
XYUAN@
UW

IN
D
SO

R.C
A

60-480·l7 1

OBJECT ILLUMINATION

1. Illumination model

• When exposed to a given distributed light (or a point

light placed sufficiently far away), the illumination I at

a surface point is determined by N · L and E · R in the

equation

I = kdIa +
Ip

d + d0
[kd (N · L) + ks (E · R)n]

◦ I is the illumination intensity at the point

◦ kd, ks are material constants

◦ Ia, Ip are ambient and point light intensities

◦ N, L, E, R are vectors defining the directions for sur-

face normal, point light, viewer’s eye, and reflection.

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l7 2

◦ d, d0 are distance constants.

◦ The inner product of two vectors: a·b = |a||b| cos ∠(a,b)

2. Lighting reflections

• Ambient reflection results from ambient light, constant

low level light, in a scene.

• Diffuse reflection is the normal reflection of a light

source from a visual object.

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l7 3

• Specular reflections are the highlight reflections of a

light source from an object, which occur in certain sit-

uations.

3. Java3D shading model

• The shade model is specified as one of SHADE GOURAUD,

SHADE FLAT, FASTEST, NICEST.

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l7 4

• In flat shading, all pixels for a polygon are assigned the

shade value from one vertex of the polygon.

◦ A curved surface is represented as a set of constantly

shaded plane surfaces.

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l7 5

• In Gouraud shading, each pixel is shaded with a value

derived from trilinear interpolation of the shade value

of each vertex of its enclosing polygon.

◦ After the intensity values at the vertices of each poly-

gon are determined, all other intensities for the sur-

face are calculated from them.

4. Recipe for Lit Visual Objects

• Light Source specification

◦ set bounds, and add to scene graph

• Visual object

◦ normals and material properties

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l7 6

5. A simple lights example

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l7 7

6. Java 3D provides four types of lights

Class Hierarchy
java.lang.Object

javax.media.j3d.SceneGraphObject

javax.media.j3d.Node

javax.media.j3d.Leaf

javax.media.j3d.Light

javax.media.j3d.AmbientLight

javax.media.j3d.DirectionalLight

javax.media.j3d.PointLight

javax.media.j3d.SpotLight

7. Creating ambient lights

• Light rays aim in all directions, flooding an environment

and illuminating shapes evenly

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l7 8

8. AmbientLight example code

• Create a light

AmbientLight myLight = new AmbientLight();

myLight.setEnable(true);

myLight.setColor(new Color3f(1.0f, 1.0f, 1.0f));

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l7 9

• Set its influencing bounds

BoundingSphere myBounds

= new BoundingSphere(new Point3d(), 1000.0);

myLight.setInfluencingBounds(myBounds);

9. Creating directional lights

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l7 10

• Parallel light rays aiming in a direction (default −z-axis).

10. DirectionalLight example code

• Create a light

DirectionalLight myLight = new DirectionalLight();

myLight.setEnable(true);

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l7 11

myLight.setColor(new Color3f(1.0f, 1.0f, 1.0f));

myLight.setDirection(new Vector3f(1.0f, 0.0f, 0.0f));

• Set its influencing bounds

BoundingSphere myBounds

= new BoundingSphere(new Point3d(), 1000.0);

myLight.setInfluencingBounds(myBounds);

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l7 12

11. Creating point lights

• Light rays emit radially from a point in all directions

12. Using point light attenuation

• Point light rays are attenuated:

◦ As distance increases, light brightness decreases

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l7 13

• Attenuation is controlled by three coefficients:

◦ constant, linear, and quadratic

brightness =
lightIntensity

constant + linear ∗ distance + quadratic ∗ distance2

13. PointLight example code

• Create a light

PointLight myLight = new PointLight();

myLight.setEnable(true);

myLight.setColor(new Color3f(1.0f, 1.0f, 1.0f));

myLight.setPosition(new Point3f(0.0f, 1.0f, 0.0f));

myLight.setAttenuation(new Point3f(1.0f, 0.0f, 0.0f));

