
1

An Overview of 3D Software Visualization
Alfredo Teyseyre and Marcelo Campo, Member, IEEE,

Abstract—Software visualization studies techniques and methods for graphically representing different aspects of software. Its main
goal is to enhance, simplify and clarify the mental representation a software engineer has of a computer system. During many years,
visualization in 2D space has been actively studied, but in the last decade, researchers have begun to explore new 3D representations
for visualizing software. In this article, we present an overview of current research in the area, describing several major aspects like:
visual representations, interaction issues, evaluation methods and development tools. We also perform a survey of some representative
tools to support different tasks, i.e., software maintenance and comprehension, requirements validation and algorithm animation for
educational purposes, among others. Finally, we conclude identifying future research directions.

Index Terms—3D software visualization, software comprehension, information visualization, 3D graphics, human-computer interaction.

�

1 INTRODUCTION

Developing software systems is an arduous task, involv-
ing a set of related phases that spawn along the software
lifecycle. During all these phases, software engineers
need different ways to understand complex software ele-
ments. In this context, the use of interactive graphic pre-
sentation of data can support significant help to facilitate
the analysis and comprehension of such complex infor-
mation. In fact, experiences in software engineering and
visualization areas, confirms that a visual representation
of a software system can enhance its understandability
and reduce its development costs [1]. Nonetheless, there
is a demand for program understanding techniques to
graphically represent different aspects of software [2].

The essence of software visualization consists of cre-
ating an image of software by means of visual objects.
These visual objects may represent, for instance, systems
or components, or their run-time behavior. As a result,
engineers can obtain an initial perception on how soft-
ware is structured, understand the software logic, and
explain and communicate the development. Effective
graphical representations may provide a closer match to
the mental model of users than textual representations
and take advantage of user’s perception capabilities [3–
5]. Actually, the human visual system constitutes a
massively parallel processor that provides the highest-
bandwidth channel into human cognitive centers [4].

Software visualization in 2D space has been ex-
tensively studied. Several authors [6–11] put together
collections of papers that reflect the evolution and
different categories of the area. In addition, a num-
ber of taxonomies of software visualization have been
proposed [12–16]. However, as a result of hardware
advances, many applications nowadays support 3D

• The authors are with the ISISTAN Research Institute, UNICEN Univer-
sity, Tandil, Argentina.
E-mail: {teyseyre, mcampo}@exa.unicen.edu.ar.

• Marcelo Campo is also with the CONICET.

graphic capabilities. The inclusion of aesthetically ap-
pealing elements, such as 3D graphics and animation,
increases the design’s appeal, intuitiveness and memo-
rability of a visualization, but also eases perception of
the human visual system [17–19].

Although there is a debate on 2D vs. 3D in the infor-
mation visualization area [20–22], the use of 3D software
visualization has the potential to aid in the development
process. 3D software visualization may transform the
way that knowledge gathering activities take place dur-
ing software engineering phases [11, 23]. In this context,
this article reports on 3D software visualization work,
identifying main directions, techniques, problems and
evaluation issues in the area. Our goal is to present an
overview of the current state of the art, to provide entry
points into the literature and to point out challenges that
arise when visualizing software in 3D. The remainder of
this paper is organized as follows: First, we introduce
the Information Visualization and Software Visualization
areas, and we address the definition of terms related
to these fields. Then, we provide an overview of the
current state of research describing several issues such
as 3D visual representations, interaction mechanisms,
evaluation methods, and development tools. In addition,
we survey some representative works in the area. Finally,
we describe future research directions.

2 VISUALIZATION

Card et al. [3] define visualization as “the use of computer-
supported, interactive, visual representations of data to am-
plify cognition”, where cognition is the acquisition or use
of knowledge (see Figure 1). These graphical represen-
tations can convey complex ideas with clarity, precision
and efficiency [24]. In fact, the human visual system (i.e.,
the eye and the visual cortex of the brain) constitutes
an effective parallel processor that supports the maxi-
mal communication channel into human cognitive cen-
ters [4]. Furthermore, the visual system frees cognitive

Digital Object Indentifier 10.1109/TVCG.2008.86 1077-2626/$25.00 © 2008 IEEE

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on October 7, 2008 at 13:55 from IEEE Xplore. Restrictions apply.

2

Figure 1. Visualization process

capacities by shifting part of processing to it [3]. For
example, as a result of visualization, scientists have
changed their way of thinking, since they now say they
can not do scientific research or communication without
visualization [25]. Specially, visualization is a powerful
tool that may help users to perform distinct types of
cognitive processes [26]:

• Exploratory: The user does not know what he is
looking for (Discovery).

• Analytical: The user knows what he is looking for in
the data, trying to determine if it is there (Decision-
making).

• Descriptive: When the phenomenon represented in
the data is known, but the user needs to have a clear
visual verification of it (Explanation).

Visualization as a research field is categorized into two
major sub-fields: Scientific Visualization and Informa-
tion Visualization [3, 4]. Scientific visualization typically
represents objects or concepts associated with phenom-
ena from physical world with an inherent spatial compo-
nent (e.g., chemistry, meteorology, or human body). For
example, Figure 2a shows an application (nanoManipula-
tor) that provides a virtual-reality interface to a scanned-
probe microscope [27]. On the other hand, information
visualization typically involves non-spatial data, that is
abstract concepts and relationships (e.g., financial data,
bibliographic sources or software). For instance, Fig-
ure 2b shows a 3D metaphor (RotaryDiagram) that helps
to visualize information evolution [28]. In particular,
Software Visualization is a specialized area of Informa-
tion Visualization, which focuses on improving software
comprehension by providing a tangible representation
of abstract software concepts. Also, alternative views of
the visualization field have been recently proposed, and
they may inspire research ideas in hybrid visualization
areas [29].

