60-480./7 1

OBJECT ILLUMINATION

1. Illumination model

e When exposed to a given distributed light (or a point
light placed sufficiently far away), the illumination I at
a surface point is determined by N-L and E-R in the
equation

I
I=kyl,+—L—[k;(N-L)+ &k, (E-R)"
o+ o k(N L)+ & (B R)')

o I is the illumination intensity at the point

o kg, ks are material constants

o l,, I, are ambient and point light intensities

oN, L, E, R are vectors defining the directions for sur-
face normal, point light, viewer's eye, and reflection.

60-480./7 2

od, dy are distance constants.

o The inner product of two vectors: a-b = |a||b| cos Z(a, b)

sl
Fy

Figure 6-1 Light, Surface Normal, and Eye Vectors used to Shade Vertices.

2. Lighting reflections
e Ambient reflection results from ambient light, constant
low level light, in a scene.

e Diffuse reflection is the normal reflection of a light
source from a visual object.

60-480./7 3

e Specular reflections are the highlight reflections of a
light source from an object, which occur in certain sit-
uations.

specular reflection
(white)

ldifﬂl.&c reflection

(blue)

ambicnt rcﬂcctionj'

(gray)

no shadow no inter-object reflection

Figure 6-2 Shaded Sphere and Plane

3. Java3D shading model

e The shade model is specified as one of SHADE GOURAUD,
SHADE _FLAT, FASTEST, NICEST.

60-480.17 4
e In flat shading, all pixels for a polygon are assigned the
shade value from one vertex of the polygon.

o A curved surface is represented as a set of constantly
shaded plane surfaces.

Figure 6-3 Flat and Gouraud Shaded Spheres.

60-480./7 5

e In Gouraud shading, each pixel is shaded with a value
derived from trilinear interpolation of the shade value
of each vertex of its enclosing polygon.

o After the intensity values at the vertices of each poly-
gon are determined, all other intensities for the sur-
face are calculated from them.

4. Recipe for Lit Visual Objects
e Light Source specification
o set bounds, and add to scene graph

e Visual object

o normals and material properties

60-480./7 6

5. A simple lights example

1. Appearance createlppearance (] {

2. Appearance appeal = new LAppearance();

3 Material material = new Material();

4. appear.setMaterial (material) ;

5.

6 return appear;

7.)

8.

9. BranchGroup createScene ()

10 BranchGroup scene = new BranchGroup() ;

11.

125 scene.addChild (new Sphere(0.5f, Sphere.GENERATE NOEMALS,
135 createlppearance ())] ;
14.

15, MmbientLight lightZ = new AmbientLight () ;

16. lightZ.setInfluencingBounds (new BoundingSphere()) ;
1%, scene.addChild (1lighth) ;

18.

19. return scens;

20. '}

Code Fragment 6-1 Creating a Scene with a Lit Sphere.

60-480./7 7

6. Java 3D provides four types of lights

Class Hierarchy

java.lang.Object
— javax.media.j3d.SceneGraphObject
L javax.media.j3d.Node
L javax.media.j3d.Leaf
L javax.media.j3d.Light

F javax.media.j3d.AmbientLight

% javax.media.j3d.DirectionallLight
L javax.media.j3d.PointLight

L javax.media.j3d.SpotLight

7. Creating ambient lights

e Light rays aim in all directions, flooding an environment

and illuminating shapes evenly

60-480./7 8

8. AmbientLight example code

e Create a light
AmbientLight myLight = new AmbientLight();
myLight.setEnable(true);
myLight.setColor(new Color3f(1.0f, 1.0f, 1.0f));

60-480./7 9

e Set its influencing bounds

BoundingSphere myBounds
= new BoundingSphere(new Point3d(), 1000.0);
myLight.setInfluencingBounds(myBounds) ;

9. Creating directional lights

60-480./7 10

e Parallel light rays aiming in a direction (default —z-axis).

10. DirectionalLight example code

e Create a light
DirectionalLight myLight = new DirectionalLight();
myLight.setEnable(true);

60-480./7 11
myLight.setColor(new Color3f(1.0f, 1.0f, 1.0f));
myLight.setDirection(new Vector3f(1.0f, 0.0f, 0.0f));

e Set its influencing bounds

BoundingSphere myBounds
= new BoundingSphere(new Point3d(), 1000.0);
myLight.setInfluencingBounds(myBounds);

60-480.17 12
11. Creating point lights

e Light rays emit radially from a point in all directions

12. Using point light attenuation

e Point light rays are attenuated:

o As distance increases, light brightness decreases

60-480./7 13

e Attenuation is controlled by three coefficients:

o constant, linear, and quadratic

lightIntensity

brightness =
g constant + linear * distance + quadratic x distance?

