums of squares with Eq. 21–29.

SSA =
1

bcn

a∑
i=1

y2
i.. −

y2
...

abcn
(21)

SSB =
1

acn

b∑
j=1

y2
.j. −

y2
...

abcn
(22)

SSC =
1

abn

b∑
k=1

y2
..k − y2

...

abcn
(23)

SSAB =
1
cn

a∑
i=1

b∑
j=1

y2
ij. −

y2
...

abcn

−SSA − SSB (24)

SSAC =
1
bn

a∑
i=1

c∑
k=1

y2
i.k − y2

...

abcn

−SSA − SSC (25)

SSBC =
1
an

b∑
j=1

b∑
k=1

y2
.jk − y2

...

abcn

−SSB − SSC (26)

SSABC =
1
n

a∑
i=1

b∑
j=1

b∑
k=1

y2
ijk − y2

...

abcn

−SSA − SSB − SSC − SSAB

−SSAC − SSBC (27)

SST =
a∑

i=1

b∑
j=1

c∑
k=1

n∑
l=1

y2
ijkl −

y2
...

abcn
(28)

SSE = SST − SSA − SSB − SSC − SSAB

−SSBC − SSAC − SSABC (29)

6) Fill in Table II for the factors and their interactions with
the calculated sums of squares and F distribution values.

7) Compare each F distribution value with the cumulative
F distribution table value Fα,df1,df2 . An individual factor
or a joint group of several factors has significant effect
on the performance of a software system only if its
corresponding F distribution value exceeds Fα,df1,df2 .

III. FEEDBACK GENERATION

Sensitivity analysis takes place before performance analysis
results are used as feedback for software designers to refine
the architecture design of a software system. In the past,
sensitivity analysis has been relying upon human experts to
decide the quality of an architecture design by interpreting
visually the graphical display of analysis results. Quantitative
analysis as presented in the previous section, on the other hand,
determines the quality of a design by examining numerically
experiment results. It not only results in more accurate analysis
but also allows for process automation.

Quantitative sensitivity analysis helps to decide the ef-
fects of factors. In addition, its results also provide direct
guidance for factor configuration. The group means of one
factor contains the information of its tendency on effecting
system performance when other factor take different values.

A group mean is optimal if the differences of means before
it are significant and the differences of means after it are
insignificant. This task can be accomplished with the Student-
Newman-Keuls(SNK) test in another procedure of seven steps
[11].

1) Calculate a×b×c means by taking the average of n
experiment results obtained with factors A, B, and
C set to different levels indexed respectively at i for
1 ≤ i ≤ a, j for 1 ≤ j ≤ b, and k for 1 ≤ k ≤ c.

2) Arrange all the means in an increasing order from low
to high.

3) Take the mean square for the error (MSE) from the
variance table (Table II), together with its degrees of
freedom (dfE).

4) Obtain the standard error of the means by using the
following equation:

Ss =

√
MSE

n
(30)

5) Enter a table of significant ranges at the desired confi-
dence level α.

6) Multiply the ranges by Ss to obtain a group of a×b×c-1
least significant ranges (LSR).

7) Check the differences between means with their cor-
responding LSR. Groups of means with insignificant
differences of means lead to optimal performance.

IV. EXPERIMENTS AND DISCUSSIONS

CDSS (Clinical Decision Support System) is a clinical sys-
tem that assists medical decisions by processing multi-domain
medical data from neonatal, prenatal, and obstetrical areas
[4]. It is a service-oriented system, and performance analysis
plays a key role for the adjustment of relationships between
services. In particular, the sensitivity of performance metrics to
variations in the duplicates of services has a deep impact on the
performance after the basic infrastructure is built. Among all
performance metrics, the average response time is dominating.
As a result, the following subsection studies the sensitivity of
response time to duplicates of services.

