60-480.17

OBJECT ILLUMINATION

- 1. Illumination model
 - When exposed to a given distributed light (or a point light placed sufficiently far away), the illumination I at a surface point is determined by $\mathbf{N}\cdot\mathbf{L}$ and $\mathbf{E}\cdot\mathbf{R}$ in the equation

1

$$I = k_d I_a + \frac{I_p}{d + d_0} [k_d \left(\mathbf{N} \cdot \mathbf{L} \right) + k_s \left(\mathbf{E} \cdot \mathbf{R} \right)^n]$$

- $\circ \ I$ is the illumination intensity at the point
- $\circ k_d, k_s$ are material constants
- $\circ I_a, I_p$ are ambient and point light intensities
- **N**, **L**, **E**, **R** are vectors defining the directions for surface normal, point light, viewer's eye, and reflection.


```
60-480.17
                                                                  6
5. A simple lights example
1.
     Appearance createAppearance() {
2.
       Appearance appear = new Appearance();
3.
       Material material = new Material();
4.
       appear.setMaterial(material);
5.
6.
       return appear;
7.
      }
8.
9.
     BranchGroup createScene () {
10.
       BranchGroup scene = new BranchGroup();
11.
12.
       scene.addChild(new Sphere(0.5f, Sphere.GENERATE_NORMALS,
13.
                                   createAppearance()));
14.
       AmbientLight lightA = new AmbientLight();
15.
16.
       lightA.setInfluencingBounds(new BoundingSphere());
17.
       scene.addChild(lightA);
18.
19.
       return scene;
20.
```

Code Fragment 6-1 Creating a Scene with a Lit Sphere.

60-480.17	8
8. AmbientLight example code	SOR.CA
AmbientLight myLight = new Ambient	entLight();
<pre>myLight.setEnable(true);</pre>	
myLight.setColor(new Color3f()	1.0f, 1.0f, 1.0f));

60-480.17	9
• Set its influencing bounds	
BoundingSphere myBounds	
<pre>= new BoundingSphere(new Point3d(), 1000.0);</pre>	
<pre>myLight.setInfluencingBounds(myBounds);</pre>	
9. Creating directional lights	
KUANOUMIN	

60-480.17

12

- 11. Creating point lights
 - Light rays emit radially from a point in all directions

- 12. Using point light attenuation
 - Point light rays are attenuated:
 - \circ As distance increases, light brightness decreases

60-480./7 14
 Set its influencing bounds
BoundingSphere myBounds
<pre>= new BoundingSphere(new Point3d(), 1000.0);</pre>
<pre>myLight.setInfluencingBounds(myBounds);</pre>
14. Creating spot lights
 Light rays emit radially from a point, within a cone
\circ Vary the spread angle to widen, or narrow the cone
 Spread angle varies from 0.0 to PI/2.0 radians (de- fault PI)
 A value of PI radians makes the light a PointLight
 Vary the concentration to focus the spot light
 Concentrations vary from 0.0 (unfocused) to 128.0 (focused)

60-480.17		20
• C	r relative to a bounding leafs coordinate system	
Tı	cansformGroup myGroup = new TransformGroup();	
Вс	oundingLeaf myLeaf = new BoundingLeaf(myBounds));
my	<pre>/Group.addChild(myLeaf); </pre>	
Po	<pre>ointLight myLight = new PointLight();</pre>	
my	Light.setInfluencingBoundingLeaf(myLeaf);	
20. Scoj	ping lights	
• A gi	lights illumination may be scoped to one or m roups of shapes	nore
0	Shapes within the influencing bounds and within the groups are lit.	iose

60-480.17

• By default, lights have universal scope and illuminate everything within their influencing bounds

22

2.

- 21. Scoping example code
 - Build a group of shapes
 TransformGroup myLightable = new TransformGroup();
 Shape3D myShape = new Shape3D(myGeom, myAppear);
 myLightable.addChild(myShape);
 - Create a light and add the group to its scope list
 DirectionalLight myLight = new DirectionalLight();
 myLight.addScope(myLightable);

22. Hints on Using Lights

- Use as few light sources as you can.
- Directional light sources are preferred since the computation required in rendering is significantly less than for point and spot lights.
- Point light sources are rarely used due to the high computational complexity.
- Including a single Ambient light source with a large region of influence is normal.
- The time required to include the Ambient light is small compared to other light sources.
- For objects, the more vertices, the smoother the lighting effect and the longer it will take to render.

