
XYUAN@
UW

IN
D
SO

R.C
A

60-480·l14 1

JAVA 3D APPLICATIONS

1. The application areas of Java 3D

• Scientific visualization

• Information visualization

• Medical visualization

• Geographical information systems (GIS)

• Computer-aided design (CAD)

• Animation

• Education

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l14 2

2. Examples: Scientific Visualization



XYUAN@
UW

IN
D
SO

R.C
A

60-480·l14 3

3. Examples: Abstract Data (Financial)

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l14 4

4. Examples: Medical Education



XYUAN@
UW

IN
D
SO

R.C
A

60-480·l14 5

5. Examples: CAD

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l14 6

6. Examples: Mechanical Analysis



XYUAN@
UW

IN
D
SO

R.C
A

60-480·l14 7

7. Examples: Computer Animations

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l14 8

8. Performance Considerations:

• Use low polygon geometry with high quality textures.

• Use high quality textures with transparency and 2D ge-

ometry.

• Use tiling and small texture sizes when possible.

• When creating multiple instances, use SharedGroup and

Link nodes.

• Use Behavior and Alpha nodes only where necessary.

• Turn Timer nodes on and off where appropriate.

9. Object Creations:

• Examine every “new” statement in your program.

• Ask if it is really necessary?



XYUAN@
UW

IN
D
SO

R.C
A

60-480·l14 9

• If a “new” statement is executed at every timer or render

time then replace it with a static node.

• Try to create all nodes before a user starts interacting

with your simulation.

• Avoid using the “new” statement after a user begins

interacting with your simulation.

• For garbage collection to take place use class WeakHashMap

◦ The use of a WeakHashMap object associates pairs of

objects as keys and values. The value is made eligible

for garbage collection when the key becomes weakly

reachable.

• For garbage collection to take place, unregister event

listener classes when they are no longer needed.

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l14 10

10. There are a number of things in the Java 3D API that

were included specifically to increase performance.

• Capability bits are the applications way of describing

its intentions to the Java 3D implementation. The im-

plementation examines the capability bits to determine

which objects may change at run time. Many optimiza-

tions are possible with this feature.

• The default isFrequent bit indicates that the applica-

tion may frequently access or modify those attributes

permitted by the associated capability bit. This can be

used by Java 3D as a hint to avoid certain optimizations

that could cause those accesses or modifications to be

expensive.



XYUAN@
UW

IN
D
SO

R.C
A

60-480·l14 11

• The are two compile methods in Java 3D. They are in

the BranchGroup and SharedGroup classes. Once an appli-

cation calls compile(), only those attributes of objects

that have their capability bits set may be modified. The

implementation may then use this information to “com-

pile” the data into a more efficient rendering format.

• Many Java 3D object require a bounds associated with

them. These objects include Lights, Behaviors, Fogs,

Clips, Backgrounds, BoundingLeafs, Sounds, Soundscapes,

ModelClips, and AlternateAppearance. These bounds

limit the spatial scope of the specific object, allowing

the implementation to quickly disregard the processing

of any objects that are out of the spatial scope.

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l14 12

• All state required to render a specific object in Java 3D

is completely defined by the direct path from the root

node to the given leaf. That means that leaf nodes

have no effect on other leaf nodes, and therefore may

be rendered in any order. There are a few ordering re-

quirements for direct descendents of OrderedGroup nodes

or Transparent objects. But, most leaf nodes may be

reordered to facilitate more efficient rendering.

• OrderedGroup supports an indirection table to allow the

user to specify the order that the children should be

rendered. This will speed up order update processing,

eliminating the expensive attach and detach cycle.



XYUAN@
UW

IN
D
SO

R.C
A

60-480·l14 13

• A Shape3D node has a reference to a Geometry and an

Appearance. An Appearance NodeComponent is simply a

collection of other NodeComponent references that de-

scribe the rendering characteristics of the geometry.

Because the Appearance is nothing but a collection of

references, it is much simpler and more efficient for

the implementation to check for rendering character-

istic changes when rendering. This allows the imple-

mentation to minimize state changes in the low level

rendering API.

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l14 14

11. Tips and Tricks

• Move Object vs. Move ViewPlatform

◦ If the application simply needs to transform the en-

tire scene, transform the ViewPlatform instead. This

changes the problem from transforming every object

in the scene into only transforming the ViewPlatform.

• Capability bits

◦ Only set them when needed. Many optimizations can

be done when they are not set. So, plan out appli-

cation requirements and only set the capability bits

that are needed.



XYUAN@
UW

IN
D
SO

R.C
A

60-480·l14 15

• Bounds and Activation Radius

◦ Consider the spatial extent of various leaf nodes in

the scene and assign bounds accordingly. This allows

the implementation to prune processing on objects

that are not in close proximity.

◦ Automatic bounds calculations for geometric objects

is fine.

◦ Bounds computation does consume CPU cycles. If

an application does a lot of geometry coordinate up-

dates, to improve performance, it is better to turn off

auto bounds compute. The application will have to

do the bounds update itself.

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l14 16

• Change Number of Shape3D Nodes

◦ In the current implementation there is a certain amount

of fixed overhead associated with the use of the Shape3D

node. In general, the fewer Shape3D nodes that an

application uses, the better. However, combining

Shape3D nodes without factoring in the spatial locality

of the nodes to be combined can adversely effect per-

formance by effectively disabling view frustum culling.

An application programmer will need to experiment

to find the right balance of combining Shape3D nodes

while leveraging view frustum culling. The .compile

optimization that combines shape node will do this

automatically, when possible.



