
XYUAN@
UW

IN
D
SO

R.C
A

60-480·l11 1

MATERIAL & TRANSPARENCY IN APPEARANCE

1. The Appearance class and its components provide the mech-

anism for appearance control.

• Appearance control determines how Java 3D renders

Geometry

◦ Color

◦ Transparency

◦ Shading model

◦ Line thickness

◦ And lots more

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l11 2

• Appearance example

Diffuse Specular Diffuse&Specular

Shaded Textured Transparent

Unlit polygons Unlit lines Unlit points

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l11 3

2. Appearance attributes are grouped into several node com-

ponents:

• Color and transparency control

◦ Material

◦ ColoringAttributes

◦ TransparencyAttributes

• Rendering control

◦ PointAttributes

◦ LineAttributes

◦ PolygonAttributes

◦ RenderingAttributes

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l11 4

• Texture control

◦ Texture

◦ TextureAttributes

◦ TexCoordGeneration

3. Using material attributes

• Material controls:

◦ Ambient, emissive, diffuse, and specular color

◦ Shininess factor

• Use materials when a shape is shaded

◦ Most scene shapes

◦ Overrides ColoringAttributes intrinsic color (when light-

ing is enabled)

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l11 5

4. Using material colors

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l11 6

• Diffuse color sets the main shading color, giving a dull,

matte finish (upper-left)

• Specular color and shininess factor make a shape ap-

pear shiny (lower-right)

• Emissive color makes a shape appear to glow (upper-

right)

• Defaults include white diffuse and specular colors, a

black emissive color, (0.2,0.2,0.2) ambient color, shini-

ness of 64.0, and lighting enabled.

5. TransparencyAttributes controls:

• Transparency range is 0.0 (opaque) to 1.0 (invisible)

◦ By default, transparency amount is 0.0 (opaque) with

a FASTEST transparency mode

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l11 7

• Transparency mode includes: SCREEN DOOR, BLENDED, NONE,

FASTEST (default), and NICEST

SCREEN_DOOR BLENDED

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l11 8

◦ The FASTEST and NICEST transparency modes auto-

matically select the fastest and highest quality modes

available

6. Interpolators associated with appearance control

• All interpolators use a target into which to write new

values

◦ A ColorInterpolator uses a Material target

◦ A TransparencyInterpolator uses a TransparencyAttributes

target

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l11 9

THE APPEARANCE OF TEXTURES

1. The appearance of textures

• Texture image colors can replace, modulate, or blend

with shape color

◦ Different texture modes are useful for different effects

◦ Some are faster to draw than others

• Different texture images can be used at different dis-

tances between the shape and the user

◦ Use lower resolution images for distant shapes

◦ This is known as Mip-mapping

2. Combining texture and shape colors

• A texture image may contain:

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l11 10

◦ A red-green-blue color at each pixel

◦ A transparency, or alpha value at each pixel

• Alpha blending is a linear blending from one value to

another as alpha goes from 0.0 to 1.0:

V alue = (1.0 − alpha) ∗ V alue0 + alpha ∗ V alue1

3. The Texture mode in TextureAttributes controls how tex-

ture pixels affect shape color

• Different texture modes

◦ REPLACE Texture color completely replaces the shapes

material color

◦ DECAL Texture color is blended as a decal on top of

the shapes material color

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l11 11

◦ MODULATE Texture color modulates (filters) the shapes

material color

◦ BLEND Texture color blends the shapes material color

with an arbitrary blend color

• Resulting appearance

Mode Result color Result transparency

REPLACE Trgb Ta

DECAL Srgb ∗ (1 − Ta) + Trgb ∗ Ta Sa

MODULATE Srgb ∗ Trgb Sa ∗ Ta

BLEND Srgb ∗ (1 − Trgb) + Brgb ∗ Trgb Sa ∗ Ta

◦ Trgb is the texture pixel color

◦ Ta is the texture pixel alpha

◦ Srgb is the color of the shape being texture mapped

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l11 12

◦ Sa is the alpha of the shape being texture mapped

◦ Brgb is the shape blend color

◦ Ba is the shape blend alpha

REPLACE DECAL

ODULATE with white BLEND with green

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l11 13

4. Typical use:

• Use REPLACE for emissive textures

◦ Glowing ”neon” textures

◦ Textures where lighting is painted in

• Use MODULATE on a white shape for shaded textures

◦ Most textured shaded surfaces

• Use BLEND on a colored shape for colorized textures

◦ Colorizing a grayscale woodgrain, marble, etc.

5. Texture mode example code

• Create TextureAttributes

TextureAttributes myTA = new TextureAttributes();

• Set the texture mode to MODULATE

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l11 14

myTA.setTextureMode(Texture.MODULATE);

• Set the texture attributes on an Appearance

Appearance myAppear = new Appearance();

myAppear.setTextureAttributes(myTA);

6. Mip-mapping is an anti-aliasing technique that uses dif-

ferent texture versions (levels) at different distances from

the user

• There can be any number of levels

◦ Level 0 is the base image used when the user is close

• Mip-maps can be computed automatically from a base

image:

◦ Use a mip-mapping mode of BASE LEVEL

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l11 15

• Or you can specify each image level explicitly:

◦ Use a mip-mapping mode of MULTI LEVEL MIPMAP

• A Minification filter controls texture interpolation when

a scene pixel maps to multiple texture pixels (texels)

◦ FASTEST uses fastest method

◦ NICEST uses best looking method

◦ BASE LEVEL POINT uses nearest texel in level 0 map

◦ BASE LEVEL LINEAR bilinearly interpolates 4 nearest tex-

els in level 0 map

◦ MULTI LEVEL POINT uses nearest texel in mip-mapped

maps

◦ MULTI LEVEL LINEAR bilinearly interpolates 4 nearest tex-

els in mip-mapped maps

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l11 16

• A Magnification filter controls how a texture is inter-

polated when a scene pixel maps to less than one texel

◦ FASTEST uses fastest method

◦ NICESET uses best looking method

◦ BASE LEVEL POINT uses nearest texel in level 0 map

◦ BASE LEVEL LINEAR bilinearly interpolates 4 nearest tex-

els in level 0 map

BASE_LEVEL_POINT

No interpolation
BASE_LEVEL_LINEAR

Linear interpolation of 4
nearest neighbors

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l11 17

7. Texture filter example code

• Load a texture image

TextureLoader myLoader = new TextureLoader("brick.jpg");

ImageComponent2D myImage = myLoader.getImage();

• Create a Texture2D using the image, and turn it on

Texture2D myTex = new Texture2D();

myTex.setImage(0, myImage);

myTex.setEnable(true);

• Set the filtering types

myTex.setMagFilter(Texture.BASE LEVEL POINT);

myTex.setMinFilter(Texture.BASE LEVEL POINT);

• Create an Appearance and set the texture in it

Appearance myAppear = new Appearance();

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l11 18

myAppear.setTexture(myTex);

