
XYUAN@
UW

IN
D
SO

R.C
A

60-480·l5 1

INTRODUCTION TO TEXTURE MAPPING

1. A texture is an image pasted onto a shape to create the

illusion of detail.

• Realism can be improved by modeling every detail of

every 3D shape in a scene

◦ This requires an enormous amount of modeling effort

◦ More shapes ⇒ more to draw and worse interactivity

• Realism can be improved with the illusion of detail:

◦ Take a photograph of the ”real thing”

◦ Paste that photo onto simple 3D geometry

• Texture mapping increases realism without increasing

the amount of geometry to draw.

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l5 2

2. Bricks: an example

3. Texture mapping is controlled by node components in a

shape’s Appearance.

• Appearance is a container for multiple visual attributes

for a shape

◦ Color and transparency control

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l5 3

– Material

– ColoringAttributes

– TransparencyAttributes

◦ Rendering control

– PointAttributes

– LineAttributes

– PolygonAttributes

– RenderingAttributes

◦ Texture control

• Texture control attributes are divided among a few node

components

◦ Texture selects a texture image and control basic

mapping attributes

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l5 4

◦ TextureAttributes controls advanced mapping attributes

◦ TexCoordGeneration automatically generates texture co-

ordinates if you do not provide your own.

4. Texture is the base class for two node components that

select the image to use

• Texture2D: a standard 2D image

• Texture3D: a 3D volume of images

Class Hierarchy
java.lang.Object

javax.media.j3d.SceneGraphObject

javax.media.j3d.NodeComponent

javax.media.j3d.Texture

javax.media.j3d.Texture2D

javax.media.j3d.Texture3D

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l5 5

5. Simple texture recipe

(1) Prepaer texture images

(2) Load the texture

(3) Set the texture in Appearance bundle

(4) Specfigy TexturCoordinates of Geometry

6. Image format

• JPEG/JPG (Joint Photographic Experts Group)

◦ JPG is a lossy compression technique designed to

compress color and grayscale continuous-tone images.

– The information discarded in the compression is in-

formation that the human eye cannot detect.

– JPG images support 16 million colors and are best

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l5 6

suited for photographs and complex graphics.

– The user typically has to compromise on either the

quality of the image or the size of the file. JPG

does not work well on line drawings, lettering or

simple graphics because there is not a lot of the

image that can be thrown out in the lossy process,

so the image loses clarity and sharpness.

• GIF (Graphics Interchange Format)

◦ Unlike JPG, the GIF format is a lossless compression

technique and it supports only 256 colors.

– GIF is better than JPG for images with only a few

distinct colors, such as line drawings, B/W images

and small text that is only a few pixels high.

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l5 7

• PNG (Portable Network Graphics)

◦ PNG was developed as a patent-free answer to the

GIF format but is also an improvement on the GIF

technique.

◦ An image in a lossless PNG file can be 5%-25% more

compressed than a GIF file of the same image.

7. Preparing for texture mapping

• Ensure the images are of acceptable dimensions

◦ For rendering efficiency, Java 3D requires the size of

the texture image to be a mathematical power of two

(1, 2, 4, 8, 16, ...) in each dimension.

◦ Failing to meet this restriction will result in a runtime

exception.

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l5 8

• Ensure the images are saved in a file format which can

be read.

8. Loading a texture requires:

• A TextureLoader to load that file

TextureLoader myLoader = new TextureLoader("brick.jpg");

• An ImageComponent uses a standard BufferedImage to hold

the loaded image

◦ The extended ImageComponent2D holds a 2D image.

ImageComponent2D myImage = myLoader.getImage();

9. The remaining steps

• Create a Texture2D using the image, and turn it on

Texture2D myTex = new Texture2D();

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l5 9

myTex.setImage(0, myImage);

myTex.setEnable(true);

• Create an Appearance and set the texture in it

Appearance myAppear = new Appearance();

myAppear.setTexture(myTex);

• Assemble the shape

Shape3D myShape = new Shape3D(myGeom, myAppear);

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l5 10

USING TEXTURE COORDINATES

1. Texture coordinates describe a 2D shape that maps from

parts of a texture to parts of a shape.