A. Case Study

Three factors are chosen for this case study. They are factor
A for processCDSS service time (ms), factor B for multiplicity
factor of SOAP1 execute time, and factor C for the number of
EPRT thread. Each factor has variations at three fixed levels,
and two experiments are conducted with factors A, B, and
C set to values at different levels indexed respectively at i
for 1 ≤ i ≤ 3, j for 1 ≤ j ≤ 3, and k for 1 ≤ k ≤ 3.
Table III(a) shows the observations obtained when running
the experiments. Response time is in seconds.

By apply the steps of multi-factor-based sensitivity analysis
(Section II-B), a variance table is constructed in Table III(b).
At a confidence level of 1%, factors A and C have significant
impact on system response time due to the fact that both F A

0 at
38.554 and F C

0 at 24.336 exceed the cumulative F distribution
table value F0.01,2,27, which is 5.49. In addition, factors A
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A B 2 4 6
300 0.5 5.54 5.43 4.96

5.567 5.51 5.613
1 5.954 5.6 5.55

6.15 5.59 5.779
2 6.334 6.01 6.03

6.589 5.79 5.65
500 0.5 5.809 5.849 5.84

5.939 5.266 5.25
1 7.103 5.86 5.31

7.098 5.965 6.001
2 7.13 6.03 5.105

7.144 5.65 6.158
1000 0.5 9.359 6.26 6.38

9.4 6.499 6.53
1 9.887 6.83 7.62

9.879 6.33 5.088
2 10.92 6.12 6.489

10.83 8.875 8.076
(a) Data Collection

variation SS df MS F0

A 46.79609 2 23.398 38.554*
B 5.394474 2 2.697 4.444
C 29.53809 2 14.769 24.336*
A×B 1.530214 4 0.383 0.630
A×C 18.56695 4 4.642 7.648*
B×C 1.068571 4 0.267 0.440
A×B×C 0.346414 8 0.043 0.071
Error 16.38596 27 0.607
Total 119.6267 53

(b) Variance Table of Sensitivity Analysis

TABLE III
A CASE STUDY OF CDSS

and C have significant joint impact on system response time
as FAC

0 at 7.648 exceed 5.49. All the others do not have
significant impacts. However, if the confidence level changes
to 5%, factor B also shows significant impact as F B

0 at 4.444
exceeds F0.05,2,27, which is 3.35.

B. Comparison with Two-Factor-Base Analysis

Multi-factor-based sensitivity analysis considers more fac-
tors at the same time than two-factor-based sensitivity analysis.
Its results are more complete and accurate, especially when
there are significant joint effects due to interactions between
factors. As a comparison study, suppose only two factors
A and C are considered at the same time. Three groups
of experiments are conducted with factor B being set at
0.5, 1, and 2 separately. Provided in Tables IV–VI are the
observations of experiments and the corresponding variance
tables for the special cases.

According to Table IV(b), factors A and C have significant
individual and joint effects. However, if either Table V(b) or
Table VI(b) is used, factors A and C have only significant
individual effect but no joint effects as the F distribution value
FAC

0 in both tables are less than F0.05,4,9=4.415. This study
shows that two-factor-based sensitivity analysis may reach
to conflicting conclusions. Depending on the value of the
third factor, wrong decisions could be reached by sensitivity
analysis with only two factors.

C
A 2 4 6

5.54 5.43 4.96
300 5.567 5.51 5.61

5.809 5.849 5.84
500 5.939 5.266 5.25

9.359 6.26 6.38
1000 9.4 6.499 6.53
(a) Data Collection for B=0.5

variation SS df MS F0 F0.05,df,dfe

A 13.941 2 6.970 102.864 3.199
C 5.326 2 2.663 39.301 3.199
A×C 6.592 4 1.648 24.324 4.415
Error 0.609 9 0.067
Total 26.470 17