2.1 3D Visualization
In short, 3D approaches try to create visualizations that
are closer to real world metaphors or to improve space

(a) NanoManipulator application: virtual microscope. Image
courtesy of the UNC Computer-Integrated Systems for Mi-
croscopy and Manipulation NIH 5-P41-RR02170-21

(b) HANNAH Information Visualization Framework: Rotary
Diagram and Rotary Diagram with Average Rings. Image
courtesy of K. Einsfeld, A. Ebert, and J. Wolle. © 2007 IEEE

Figure 2. Scientific Visualization & Information Visualiza-
tion examples

usage by adding an extra dimension. The user is able
to rotate and move 3D objects and navigate inside a 3D
world. Some approaches propose using a 2D layout seen
under a 3D perspective with interaction limited to 2D,
that is, a 2.5D approach.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on October 7, 2008 at 13:55 from IEEE Xplore. Restrictions apply.

3

(a) 2D Augmented view: a bubble sort visu-
alization

(b) 2D Adapted view: software release his-
tory

(c) Inherent 3D view: Metaballs. Image cour-
tesy of J. Rilling and S. P. Mudur. © 2002
IEEE

Figure 3. 3D View Categorization

As mentioned in Introduction, there is a controversial
debate on 2D vs. 3D in information visualization area. In
order to analyze and identify strengths and weaknesses
of 3D/2D, we first review a categorization of 3D visual-
izations that helps in the analysis [20]:

1) Augmented 2D views: Typical 2D visualizations
where the third dimension is added just for aes-
thetic purposes. For example, Figure 3a shows a 3D
presentation of a traditional 2D bar chart sorting
algorithm [30].

2) Adapted 2D views: 2D visualizations extended to
3D to encode additional information. To illustrate
this, Figure 3b presents a 3D visual representation
of a software release history that displays the struc-
ture of the system in 2D planes, and uses the third
dimension to display historical information [31].

3) Inherent 3D application domain views: This cat-
egory includes computations involving inherent
three-dimensional entities. For instance, Figure 3c
represents a software system and its relationships
using a Metaball metaphor, that is, a 3D modeling
technique commonly used to represent complex or-
ganic shapes and structural relationships in biology
and chemistry [32].

In general, the use of the third dimension in Category 3 is
out of discussion. Nonetheless, recent research in specific
domains shows that 2D and 3D presentations are useful
for different task types, and hence combined 2D/3D
displays are suggested [33, 34]. On the other hand, the
question of the benefits offered by 3D over 2D still
remains in the other categories. Several authors [35,
36] state that when 2 dimensions are enough to show
information, it is not desirable to add a third dimension.
This extra dimension should be only used to visualize
a data set semantically richer. However, other authors
think that 3D presentations facilitate perception of the
human visual system [17, 18]. They believe that the
inclusion of aesthetically appealing elements, such as 3D
graphics and animation, can greatly increase a design’s
appeal, intuitiveness and memorability of a visualiza-
tion [19]. For example, Irani and Ware compared 2D

UML diagrams to geon diagrams (3D shaded solids), and
they found out that users can identify substructures and
relationship types with much lower error rates for geon
diagrams than for UML diagrams [18]. In addition, the
use of 3D presentations provides a greater information
density than two-dimensional ones [37]. For example,
an experiment [38] suggests that larger graphs can be
interpreted if laid out in 3D and displayed with stereo
and/or motion depth cues to support spatial percep-
tion. Also, this extra dimension helps to have a clear
perception of relations between objects by integration of
local views with global views [39] and by composition of
multiples 2D views in a single 3D view [18, 40]. Lastly,
3D graphics similarity with the real world enables us
to represent it in a more natural way. This means that
the representation of the objects can be done according
to its associated real concept, the interactions can be
more powerful (ranging from immersive navigation to
different manipulation techniques) and the animations
can be even more realistic.

On the other hand, several problems arise, such as
intensive computation, more complex implementation
than two-dimensional interfaces, and user adaptation
and disorientation. The first problem can be addressed
using powerful and specialized hardware. Moreover,
development complexity is reduced using several tools
like 3D toolkits and frameworks [41–46], 3D modeling
languages [47, 48], or 3D software visualization frame-
works [44, 49–52].

However, one of the main problems of 3D applications
is user adaptation. Most users just have experience with
classical WIMP (windows, icons, menus, pointing) two-
dimensional desktop metaphor. Therefore, the interac-
tion with 3D presentations and possibly the use of
special devices demand considerable adaptation efforts
to these technologies.

Furthermore, it is often difficult for users to under-
stand 3D spaces and perform actions inside them [53,
54]. In particular, as a consequence of a richer set of
interactions and more degrees of freedom, users may
be disoriented. For example, Plaisant et al. [55] suggest

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on October 7, 2008 at 13:55 from IEEE Xplore. Restrictions apply.

4

Strengths Weaknesses

• Greater information den-
sity

• Integration of local views
with global views

• Composition of multiples
2D views in a single 3D
view

• Facilitates perception of
the human visual system

• Familiarity, realism and
real world representations

• Intensive computation
• More complex implemen-

tation
• User adaptation to 3D

metaphors and special de-
vices

• More difficult for users to
understand 3D spaces and
perform actions in it

• Occlusion

Table 1
3D strengths and weaknesses

that 3D representations only marginally improve the
screen space problem while increasing the complexity
of interaction. Moreover, Cockburn and McKenzie [56]
evaluated the effectiveness of spatial memory in 2D and
3D, and they found out that navigation in 3D spaces can
be difficult and even simple tasks can be problematic.
As a way to overcome these limitations 3D enhanced
interfaces have been proposed. These interfaces might
offer simpler navigation, more compelling functionality,
safer movements, and less occlusion than 3D reality [22].
For instance, one alternative to reduce disorientation
consists of constraining user navigation with lateral or
linear movements [37, 57], or using physical laws such as
gravity [58]. Other methods proposed automatic camera
assistance during the transition phase from one focus ob-
ject to the other [59, 60]. In addition, several approaches
proposed using landmarks to help users to orient in a
3D world [61–63].