• Define a “texture cookie cutter” to cut out a texture

piece

• Translate, rotate, and scale the cookie cutter before

cutting out the piece

• Map the cut out texture “cookie” onto your shape

2. Texture images have a true size and a logical size

• True size is the width and height of the image in pixels

◦ Must be powers of 2

◦ Width and height need not be the same

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l5 11

• Logical size is a generic treatment of image dimensions

◦ Always a width of 1.0

◦ Always a height of 1.0

3. An example of texture coordinates

• Create lists of 3D coordinates, lighting normals, and

texture coordinates for the vertices

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l5 12

Point3f[] myCoords = {
new Point3f(0.0f, 0.0f, 0.0f),

. . .

}
Vector3f[] myNormals = {

new Vector3f(0.0f, 1.0f, 0.0f),

. . .

}
Point2f[] myTexCoords = {

new Point2f(0.0f, 0.0f),

. . .

}

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l5 13

• Create a QuadArray and set the vertex coordinates,

lighting normals, and texture coordinates

QuadArray myQuads = new QuadArray(

myCoords.length,

GeometryArray.COORDINATES |

GeometryArray.NORMALS |

GeometryArray.TEXTURE COORDINATE 2);

myQuads.setCoordinates(0, myCoords);

myQuads.setNormals(0, myNormals);

myQuads.setTextureCoordinates(0, myTexCoords);

• Assemble the shape

Shape3D myShape = new Shape3D(myQuads, myAppear);

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l5 14

4. The “texture cookie cutter” can be transformed before

cutting out a piece of texture.

• TextureAttributes control how a texture is mapped, in-

cluding use of a texture coordinates transform.

Class Hierarchy
java.lang.Object

javax.media.j3d.SceneGraphObject

javax.media.j3d.NodeComponent

javax.media.j3d.TextureAttributes

5. An example of texture rotation

• Create TextureAttributes

TextureAttributes myTA = new TextureAttributes();

• Create a rotation transform

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l5 15

Transform3D myTrans = new Transform3D();

myTrans.rotZ(Math.PI/4.0); // 45 degrees

myTA.setTextureTransform(myTrans);

• Set the texture attributes on an Appearance

Appearance myAppear = new Appearance();

myAppear.setTextureAttributes(myTA);

• Assemble the shape

Shape3D myShape = new Shape3D(myText, myAppear);

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l5 16

6. An example of texture scaling

• Create a scaling transform

Transform3D myTrans = new Transform3D();

myTrans.set(4.0);

myTA.setTextureTransform(myTrans);

7. An example of texture translation

• Create a translation transform

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l5 17

Transform3D myTrans = new Transform3D();

myTrans.set(new Vector3f(0.25f, 0.0f, 0.0f));

myTA.setTextureTransform(myTrans);

8. Using texture boundary modes when texture coordinates

extend past the edge of the image they can.

• Wrap to create a repeating pattern

• Clamp to prevent repeatition

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l5 18

9. An example of texture boundary mode

• Load a texture image

TextureLoader myLoader = new TextureLoader("brick.jpg");

ImageComponent2D myImage = myLoader.getImage();

• Create a Texture2D using the image, and turn it on

Texture2D myTex = new Texture2D();

myTex.setImage(0, myImage);

myTex.setEnable(true);

• Set the boundary modes and color

myTex.setBoundaryModeS(Texture.WRAP);

myTex.setBoundaryModeT(Texture.WRAP);

// WRAP is the default in both S and T

• Create an Appearance and set the texture in it

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l5 19

Appearance myAppear = new Appearance();

myAppear.setTexture(myTex);

• Assemble the shape

Shape3D myShape = new Shape3D(myText, myAppear);