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l7 14

• Set its influencing bounds

BoundingSphere myBounds

= new BoundingSphere(new Point3d(), 1000.0);

myLight.setInfluencingBounds(myBounds);

14. Creating spot lights

• Light rays emit radially from a point, within a cone

◦ Vary the spread angle to widen, or narrow the cone

– Spread angle varies from 0.0 to PI/2.0 radians (de-

fault PI)

– A value of PI radians makes the light a PointLight

◦ Vary the concentration to focus the spot light

– Concentrations vary from 0.0 (unfocused) to 128.0

(focused)

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l7 15

– The default is 0.0

• The default aim direction is (0.0, 0.0, -1.0).

15. SpotLight example code

• Create a light

SpotLight myLight = new SpotLight();

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l7 16

myLight.setEnable(true);

myLight.setColor(new Color3f(1.0f, 1.0f, 1.0f));

myLight.setPosition(new Point3f(0.0f, 1.0f, 0.0f));

myLight.setAttenuation(new Point3f(1.0f, 0.0f, 0.0f));

myLight.setDirection(new Vector3f(1.0f, 0.0f, 0.0f));

myLight.setSpreadAngle(0.785f); // 45 degrees

myLight.setConcentration(3.0f); // Unfocused

• Set its influencing bounds

BoundingSphere myBounds

= new BoundingSphere(new Point3d(), 1000.0);

myLight.setInfluencingBounds(myBounds);

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l7 17

16. Using light influencing bounds

• A light’s illumination is bounded to a region of influence

◦ Shapes within the region may be lit by the light

Large bounds Small bounds
• Light bounding:

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l7 18

◦ Enables controlled lighting in large scenes

◦ Avoids over-lighting a scene when using multiple lights

◦ Saves lighting computation time

17. Creating influencing bounds

• A light region of influence is a bounded volume:

◦ Sphere, box, polytope, or combination using Bounds

◦ To make a global light, use a huge bounding sphere

• By default, lights have no influencing bounds and illu-

minate nothing!

◦ Common error: forgetting to set influencing bounds

18. Anchoring influencing bounds

• A light bounding volume can be relative to:

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l7 19

◦ The light’s coordinate system

◦ Volume centered on light

◦ As light moves, so does volume

• A Bounding leaf’s coordinate system

◦ Volume centered on a leaf node elsewhere in scene

graph

◦ As that leaf node moves, so does volume

◦ If light moves, volume does not

19. Influencing bounds example code

• Set bounds relative to the lights coordinate system

PointLight myLight = new PointLight();

myLight.setInfluencingBounds(myBounds);

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l7 20

• Or relative to a bounding leafs coordinate system

TransformGroup myGroup = new TransformGroup();

BoundingLeaf myLeaf = new BoundingLeaf(myBounds);

myGroup.addChild(myLeaf);

. . .

PointLight myLight = new PointLight();

myLight.setInfluencingBoundingLeaf(myLeaf);

20. Scoping lights

• A lights illumination may be scoped to one or more

groups of shapes

◦ Shapes within the influencing bounds and within those

groups are lit.

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l7 21

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l7 22

• By default, lights have universal scope and illuminate

everything within their influencing bounds

21. Scoping example code

• Build a group of shapes

TransformGroup myLightable = new TransformGroup();

Shape3D myShape = new Shape3D(myGeom, myAppear);

myLightable.addChild(myShape);

• Create a light and add the group to its scope list

DirectionalLight myLight = new DirectionalLight();

myLight.addScope(myLightable);

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l7 23

22. Hints on Using Lights

• Use as few light sources as you can.

• Directional light sources are preferred since the compu-

tation required in rendering is significantly less than for

point and spot lights.

• Point light sources are rarely used due to the high com-

putational complexity.

• Including a single Ambient light source with a large re-

gion of influence is normal.

• The time required to include the Ambient light is small

compared to other light sources.

• For objects, the more vertices, the smoother the light-

ing effect and the longer it will take to render.

