
XYUAN@
UW

IN
D
SO

R.C
A

60-480·l13 1

Interaction Design

1. Input, Behavior, and Picking

• Input devices

◦ Java3D has access to keyboards and mice using the

Java API.

◦ Java3D also provides access to continuous input de-

vices such as 6 DOF trackers and joysticks via an

abstract InputDevice interface.

– Input devices or sensors must be implemented for

actual devices.

– Input data from the sensor data can be read and

processed.

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l13 2

• Behavior is a class for specifying animations of or inter-

action with visual objects.

◦ The distinction between animation and interaction is

whether the behavior is activated in response to the

passing of time or in response to user activities, re-

spectively.

• Mouse interaction

◦ Java3D provides 4 utility classes for mouse interac-

tion.

– Abstract class MouseBehavior defines behavior ini-

tialization, stimuli processing etc for three subclasses

on mouse-based rotation, translation, and zooming.

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l13 3

• The picking API enables selecting objects in the scene

◦ Java3D divides picking into two portions

– Control: clicking with a 2D mouse or move a 6DOF

wand

– Selection: finding shapes that meet search criteria

2. Mouse-based object manipulation

• MouseRotate enables the rotation of an object by drag-

ging with the left mouse button.

◦ Create a transform group on which the rotate behav-

ior is to operate

TransformGroup obj man = new TransformGroup();

obj man.setCapability(TransformGroup.ALLOW TRANSFORM WRITE);

obj man.setCapability(TransformGroup.ALLOW TRANSFORM READ);

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l13 4

◦ Add the rotate behavior to the transform group to

allow the rotation of any object attached to obj man

MouseRotate myMouseRotate = new MouseRotate();

myMouseRotate.setTransformGroup(obj man);

myMouseRotate.setSchedulingBounds(new BoundingSphere());

objRoot.addChild(myMouseRotate);

• MouseTranslate enables the translation of an object by

dragging with the right mouse button.

◦ Replacing the rotate with the translate behavior al-

lows the translation of any object attached to obj man

MouseTranslate myMouseTranslate = new MouseTranslate();

myMouseTranslate.setTransformGroup(obj man);

myMouseTranslate.setSchedulingBounds(new BoundingSphere());

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l13 5

objRoot.addChild(myMouseTranslate);

• MouseZoom enables the zooming of an object by dragging

with the middle mouse button.

◦ Replacing the rotate with zoom behavior allows the

zooming of any object attached to obj man

MouseZoom myMouseZoom = new MouseZoom();

myMouseZoom.setTransformGroup(obj man);

myMouseZoom.setSchedulingBounds(new BoundingSphere());

objRoot.addChild(myMouseZoom);

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l13 6

3. The picking API provides the interactive ability for object

manipulation.

• It supports various selection shapes

• It can report the first, any, all, or all sorted hits

• It is designed for speed

◦ Picking only works on bounds

◦ Utilities provide more fine-grained pick support

• It is distributed among a number of classes

◦ Enable pickability of any node via methods on Node

◦ Initiate a pick using methods on Locale or BranchGroup

◦ Pick methods take as an argument a PickShape, and

return one or more SceneGraphPaths

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l13 7

4. Picking intersects a PickShape with pickable shape bound-

ing volumes

• PickShape class hierarchy

Class Hierarchy
java.lang.Object

javax.media.j3d.PickShape

javax.media.j3d.PickBounds

javax.media.j3d.PickPoint

javax.media.j3d.PickRay

javax.media.j3d.PickSegment

• PickRay fires a ray from a position, in a direction

◦ Pick occurs for shape bounds the ray strikes

• PickSegment fires a ray along a ray segment between two

positions

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l13 8

◦ Pick occurs for shape bounds the ray segment inter-

sects

• PickPoint checks the scene at a position

◦ Pick occurs for shape bounds that contain the posi-

tion

• PickBounds checks the scene at a position, in a bounded

volume

◦ Pick occurs for shape bounds that intersect the bounded

volume

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l13 9

5. The pick methods on Locale or BranchGroup return one or

more SceneGraphPaths

• SceneGraphPath extends Object

Class Hierarchy
java.lang.Object

javax.media.j3d.SceneGraphPath

• Each SceneGraphPath contains:

◦ A Node for the shape that was picked

◦ The Locale above it in the scene graph

◦ A list of the Nodes from the picked shape up to the

Locale

◦ The world-to-shape transform

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l13 10

6. Using the mouse for a pick requires the creation of a be-

havior that wakes up on mouse events

• On a mouse release:

◦ Construct a PickRay from the eye passing through the

2D mouse screen point

◦ Initiate a pick to find all pick hits along the ray, sorted

from closest to furthest

◦ Get the first pick hit in the returned data

◦ Do something to that picked shape

◦ (Re)declare interest in mouse events

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l13 11

7. Picking example

XYUAN@
UW

IN
D
SO

R.C
A

60-480·l13 12

8. Picking example code

• Create a pick ray aimed using mouse screen data

PickRay myRay = new PickRay(rayOrigin, rayDirection);

• Initiate a pick starting at a Locale

SceneGraphPath[] results = myLocale.pickAllSorted(myRay);

• Get the first (closest) shape off the results

Node pickedObject = results[0].getObject();

