
XYUAN@
UW

IN
D
SO

R.C
A

60-480·l10 1

SOUND GENERATION

1. Java 3D provides three types of sound s

• Sound class hierarchy

Class Hierarchy
java.lang.Object

javax.media.j3d.SceneGraphObject

javax.media.j3d.Node

javax.media.j3d.Leaf

javax.media.j3d.Sound

javax.media.j3d.BackgroundSound

javax.media.j3d.PointSound

javax.media.j3d.ConeSound

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l10 2

• All three types of sounds have:

◦ Sound data to play

◦ An initial gain (overall volume)

◦ Looping parameters, and playback priority

◦ Scheduling bounds (like a behavior)

• A scene graph can contain multiple sounds.

2. Associated with each Sound node is a MediaContainer, which

includes audio data and information about this data.

• Typical sound file formats include:

◦ AIF: standard cross-platform format

◦ AU: standard Sun format

◦ WAV: standard PC format

http://java.sun.com/j2se/1.5.0/docs/guide/sound/

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l10 3

• The sound data can be cached (buffered) or non-cached

(unbuffered or streaming).

◦ Data can be loaded by a MediaContainer from a file

on disk or on the Web.

◦ If an AudioDevice has been attached to the

PhysicalEnvironment, the sound data is made ready to

begin playing.

◦ Certain functionality can not be applied to true stream-

ing sound data:

– Querying the sound’s duration (Sound.DURATION UNKNOWN

will be returned)

– Looping over a range of the streaming data, and

– Restart a previously played portion of the data.

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l10 4

3. Data for non-streaming sound (such as a sound sample)

can contain two loop points marking a section of the data

that is to be looped specific number of times.

• A sound data can be divided into three segments

◦ Attack: the start of the sound

◦ Sustain: the body of the sound

◦ Release: the ending decay of the sound

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l10 5

• Looping between loop points to sustain a sound

◦ Authored using a sound editor

– They usually bracket the Sustain stage

◦ If no loop points, loop defaults to entire sound

◦ Loops can run a number of times, or forever

4. Controlling sounds

• Sounds may be enabled and disabled

◦ Enabling a sound makes it schedulable

◦ The sound will start to play if the sounds scheduling

bounds intersect the viewers activation radius

• Overall sound volume may be controlled with a gain

multiplication factor

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l10 6

• By default, sounds are disabled, have a gain of 1.0, and

are not looped

5. BackgroundSound extends the Sound class

• Similar to AmbientLight in lighting, BackgroundSound waves

come from all directions, flooding an environment at

constant volume

• Use background sounds for:

◦ Presentation sounds (voice over, narration)

◦ Environment sounds (ocean waves, wind)

◦ Background music

• There could be multiple background sounds playing at

the same time

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l10 7

6. BackgroundSound example code

• Load sound data

MediaContainer myWave = new MediaContainer("canon.wav");

• Create a sound

BackgroundSound mySound = new BackgroundSound();

mySound.setSoundData(myWave);

mySound.setEnable(true);

mySound.setInitialGain(1.0f);

mySound.setLoop(-1); // Loop forever

• Set the scheduling bounds

BoundingSphere myBounds = new BoundingSphere(

new Point3d(), 1000.0);

mySound.setSchedulingBounds(myBounds);

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l10 8

7. PointSound extends the Sound class

• Similar to PointLight in lighting, PointSound waves emit

radially from a point in all directions.

• Use point sounds to simulate local sounds like:

◦ User interface sounds (clicks, alerts)

◦ Data sonification

◦ Game sounds (laser blasters, monster growls)

• There could be multiple point sounds playing at the

same time.

8. Point sound waves are attenuated:

• Amplitude decreases as the viewer moves away

• Attenuation is controlled by a list of value pairs:

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l10 9

◦ Distance from sound position

◦ Gain at that distance

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l10 10

9. PointSound example code

• Load sound data

MediaContainer myWave = new MediaContainer("willow1.wav");

• Create an attenuation array

Point2f[] myAtten = {
new Point2f(100.0f, 1.0f),

new Point2f(350.0f, 0.5f),

new Point2f(600.0f, 0.0f)

};
• Create a sound

PointSound mySound = new PointSound();

mySound.setSoundData(myWave);

mySound.setEnable(true);

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l10 11

mySound.setInitialGain(1.0f);

mySound.setLoop(-1); // Loop forever

mySound.setPosition(new Point3f(0.0f, 1.0f, 0.0f))

mySound.setDistanceGain(myAtten);

• Set the scheduling bounds

BoundingSphere myBounds = new BoundingSphere(

new Point3d(), 1000.0);

mySound.setSchedulingBounds(myBounds);

10. ConeSound extends the PointSound class

• Similar to SpotLight in lighting, ConeSound waves emit

radially from a point in a direction, constrained to a

cone.