Finally, occlusion may distortion the user’s perception
of the data-space mainly when the information space is
dense [64]. Specially, the occlusion is a serious problem
because objects may be occluded and hence appear
invisible to the user.

To sum up, there is a vast literature on advantages and
disadvantages of 3D vs. 2D with somewhat conflicting
results. Table 1 summarizes 3D visualization strengths
and weaknesses. Nevertheless, 3D visualizations, if used
in ways that exploit their strengths while avoiding their
weaknesses [65], may have the potential to aid and im-
prove the development process [11, 23]. In this context,
this survey essentially reports results about 3D software
visualization.

3 SOFTWARE VISUALIZATION

It is a well-known fact that developing software systems
is a complex task that demands developers a number
of cognitive tasks, such as, search, comprehension, anal-
ysis and design, among others. In this context, soft-
ware visualization can be a helpful tool to enhance
the comprehension of computer programs. In fact, in a
recent survey based on questionnaires filled in by 111
researchers from software maintenance, re-engineering

and reverse engineering, 40% found software visualiza-
tion very necessary for their work and another 42%
found it important but not critical [66].

The aim of software visualization is not to create
impressive images, but images that evoke user mental
images for a better software comprehension [7]. As
a result engineers can obtain an initial perception on
how software is structured, understand the software
logic, and explain and communicate the development.
Software visualization combines techniques from differ-
ent areas like software engineering, data mining, com-
puter graphics, information visualization and human-
computer interaction. More precisely, software visualiza-
tion is a specialized area of information visualization that
can be defined as:

”a representation of computer programs,
associated documentation and data, that en-
hances, simplifies and clarifies the mental rep-
resentation the software engineer has of the
operation of a computer system” [1].

Software visualization in 2D has been extensively stud-
ied and many techniques for representing software sys-
tems have been proposed [6, 67]. However, there exists a
demand for effective program understanding techniques
and methods [2]. In particular, although the question of
the benefits offered by 3D over 2D still remains to be
answered, a growing area of research is investigating
the application of 3D graphics to software visualization
with optimistic results [11, 21, 68]. Researchers try to find
out new 3D visual representations to overcome some
of the limitations of 2D and exploit 3D richer expres-
siveness. For example, 3D software visualization has
been studied in different areas like algorithm animation
for educational purposes [20, 30, 69–71], debugging [72],
3D programming [73], requirements engineering [74–
76], software evolution [31, 77, 78], cyber attacks [79],
ontology visualization and semantic web [80], mobile ob-
jects [81], and visualization for reverse engineering, soft-
ware maintenance and comprehension at different levels
of abstraction (source code [21, 82, 83], object-oriented
systems [40, 52, 84–89] and software architectures [23, 90,
91]), among others.

4 VISUAL REPRESENTATIONS FOR 3D SOFT-
WARE VISUALIZATION

One of the problems that software visualization must
address is to find an effective tangible representation
of something that has no inherent form [10, 11, 23]. In
fact, it is crucial to determine which information to
visualize, but also, to define an effective representation
to convey the target information to the user and support
software engineering tasks [15]. Indeed, the design of a
software visualization must address a number of differ-
ent issues, e.g., what information should be presented,
how this should be done, what level of abstraction to
support, and so on. For example, a tester wanting to

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on October 7, 2008 at 13:55 from IEEE Xplore. Restrictions apply.

5

Figure 4. An example graph representing a software
system

find out who was responsible for a bug and when it
was injected will look at version history information This
information may be visualized as a graph [31] or using
an abstract representation based on poly cylinders [78].
Many representations for visualizing software have been
proposed. For instance, some visual representations are
based on abstract shapes, such as graphs [83], trees [44,
92] and geometric shapes [18, 21], and others on real
world objects, like 3D cities [93–95], solar systems [96,
97], molecules [98], video games [99, 100], metaballs [32],
3D landscapes [52], and social interactions [75], among
others.

Therefore, the main challenge is to develop and eval-
uate effective mappings, from different aspects of the
software to graphical representations, in order to provide
insight and easier software comprehension [10, 23]. In
that sense, Mackinlay proposes two essential criteria to
evaluate the mapping of data to a visual representation:
expressiveness and effectiveness [101]. Firstly, expressive-
ness criteria determine whether a visual representation
can express the desired information. Secondly, effec-
tiveness criteria determine whether a visual represen-
tation exploits the capabilities of the output medium
and the human visual system. Although these criteria
were discussed in a 2D graphics context, they can be
extended to 3D software visualization. Other researchers
discuss desirable properties of visual representations for
effective 3D software visualization [23]. These properties
may be useful to create new visualizations or to evaluate
existing ones.

4.1 Abstract Visual Representations

In this section, we describe several 3D abstract visual
representations based on graphs, trees and geometrical
shapes. We also analyze their strengths and weaknesses.

4.1.1 Graphs
Many software visualization techniques are based on
the graph representation. In short, a graph is a network
of nodes and arcs, where the nodes represent entities,
such as procedures, objects, classes, or subsystems, while

the arcs represent relationships between entities, such as
inheritance or method calls. To illustrate, Figure 4 shows
a graph view of a software system that we developed
and integrated in a 3D Desktop (Project Looking Glass
by Sun Microsystems). In particular, for a review on the
state of the art in graph visualization in general see [102],
graph visualization in information visualization see [103]
and combined approaches see [104].