13. PointLight example code

e Create a light
PointLight myLight = new PointLight();
myLight.setEnable(true);
myLight.setColor(new Color3f(1.0f, 1.0f, 1.0f));
myLight.setPosition(new Point3f(0.0f, 1.0f, 0.0f));
myLight.setAttenuation(new Point3f(1.0f, 0.0f, 0.0f));

60-480./7 14

e Set its influencing bounds
BoundingSphere myBounds
= new BoundingSphere(new Point3d(), 1000.0);
myLight.setInfluencingBounds(myBounds) ;

14. Creating spot lights

e Light rays emit radially from a point, within a cone
o Vary the spread angle to widen, or narrow the cone
— Spread angle varies from 0.0 to PI/2.0 radians (de-
fault PI)
— A value of PI radians makes the light a PointLight
o Vary the concentration to focus the spot light
— Concentrations vary from 0.0 (unfocused) to 128.0
(focused)

60-480./7 15

— The default is 0.0
e The default aim direction is (0.0, 0.0, -1.0).

15. SpotLight example code

e Create a light
SpotLight myLight = new SpotLight();

60-480./7 16

myLight.setEnable(true);

myLight.setColor(new Color3f(1.0f, 1.0f, 1.0f));
myLight.setPosition(new Point3f(0.0f, 1.0f, 0.0f));
myLight.setAttenuation(new Point3f(1.0f, 0.0f, 0.0f));
myLight.setDirection(new Vector3f(1.0f, 0.0f, 0.0f));
myLight.setSpreadAngle(0.785f); // 45 degrees
myLight.setConcentration(3.0f); // Unfocused

e Set its influencing bounds

BoundingSphere myBounds
= new BoundingSphere(new Point3d(), 1000.0);
myLight.setInfluencingBounds(myBounds);

60-480.17 17
16. Using light influencing bounds

e A light's illumination is bounded to a region of influence

o Shapes within the region may be lit by the light

Large bounds Small bounds

e Light bounding:

60-480./7 18

o Enables controlled lighting in large scenes
o Avoids over-lighting a scene when using multiple lights

o Saves lighting computation time
17. Creating influencing bounds

e A light region of influence is a bounded volume:

o Sphere, box, polytope, or combination using Bounds
o To make a global light, use a huge bounding sphere

e By default, lights have no influencing bounds and illu-
minate nothing!

o Common error: forgetting to set influencing bounds
18. Anchoring influencing bounds

e A light bounding volume can be relative to:

60-480./7 19

o The light's coordinate system
o Volume centered on light
o As light moves, so does volume
e A Bounding leaf’s coordinate system
o Volume centered on a leaf node elsewhere in scene
graph
o As that leaf node moves, so does volume

o If light moves, volume does not
19. Influencing bounds example code

e Set bounds relative to the lights coordinate system
PointLight myLight = new PointLight();
myLight.setInfluencingBounds(myBounds) ;

60-480./7 20

e Or relative to a bounding leafs coordinate system
TransformGroup myGroup = new TransformGroup();
Boundingleaf myLeaf = new Boundingleaf(myBounds) ;

myGroup.addChild(myLeaf);

PointLight myLight = new PointLight();
myLight.setInfluencingBoundingLeaf (myLeaf);
20. Scoping lights
e A lights illumination may be scoped to one or more
groups of shapes

o Shapes within the influencing bounds and within those
groups are lit.

60-480./7 21

60-480./7 22

e By default, lights have universal scope and illuminate
everything within their influencing bounds

21. Scoping example code

e Build a group of shapes
TransformGroup myLightable = new TransformGroup();
Shape3D myShape = new Shape3D(myGeom, myAppear) ;
myLightable.addChild(myShape);

e Create a light and add the group to its scope list
DirectionalLight myLight = new DirectionallLight();
myLight.addScope(myLightable);

60-480.17 23
22. Hints on Using Lights

e Use as few light sources as you can.

e Directional light sources are preferred since the compu-
tation required in rendering is significantly less than for
point and spot lights.

e Point light sources are rarely used due to the high com-
putational complexity.

e Including a single Ambient light source with a large re-
gion of influence is normal.

e The time required to include the Ambient light is small
compared to other light sources.

e For objects, the more vertices, the smoother the light-
ing effect and the longer it will take to render.