• Use cone sounds to simulate local directed sounds like:

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l10 12

◦ Loud speakers

◦ Musical instruments

• There could be multiple cone sounds playing at the

same time

11. ConeSound extends PointSound support for attenuation

• ConeSound uses two lists of distance-gain pairs that apply

in front and back directions

◦ The cones aim direction is the front direction

◦ If no back list is given, the front list is used

• Real-world sound sources emit in a direction

◦ Volume (gain) and frequency content varies with an-

gle

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l10 13

• ConeSound angular attenuation simulates this effect with

a list of angle-gain-filter triples

◦ Angle from the cones front direction

◦ Gain at that angle

◦ Cutoff frequency for a low-pass filter at that angle

• By default, cone sounds are aimed in the positive Z

direction with no distance or angular attenuation

◦ Attenuation angles are in the range 0.0 to PI radians

12. ConeSound example code

• Load sound data

MediaContainer myWave = new MediaContainer("willow1.wav");

• Create attenuation arrays

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l10 14

Point2f[] myFrontAtten = {
new Point2f(100.0f, 1.0f),

new Point2f(350.0f, 0.5f),

new Point2f(600.0f, 0.0f)

};
Point2f[] myBackAtten = {

new Point2f(50.0f, 1.0f),

new Point2f(100.0f, 0.5f),

new Point2f(200.0f, 0.0f)

};
Point3f[] myAngular = {

new Point3f(0.000f, 1.0f, 20000.0f),

new Point3f(0.785f, 0.5f, 5000.0f),

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l10 15

new Point3f(1.571f, 0.0f, 2000.0f)

};
• Create a sound

ConeSound mySound = new ConeSound();

mySound.setSoundData(myWave);

mySound.setEnable(true);

mySound.setInitialGain(1.0f);

mySound.setLoop(-1); // Loop forever

mySound.setPosition(new Point3f(0.0f, 1.0f, 0.0f));

mySound.setDirection(new Vector3f(0.0f, 0.0f, 1.0f);

mySound.setDistanceGain(myFrontAtten, myBackAtten);

mySound.setAngularAttenuation(myAngular);

• Set the scheduling bounds

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l10 16

BoundingSphere myBounds = new BoundingSphere(

new Point3d(), 1000.0);

mySound.setSchedulingBounds(myBounds);

13. Setting scheduling bounds

• A sound is hearable (if it is playing) when:

◦ The viewers activation radius intersects its scheduling

bounds

◦ Multiple sounds can be active at once

◦ Identical to behavior scheduling

• Sound bounding enables different sounds for different

areas of the scene

• By default, sounds have no scheduling bounds and are

never hearable!

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l10 17

◦ Common error: forgetting to set scheduling bounds

14. Controlling the sound release when disabling a sound:

• Enable the release to let the sound finish playing, with-

out further loops

• Disable the release to stop it immediately

Release enabled Release disabled

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l10 18

15. Enabling continuous playback when a sound is unsched-

uled (viewer moves out of scheduling bounds):

• Enable continuous playback to keep it going silently

◦ It resumes, in progress if scheduled again

• Disable continuous playback to skip silent playback

◦ It starts at the beginning if scheduled again

Continuous enabled Continuous disabled

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l10 19

16. Sounds can be prioritized

• Sound hardware and software limits the number of si-

multaneous sounds

◦ Worst case is four point/cone sounds and seven back-

ground sounds

• A low priority sound may be temporarily muted when a

high priority sound needs to be played

17. Control features of the environment to enhance realism

• The Sound classes control features of the sound

• Use soundscapes and aural attributes to

◦ Add reverberation (echos)

◦ Use different reverberation for different rooms

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l10 20

◦ Control doppler pitch shift

◦ Control frequency filtering with distance