Graph visualization in 2D space, representing software
components around simple boxes and lines, has been
applied. However, visualization may result completely
incomprehensible, not only as software project com-
plexity increases, but also when visualizing multiples
attributes of software, even for small projects [11, 68].
This is a consequence of trying to fit large amounts of
information into a reduced space. On the other hand,
several authors think that larger graph structures can
be viewed in 3D [38, 68]. As we mentioned earlier, an
empirical study [38] that measured path-tracing ability in
3D graphs suggested that the amount of information that
can be displayed in 3D, with stereoscopic and motion
depth cues, exceeds by a factor of three a 2D pre-
sentation. Moreover, a re-evaluation of the experiment
with new display technologies confirmed the previous
experiment and showed a much greater benefit than
previous studies [105, 106]. However, other authors think
that the most successful network visualizations are small
ones (e.g., networks with 10-50 nodes and 20-100 links),
where users can count the number of nodes and links,
and follow each link from source to destination [107–
109]. For instance, Shneiderman and Aris proposed a 2D
approach using a layout strategy based on user-defined
semantic substrates (non-overlapping regions in which
node placement is based on attributes) and interaction
capabilities to control link visibility [107]. Dispite the
debate, 3D graphs have been applied in different areas
of software visualization, such as software configuration
management [77], software architectures [90, 91], and
object oriented software [18, 83, 84, 110], among many
others. However, several issues must be addressed in
order to produce effective 3D visualizations:

• Layout algorithms: Graphical layout algorithms try
to produce well-organized layouts based on graph
properties. These layouts, just as in 2D, are crucial
for producing comprehensible 3D visualizations.
Although 2D classical layout algorithms can be
generalized to 3D, layout of 3D graphs may actu-
ally differ. For example, aesthetic constraints, such
minimization of edge crossing are less important
in 3D because arcs are less likely to intersect [68].
Furthermore, the layout of 3D graphs may be more
complex as a consequence of trying to address 3D
problems such as occlusions, perspective distortions
and so on [104]. In particular, several layouts algo-
rithms do a 2D layout and then extend the graph
into 3D using some attributes of the nodes [111] or
the third dimension for representing time [40]. For

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on October 7, 2008 at 13:55 from IEEE Xplore. Restrictions apply.

6

(a) 3D Dimension for time: message se-
quencing information

(b) Hyperbolic layout of CVS repository pro-
duced by Walrus tool developed by Young
Hyun at CAIDA (http://www.caida.org)

(c) Force-directed layout: UML diagram
(http://wilma.sourceforge.net). Image cour-
tesy of T. Dwyer

Figure 5. Graph layout algorithms

(a) Class & design patterns (b) Lego bricks (c) Geons

Figure 6. Node representations

instance, Figure 5a shows a 2D layout of modules in
a message passing system, where the third dimen-
sion displays the message sequencing information.
Other techniques compose simultaneously several
2D visualization using orthogonal axes [40]. In addi-
tion, 3D hyperbolic layouts [112] have been applied.
This kind of layouts provides a distorted view of
graph, which makes it possible to interact with po-
tentially large graphs, as shown in Figure 5b. Finally,
other layout algorithms use the 3D space without
preserving a 2D view from some perspective. For
example, Force-Directed Methods [102], described
in dimension independent terms, can be applied to
3D [113]. These methods model nodes and edges
of a graph as physical bodies tied to springs. These
bodies have forces acting on or between them, such
as magnetic repulsion or gravitational attraction. For
instance, Figure 5c shows a 3D UML Class diagram
produced using a force-directed layout [114].

• Node and link representations: Different colors and
shapes may be used to represent several kind of en-
tities, relationships and software metrics. In general,
most common representations include spheres for
nodes and cylinders for links. Also, more complex
representations may help to visualize additional
information. To illustrate, Figure 6a presents a class
visualized as volume composed of three semi-axes,

where each axis, represents a design pattern cate-
gory [115], that is, behavioral, creational and struc-
tural, and each pattern is represented by a distinc-
tive polyhedral shape [116]. Other representations
use arbitrarily shaped and colored 3D objects such
as Lego bricks (Figure 6b) [90] or 3D primitives called
geons (Figure 6c), which take advantage of human
ability to remember and distinguish 3D shapes [18].

• Clustering: Although 3D enables us to represent
graphs with more nodes and links than 2D, when
the number of nodes increases noticeable, the scale
problem still remains. In order to address this prob-
lem, clustering algorithms have been proposed [68].
In short, clustering helps to visualize large graphs
by grouping related nodes. For example, the hier-
archical composition of software (i.e., subsystem,
module, and file) can help to represent large nested
graphs of software systems [68, 114].

4.1.2 Trees
A tree can represent many software entities, such as
subsystems, modules or classes, and relationships be-
tween them, such as inheritance or composition. More-
over, since trees have no cycles, unlike graphs, they are
generally easy to layout and interpret [3]. In general,
tree visualization techniques encode hierarchical infor-
mation using node-link diagrams, that is explicit relations,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on October 7, 2008 at 13:55 from IEEE Xplore. Restrictions apply.

7

(a) Cone Tree. Image courtesy of G. G.
Robertson, J. D. Mackinlay, and S. K. Card.
© Xerox PARC, Inc.

(b) Hierarchical Net 3D. Image courtesy of
M. Balzer and O. Deussen. © 2004 IEEE

(c) Using Circle Data Packing to represent
software structure

Figure 7. Different tree representations

but also containment representations, i.e., relations using
space-filling methods. For instance, Figure 7a shows a
node-link representation [117], Figure 7c a containment
representation [92] and Figure 7b a mixed approach [85].

A well-known node-link representation is Cone
Tree [117, 118]. This visualization technique for display-
ing hierarchical information in 3D can show more infor-
mation than 2D counterpart. The aim of this technique is
to allow a greater amount of information to be navigated
and displayed in an intuitive manner. Each sub-tree is
laid out as a cone with its root at the top of the cone
and the children along the cone base. In addition, nodes
are semi-transparent rectangles, and when one has been
selected, the tree rotates bringing the nodes on the path
to the currently chosen node closest to the user. These
nodes are also highlighted. Therefore, the animation and
interactive selection enable to create a focal point on
the structure and shift some of the cognitive load of
comprehending the structure to the human perceptual
system. However, one of the main problems of this
technique is that some of the nodes are occluded, so it is
mainly effective for comprehending the overall structure
of the tree.