(b) Variance Table for B=0.5

TABLE IV
TWO-FACT-BASED SENSITIVITY ANALYSIS FOR B=0.5

C
A 2 4 6

5.954 5.6 5.55
300 6.15 5.59 5.779

7.103 5.86 5.31
500 7.098 5.96 6.001

9.887 6.83 7.62
1000 9.879 6.33 5.088

(a) Data Collection for B=1

variation SS df MS F0 F0.05,df,dfe

A 10.969 2 5.485 13.63 3.199
C 11.867 2 5.933 14.75 3.199
A×C 6.362 4 1.59 3.95 4.415
Error 3.62 9 0.402
Total 32.819 17

(b) Variance Table for B=1

TABLE V
TWO-FACT-BASED SENSITIVITY ANALYSIS FOR B=1

C
A 2 4 6

6.334 6.01 6.03
300 6.589 5.79 5.65

7.13 6.03 5.105
500 7.144 5.65 6.158

10.92 6.12 6.489
1000 10.83 8.875 8.076

(a) Data Collection for B=2

variation SS df MS F0 F0.05,df,dfe

A 23.416 2 11.708 18.124 3.199
C 13.414 2 6.706 10.382 3.199
A×C 5.957 4 1.489 2.305 4.415
Error 5.814 9 0.645
Total 48.602 17

(b) Variance Table for B=2

TABLE VI
TWO-FACT-BASED SENSITIVITY ANALYSIS FOR B=2

C. Configuration Feedback

As factors A and C have significant joint effects on system
response time, the procedure of feedback generation (Sec-
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tion III) is applied to determined configurations of A and
C that lead to better performance. Given in the first row of
Table VII is the ordered means of the 27 pairs of experiment
observations (Table III(a)). Meanwhile, MSE and dfE can be
obtained directly from Table III as 0.607 and 27 respectively.
The following equation then produces the standard error of
means Ss.

Ss =
√

0.607/2 = 0.551

Afterwards, the significant ranges at a confidence level of
5% and the least significant ranges (LSR) are calculated, and
then filled into the second and third rows of Table VII. By
following the last step of SNK test (Section III), the remaining
rows of Table VII finally list all the differences between the 27
means, in which the emphasized numbers indicate significant
differences between means. For example, the last row of the
last column has a value of 5.59, which is the difference
between the 27th mean (10.88) and first mean (5.29). The
value 5.59 is larger than the value (3.24) of the 27th LSR.
The difference is therefore considered significant.

This quantitative analysis classifies the 27th means into two
groups. One group consists of the means causing significant
mean differences, i.e., the 25th, 26th, and 27th means; and the
other group consists of all the other means. Due to the fact that
the 25th, 26th, and 27th means come from three combinations
of factors A, B, and C with i, j, and k set to (3, 1, 1), (3, 2,
1), and (3, 3, 1). A conclusion can then be reached: no mater
what is the value of factor B, an increase of factor C from 1 to
2 is going to create the worst response time when factor A is
set at 1000(ms). However, this situation improves when factor
C takes a value of 3. All other combinations demonstrate no
significant difference.

D. Visual Interpretation

Fig. 1. Simulation Results

Fig. 1 exhibits variations of response time in relation to
factors A, B and C. This figure demonstrates that the response
time is sensitive to both processCDSS services processing time
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(factor A) and the number of EPR database thread (factor
C). When processCDSS service time increase to 1000ms and
EPRT thread number decrease to 2, the response time increase
greatly, no mater if multiplicity factor of SOAP1 execute time
is set to 0.5, 1, or 2. The conclusion of visual analysis is
consistent with the conclusion of the quantitative analysis.
However, visual analysis relies on human interpretation, which
may result in difficulties when the volume of data is huge.

V. CONCLUSION

This paper develops a method of multi-factor-based sen-
sitivity analysis for performance analysis of service-oriented
software systems. By apply statistical techniques, it is able
to quantitively analyze the effects on system performance
from not only individual services but also the interactions
between them. This method also produces helpful feedback of
service configuration for optimal performance. Experiments
demonstrate that sensitivity analysis with multiple factors
produces accurate results. In addition, quantitative analysis
is particularly valuable for automated processing. Further
research is under active investigation to improve the proposed
method by considering uncontrollable factors, and to apply in
practice.
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