XYUAN@
UW

IN
D
SO

R.C
A

60-480·l14 17

• Geometry Type and Format

◦ Most rendering hardware reaches peak performance

when rendering long triangle strips. Unfortunately,

most geometry data stored in files is organized as in-

dependent triangles or small triangle fans (polygons).

The Java 3D utility package includes a stripifier util-

ity that will try to convert a given geometry type into

long triangle strips. Application programmers should

experiment with the stripifier to see if it helps with

their specific data. If not, any stripification that the

application can do will help.

◦ Another option is that most rendering hardware can

process a long list of independent triangles faster than

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l14 18

a long list of single triangle triangle fans. The stripi-

fier in the Java 3D utility package will be continually

updated to provided better stripification.

• Sharing Appearance/Texture/Material NodeComponents

◦ To assist the implementation in efficient state sort-

ing, and allow more shape nodes to be combined

during compilation, applications can help by sharing

Appearance/Texture/Material NodeComponent objects when

possible.

• Geometry by reference

◦ Using geometry by reference reduces the memory needed

to store a scene graph, since Java 3D avoids creating

a copy in some cases.



XYUAN@
UW

IN
D
SO

R.C
A

60-480·l14 19

◦ However, using this features prevents Java 3D from

creating display lists (unless the scene graph is com-

piled), so rendering performance can suffer in some

cases. It is appropriate if memory is a concern or if

the geometry is writable and may change frequently.

The interleaved format will perform better than the

non-interleaved formats, and should be used where

possible. In by-reference mode, an application should

use arrays of native data types; referring to TupleXX[]

arrays should be avoided.

• Texture by reference and Y-up

◦ Using texture by reference and Y-up format may re-

duce the memory needed to store a texture object,

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l14 20

since Java 3D avoids creating a copy in some cases.

When a copy of the by-reference data is made in

Java3D, users should be aware that this case will use

twice as much memory as the by copy case. This is

due to the fact that Java3D internally makes a copy

in addition to the user’s copy to the reference data.

• Drawing 2D graphics using J3DGraphics2D

◦ The J3DGraphics2D class allows you to mix 2D and 3D

drawing into the same window. However, this can be

very slow in many cases because Java 3D needs to

buffer up all of the data and then composite it into

the back buffer of the Canvas3D.

◦ A new method, drawAndFlushImage, is provided to ac-



XYUAN@
UW

IN
D
SO

R.C
A

60-480·l14 21

celerate the drawing of 2D images into a Canvas3D.

To use this, it is recommended that an application

create their own BufferedImage of the desired size,

use Java2D to render into their BufferedImage, and

then use the new drawAndFlushImage method to draw

the image into the Canvas3D.

• Application Threads

◦ The built in threads support in the Java language is

very powerful, but can be deadly to performance if it

is not controlled. Applications need to be very careful

in their threads usage.

– First, try to use them in a demand driven fashion.

Only let the thread run when it has a task to do.

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l14 22

Free running threads can take a lot of cpu cycles

from the rest of the threads in the system — in-

cluding Java 3D threads.

– Next, be sure the priority of the threads are ap-

propriate. Most Java Virtual Machines will enforce

priorities aggressively. Too low a priority will starve

the thread and too high a priority will starve the rest

of the system. If in doubt, use the default thread

priority.

– Finally, see if the application thread really needs

to be a thread. Would the task that the thread

performs be all right if it only ran once per frame?

If so, consider changing the task to a Behavior that



XYUAN@
UW

IN
D
SO

R.C
A

60-480·l14 23

wakes up each frame.

• Java 3D Threads

◦ Java 3D uses many threads in its implementation,

so it also needs to implement the precautions listed

above. In almost all cases, Java 3D manages its

threads efficiently. They are demand driven with de-

fault priorities. There are a few cases that don’t fol-

low these guidelines completely.

• Switch Nodes for Occlusion Culling

◦ If the application is a first person point of view ap-

plication, and the environment is well known, Switch

nodes may be used to implement simple occlusion

culling. The children of the switch node that are not

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l14 24

currently visible may be turned off. If the application

has this kind of knowledge, this can be a very useful

technique.

• Switch Nodes for Animation

◦ Most animation is accomplished by changing the trans-

formations that effect an object. If the animation is

fairly simple and repeatable, the flip-book trick can

be used to display the animation. Simply put all the

animation frames under one switch node and use a

SwitchValueInterpolator on the switch node. This

increases memory consumption in favor of smooth

animations.

• OrderedGroup Nodes



XYUAN@
UW

IN
D
SO

R.C
A

60-480·l14 25

◦ OrderedGroup and its subclasses are not as high per-

forming as the unordered group nodes. They disable

any state sorting optimizations that are possible. If

the application can find alternative solutions, perfor-

mance will improve.

• LOD Behaviors

◦ For complex scenes, using LOD Behaviors can im-

prove performance by reducing geometry needed to

render objects that don’t need high level of detail.

This is another option that increases memory con-

sumption for faster render rates.

• Picking

◦ If the application doesn’t need the accuracy of ge-

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l14 26

ometry based picking, use bounds based picking. For

more accurate picking and better picking performance,

use PickRay instead of PickCone/PickCylnder unless

you need to pick line/point. PickCanvas with a toler-

ance of 0 will use PickRay for picking.

• D3D users only

◦ Using Quad with Polygon line mode is very slow. This

is because DirectX doesn’t support Quad. Breaking

down the Quad into two triangles causes the diagonal

line to be displayed. Instead Java 3D draws the poly-

gon line and does the hidden surface removal manu-

ally.