An alternative to visualize trees, is containment or
enclosure. Unlike node link representations, containment
fills the space. In particular, 3D enclosure tree repre-
sentations, such as Information Cube [92], Circle Data
Packing [119] and Beamtrees [120], are loosely based upon
2D tree-map visualizations [121]. This kind of repre-
sentation is effective for showing quantitative variables
such as code metrics. For example, Information Cube is
a technique to visualize hierarchical information using
nested translucent cubes. Due to this transparency, the
user is allowed to view the contents of the cubes and
their children, while hiding inner information gradually.
Meanwhile, Circle Data Packing and BeamTrees, overlap
nodes to indicate a parent-child relationship resulting
more effective than nested representations for the extrac-
tion of global hierarchical information (see Figure 7c).

Finally, other approach called Hierarchical Net 3D [85]
mixes containment and explicit relationships to show the

static structure of object-oriented systems. The hierarchy
of packages, classes, methods and attributes is repre-
sented using nested hemispheres for packages, circles
for classes, and boxes for methods and attributes. Also,
relations between entities, such as dependencies between
classes, are represented by explicit connections. Further-
more, the visual complexity is reduced by adjusting the
transparency of object surfaces to the distance of the
viewpoint.

4.1.3 Abstract Geometrical Shapes

Many software visualization tools use traditional node-
link diagrams, but sometimes they present scalability or
layout problems. In an effort to explore new represen-
tations beyond graphs, several visualization techniques
were proposed using abstract three-dimensional geomet-
rical shapes [21, 23, 89, 122].

For example, sv3D [21, 82] is a tool that supports the
visualization of large-scale software to assist in compre-
hension and analysis tasks associated with maintenance
and re-engineering. It is based on SeeSoft [123] and 3D
File Maps [111] techniques. As a result of using the third
dimension, texture and abstraction mechanism, this tool
can represent higher dimensional data than previous
2D views. To illustrate, Figure 8a shows a container
that represents a source file, where each poly cylinder
represents a line of text from the source code associated

Figure 8. sv3D representation vs. 2D SeeSoft

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on October 7, 2008 at 13:55 from IEEE Xplore. Restrictions apply.

8

(a) Callstack and FileVis. Adapted from images cour-
tesy of P. Young and M. Munro. © 1998 IEEE

(b) 3D Spiral Stack. Bloom Visualization System
(http://www.cs.brown.edu). Image courtesy of S. P.
Reiss.

Figure 9. Abstract software representations

with the container. In addition, color is used to represent
control structure and height to represent nesting level.
On the other hand, a 2D Seesoft representation (Figure 8b)
of the same file can just represent nesting level using
colors.

FileVis [23] is another visualization tool that shows
code files represented individually as floating platforms
around a central point, which represents the connectivity
of the source code files (see Figure 9a). This system
not only shows structural information, but also run-time
information using a technique called Callstax to represent
the calling structure of C code with colored stacks of
blocks [124]. Similarly, another tool shows full stack
information of a trace using a 3D spiral representation to
encode time series data in a compact and space efficient
manner [122]. For instance, Figure 9b shows a sample
trace, where color indicates the routine being called,
height indicates stack depth, and width indicates total
run time.

4.2 Real World

Trying to find suitable representations of software, sev-
eral researchers proposed using real world metaphors.
These techniques use well-understood elements of the
world to provide insights about software. For example,
some of these techniques are based on a City abstrac-
tion [93–95, 125, 126]. In particular, CodeCity [126] repre-
sents classes as buildings located in city districts, which
in turn, represent packages (see Figure 10a). Another
visualization [52] that helps to gain an overview of a
software system is presented in Figure 10b. It is based
on a 3D landscape technique called ThemeScapes [127].
This visualization shows the relation “is called by” as 3D
landscape. Classes are distributed on the plane and their
relative distance is determined by their dependencies.
The shaded image and height plot encode the frequency
of calls. Two hot spots, corresponding to the two peaks
in the image, reveal the most called classes in the sys-
tem (String and ListIter). Moreover, there exist several
other systems based on real world metaphors, such as
ScenarioML, a requirements engineering tool for validat-
ing use cases using social interactions [75], and Metaballs,
a 3D modeling technique commonly used to represent
complex organic shapes and structural relationships in
biology and chemistry [32], among others.

(a) ArgoUML as 3D city. Image courtesy of R. Wettel and M.
Lanza. © 2007 IEEE

(b) 3D Landscape. Image courtesy of A. Telea and L. Voinea.
© 2004 IEEE.

Figure 10. Real world metaphors

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on October 7, 2008 at 13:55 from IEEE Xplore. Restrictions apply.

9

5 INTERACTION

Software visualization tools not only have to provide
effective visual representations, but also effective in-
teractions styles to ease exploration and help software
engineers to achieve insight. However, interacting with
3D worlds is more complex than with 2D WIMP inter-
faces (windows, icons, menus, pointing) [128]. In fact,
applications using 3D graphics are essentially differ-
ent from classical 2D applications and present many
challenges. For example, many tasks in 3D applications
require the user to manipulate object position and also
orientation involving actually six degrees of freedom.
Nevertheless, most users have only 2D input devices that
should be mapped to a 3D environment. In addition,
specialized methods are needed to navigate in a 3D
space, due to the increased degree of freedom [60].

In order to perform tasks, interaction techniques pro-
vide means for translating user actions into system ac-
tions. These interaction techniques can be classified into
several categories [54]:

• Direct Manipulation: Interaction techniques for ma-
nipulating objects provide means to select, position,
and rotate objects. Instead of controlling objects
through menus or dialogs, users can operate on
them. For instance, some systems provide a 3D ma-
nipulator or handle [64, 82], that is, an interactive 3D
object that helps to edit and operate on another ob-
ject. Other systems provide a virtual hand, a typical
approach used in immersive virtual environments,
which is in turn intuitive as simulates a real world
interaction [54, 83].

• User Navigation: A film can be used to derive a
basic metaphor to build 3D dimensional animated
graphics: the 3D geometric objects as the actors,
the display as the scenario, the lights and the cam-
era [46]. Specially, the notion of camera helps to
observe the scene, focusing the attention on a part of
it from a particular position. Also, the camera zoom
can be adjusted like the lens of a real camera. There-
fore, the user can manipulate (zoom, pan, rotate) the
camera interactively to navigate through the scene.
To be more precise, navigation is often the primary
task in 3D worlds and refers to the activity of
moving through them. In this way, navigation pro-
vides means to explore and view information from
different perspectives and with different degrees of
detail. Some systems enable users unconstrained
navigation through the information space [83, 85,
86], however simple 6 degree-of-freedom camera
movement through a 3D scene may not be effective
in these structures [129]. Others restrict movements
in order to lighten possible user disorientation [82,
117]. As an illustration, Cone Tree [117] employs
a cascading rotation of the 3D cones to bring the
desired child nodes to the front. In sv3d [21, 82] the
visualization can be panned and zoomed in or out,
but the position of the camera is fixed. In addition,

several systems provide semantic zoom: level of detail
changes as user inspects nodes closer. To be spe-
cific, as the viewpoint moves towards a particular
object, at a certain threshold, the low detailed object
representation will be replaced with a high detailed
representation [23, 91, 94]. For example, a system
may display a class using a box representation at a
high level of detail, and as the user gets closer it may
represent additional information such as methods,
variables, and software metrics.

• System control: The user sends commands to an
application. As many of the systems use traditional
2D devices, interaction is done using conventional
widgets. Also, other techniques include using 3D
widgets [130, 131], voice commands [132] and hand
gestures [73].

6 EVALUATION
Although research on visualization creates impressive
images, every design needs to be tested to determine
how useful it is for real people doing real tasks [133–
135]. In addition, any usability evaluation of a visu-
alization technique has to address both evaluations of
visual representations and interactions styles, because
exploration may help to achieve insight that a set of
fixed images can not [136, 137]. In the last years, interest
in the evaluation of information visualization systems
has grown incorporating human-centered principles of
interaction and usability [133–135, 138–141].

Most of the methods for usability evaluation were
developed for graphical user interfaces and adapted
or extended for information visualization. Some well-
known methods that have been applied are analytic
ones (i.e., expert reviews and cognitive walkthroughs)
and empirical evaluations (i.e., controlled experiments,
questionnaires, interviews and focus groups). In partic-
ular, see [142] for a detail description of these methods.
As a result of the lack of evaluation studies in the area
of 3D software visualization this section also reports 2D
evaluation studies.

Analytic evaluation involves the analysis of the user
interface to discover potential usability problems and
guide modifications during the development of the sys-
tem. For instance, Brown et al. reported valuable feed-
back in the application of expert reviews during the de-
velopment of a tool to visualize the execution of parallel
algorithms and Stasko et al. [143] evaluated an algo-
rithm animation system using cognitive walkthroughs.
Furthermore, several researchers performed theorical an-
alytic studies. For example, Sun and Wong [144] evalu-
ated two commercial UML tools using fourteen criteria
based on gestalt-theorical principles. Similarly Blackwell
et al. [145] analyzed and compared, using a theoreti-
cal framework (Cognitive Dimensions Framework), soft-
ware engineering notations. A number of taxonomies of
software visualization have been proposed as well [12–
16, 146], which in turn provide support for qualitatively
evaluation and comparison of software visualizations.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on October 7, 2008 at 13:55 from IEEE Xplore. Restrictions apply.

10

On the other hand, empirical evaluation methods col-
lect usability data by observing or measuring activities
of end users interacting with a prototype or an actual
implementation of the system. To illustrate, Purchase
et al. [147] reported an empirical study of variations
in UML notation, Lange and Chaudron [148] evaluated
new views to support comprehension of UML models,
and Yusuf et al. [149] and Guehénéuc [150] assessed
how people comprehend UML class diagrams using
eye-tracking equipment. As mentioned before, Irani and
Ware [18, 151] compared 2D UML diagrams to diagrams
using 3D primitives called geons and they found out that
users can identify substructures and relationship types
with much lower error rates for geon diagrams than for
UML diagrams. Also, Marcus et al. [152] conducted a
usability study to improve a 3D visualization system
called sv3D. Despite the overall positive impression that
users have of this system, this study reveals their inher-
ent difficulty to adapt to a new technology (3D). Storey et
al. [153] evaluated the usability of three user interfaces
of a reverse engineering tool by observing users com-
pleting a set of software maintenance tasks, followed
by a questionnaire and an interview. Also, Jones and
Harrold [154] evaluated and compared a technique for
fault localization (Tarantula) with others techniques. In
addition, Alwis et al. [155] compared three specialized
software exploration tools. Finally, several surveys on
software visualization based on questionnaires are re-
ported [66, 156].

Indeed, there is a lack of evaluation studies in software
visualization research [7] and specially in 3D software
visualization. In fact, it is necessary to conduct user
studies in order to gain insight, e.g., under what types of
tasks and conditions a particular technique is effective.
This knowledge is critical because different analytic tasks
require different visualization techniques [135]. Further-
more, many of the empirical studies generally include
only simple tasks [139]. Additionally, researchers had
begun to identify new areas to improve focusing on
obstacles that difficult higher-level analytic tasks [157],
and new ways to measure and evaluate visualizations
based on insight [158].

7 DEVELOPMENT TOOLS

Information and software visualization applications are
difficult to build, requiring mathematical and program-
ming skills to implement complex layout algorithms and
dynamic graphics [51]. Moreover, the development of
3D graphics applications is a hard work that consumes
much more time than conventional 2D graphics appli-
cations, requiring specific knowledge about 3D geom-
etry operations as well [41, 46]. Although 3D graphics
libraries, such as OpenGL [159], provide a complete
application programmer interface (API), they demand
significant effort to create even simple visualizations. In
particular, most of these APIs require that the applica-
tion developer cultivate a thorough understanding of

a complex programming model, which includes matrix
operations, 3D geometry and lighting models [46].

For that reason, several toolkits and frameworks were
developed to alleviate these problems. In fact, object-
oriented frameworks are a powerful technique to build
applications that increases the quality of the software
and productivity. In short, a framework represents a
reusable design for a specific software domain. To be
more precise, using a framework implies the reuse of
all the control structure codified in its classes and the
production of only the specific code that will be called
by the framework. Hence, different applications can be
obtained by reusing code and the general design of
the application [160]. For example, several frameworks
to build 3D graphics applications have been devel-
oped: GRAMS [43], GROOP [46], IRIS Inventor [41], and
Java3D [42], among others. These frameworks, undoubt-
edly, make the development of 3D graphics applica-
tions easier. Similarly, specific frameworks and toolk-
its for virtual environments (VE) or distributed virtual
environments (DVE) have been also proposed: VR DI-
VERSE [161], Juggler [162], and a service and component-
based framework for DVE [163], among others. In addi-
tion, other approaches to develop 3D graphics include
3D modeling languages such as VRML [48] and its
successor X3D [47]. These technologies provide a way
to model 3D scenes using a description language. In
particular, X3D promises to be more successful, due to
flexible XML-encoding, modularization through profiles
and smarter 3D browsers. Moreover, on the top of X3D
and XML, Contigra [45] introduced a component-based
approach to construct interactive, three-dimensional ap-
plications, either stand-alone or web-based.

Specially, in the area of information visualization, there
also exist several toolkits and frameworks. Some of them
address just 2D visualizations [51, 164], but others pro-
vide 3D graphics capabilities as well [28, 165, 166]. More-
over, software visualization frameworks have been also
developed. In general, these frameworks support differ-
ent metaphors, several layout algorithms, and binding
functions. For instance, Mondrian [167] and Evolve [168]
display 2D visualizations, Effects renders UML diagrams
in three dimensions [169], Luthier [170] helps to visu-
alize object-oriented applications and frameworks, and
BLOOM [122] provides support for Box trees, File maps,
different graph layouts and Point maps. Additionally,
VOGUE [40] concentrates on integrating a number of 2D
views to create a more powerful 3D visualization. This
framework has been applied in a number of different
visualization scenarios: parallel Linda programs, version
control and module management, and a C++ class li-
brary browser. Other framework, SoftVision [52], sup-
ports interactive visualization (2D / 3D) and exploration
of the structure, properties, and behavior of component-
based systems. Using this framework, developers can
freely specify both, the component data to be examined
(i.e., what they want to visualize) and how they want to
view the data, by assembling pre-packaged components

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on October 7, 2008 at 13:55 from IEEE Xplore. Restrictions apply.

11

such as data editing, filtering, rendering, and user ac-
tions. Finally, vizz3D [49, 171] is a framework for creating
new software visualizations that enables to configure on-
line views and their mappings instead of hand-coding
them.

Researchers also have begun to explore new ways and
models to create software visualizations. For example,
Bull et al. [172] proposed a model driven approach to
assist in the creation of highly customizable interfaces
for software visualization. Also, Itoh and Tanaka [173]
proposed a component-based framework for generating
simple 3D applications that aid users in the use of
Web services without the need for programming. The
framework uses the 3D media system IntelligentBox as
its platform [174]. Moreover, an aspect that is gaining
attention, is the integration of visualization tools into
development environments (e.g., Eclipse) that developers
use every day [169, 175, 176].

8 3D SOFTWARE VISUALIZATION PROJECTS

This section reviews several 3D software visualization
systems. It reports on some representative tools for doing
different tasks, e.g., algorithm animation, software con-
figuration management, software maintenance and com-
prehension, and requirements validation, among others.
In addition, Table 2 summarizes the main characteris-
tics of the reported tools, based on categories defined
by several software taxonomies [14, 15, 146]. These cat-
egories include: intent (the purpose of the tool / task
supported), audience (who will use the visualization),
information (what aspects of the software are to be repre-
sented), presentation (characteristics of the output of the
visualization), interaction (how the user interacts with
visualization), effectiveness (evaluation of the tool). Other
relevant information such as associated development tool
and year of creation is also reported.

8.1 Algorithm Animation
Algorithm animation visualizes the behavior of an al-
gorithm (data and operations). In fact, animating an
algorithm has proven to be useful for education and
for research in the design of algorithms [178, 184]. For
example, well-known algorithm animation systems such
as Polka [20] and Zeus [71] were extended with 3D graph-
ics. Also, JCAT system extends previous work (Zeus) and
provides support for web-based algorithm animation in
3D [178]. In particular, GASP, a domain specific anima-
tion system, explored 3D animations of computational
geometry algorithms [177]. As a consequence of restrict-
ing the domain, this system requires much less effort
to build animations. To illustrate, Figure 11 shows the
animation of a geometric algorithm.

As a result of using the third dimension, it is pos-
sible to capture a history of execution (i.e., elementary
sorting using classical sticks view extended in z-axis
to represent progress), to integrate multiple 2D views
to reduce cognitive load (i.e., heapsort 3D view that

Figure 11. Gasp. Image courtesy of A. Tal and D. Dobkin.
© 1995 IEEE

combines a tree view and a sticks view), to display ad-
ditional information (i.e., shortest-path animation where
the third dimension provides state information about the
algorithm as it operates on a data structure represented
in 2D), and to visualize inherent 3D domains (i.e., 3D
geometric algorithms) [20, 177, 185].

8.2 Software Evolution

Usually a software system changes over time because
new services are added, bugs are removed, or the
technologies get obsolete. In order to make informed
decisions about future developments, it is essential to
quickly grasp a comprehensive view of the system evo-
lution [31]. For instance, VRCS [77] helps to do version
control and module management using 3D graphics.
Each version history is displayed as a 2D tree by taking
the z-axis as time. Files (trees) in the same module
are placed physically near when looked along z-axis.
In addition, module structure and version history are
integrated in one 3D visualization. Also, a certain release
of the system is represented as a sphere, and versions

Figure 12. 3D VRCS representation. Image courtesy of
H. Koike and H. Chu. © 1997 IEEE

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on October 7, 2008 at 13:55 from IEEE Xplore. Restrictions apply.

12

System Audience Information Presentation Interaction Effectiveness Development Year

Algorithm Animation
Polka [20] Designers

Students
Algorithms, i.e., sort

and graph
2D adapted views Position and direction

of viewpoint
Several examples
Student courses

Own Toolkit in
C++

1993

Zeus [71] Designers
Students

Algorithms, i.e., sort
and graph

2D adapted views Zoom, pan, rotate Several examples
Student courses

PexLib 1993

Gasp [177] Designers
Students

Geometric
algorithms

3D world VCR metaphor
Zoom and rotate

Several examples
Student courses

Open Inventor 1995

JCAT [178] Designers
Students

Algorithms, i.e., sort
and graph

2D adapted views
Web-based

Zoom, pan, rotate Several examples
Student courses

Java3D 2001

Software Evolution
VRCS [77] Developers

Maintainers
Re-engineer

Versions &
relationships
between file

versions

3D integrated view of
module structure and

version history

Select versions and
files for check in /out

Comparative
experiments reveal
faster use than rcs

[179]

3D SV frame-
work (VOGUE)

1997

Release
History [31]

Developers
Maintainers
Re-engineer

System structure
evolution

3D graphs - z axis
time

Zoom, pan, rotate Case study (13
MLOC)

VRML 1999

EPOsee [180] Developers
Maintainers
Re-engineer

dependencies
between software

components

Partially 3D
3D bar chart

Fixed camera Several examples
(i.e. Mozilla)

Java 2005

Software maintenance and comprehension
Code level

sv3d [21] Developers
Maintainers
Re-engineer

Source code and
related attributes.

Abstract shapes
Metrics mapped to

visual attributes

Zoom, pan, rotate
3D handler

Several examples
Usability studies

[152]

3D frame-
work (OpenIn-

ventor)

1997

Detailed design
FileVis [23] Maintainers

Re-engineer
C Source Code Abstract Shapes. 3D

Structure overview,
metrics and control

Zoom, pan, rotate.
Adaptable Level of

detail.
VR environment

Guidelines for
designing software

visualizations

VR toolkit 1998

Code
Mapping [83]

Developers C/C++ source files. 3D Graph. Immersive
environment

Zoom, pan, rotate.
Virtual hand

Informal field use VR toolkit 2004

Trace
Crawler [181]

Developers
Maintainers
Re-engineer

classes and
inheritance

object creations and
message sends

3 D Graph. Structural
and behavior

integrated view

Zoom, pan, rotate
Details on-demand.

Two case studies (
700 classes and

6000 events)

3D frame-
work (Jun)

2005

Imsovision [110] Developers
Maintainers

Classes and
inheritance

relationships

Abstract shapes /
Graph

VR environment Analyzing the
seven high level

tasks of IV

VRML 2001

Unified
City [125]

Managers
Developers
Maintainers

C/C++ / additional
software analysis

City metaphor
unified single view

Zoom, pan, rotate Informal use and
few examples

3D SV frame-
work (Vizz3D)

2007

Geons3D [18] Developers
Maintainers

UML Class Diagram Nodes and links are
replaced with 3D
primitives (geons)

Work focuses just on
graphical

representations

Experiments show
lower error than
UML diagrams.

OpenGL 2003

X3D-UML [84] Developers
Maintainers

UML Class Diagram 3D graph Zoom, pan, rotate. Informal use and
few examples

X3D 2005

Architectural level
ArchView [90] Software

architect
Re-engineer

Software
Architecture.

Call-tree / part-of
from source

Graph and Lego
Bricks

Zoom, pan, rotate. Small example
application

VRML 1998

Abacus [91] Software
architect

Re-engineer

Sub-system and
transaction view,

and metrics

Graph
Metrics mapped to

visual attributes

Zoom, pan , rotate
Adaptable Level of

detail

A case study (300k
LOC)

Not
documented

2002

Requirements Validation
ScenarioML [75] Stakeholders

(even
non-experts)

Scenarios and use
cases.

Social interactions of
agents in 3D

Fixed Camera Exploratory study OpenGL 2006

ReqViz3D [74] Stakeholders
(even

non-experts)

Z Specifications 3D World
Scripting language

Zoom, pan, rotate Informal use and
few examples

3D Frame-
work (Java3D)

2005

PNVis [182] Stakeholders
(even

non-experts)

Petri nets 3D World Zoom, pan, rotate Informal use and
few examples

Java 3D 2004

Other purposes
Starmine [79] System Ad-

ministrators
Cyber attacks 3D multiple metaphor

that integrates
different views

Fixed Camera Monitor univer-
sity/enterprise

networks in Japan.

3D Frame-
work (Java3D)

2006

Ontosphere [183] Developers Ontology
Web services

Graph Zoom, pan, rotate Few examples Java 3D 2006

Table 2
Visualization Tools Summary

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on October 7, 2008 at 13:55 from IEEE Xplore. Restrictions apply.

13

composing the release are connected by links (see Fig-
ure 12). Similarly, Gall et al. [31] visualized the structure
of a system using 3D graphs and represented the histor-
ical information by using the third dimension as time.
Another tool (cv3D) [78] visualizes information extracted
from CVS repositories based on visualization techniques
provided by sv3D [21, 82]. At last, other tool that partially
supports 3D graphics is EPOsee [180]. This tool provides
a 3D bar chart to find dependencies between software
components. The third dimension is used to encode
additional information of dependencies.

8.3 Software Maintenance and Comprehension

Many 3D visualization tools help software engineers and
developers to understand how software works. These
tools focus on different level of abstractions (i.e., source
code [21, 82], detailed design [40, 52, 84–88] and soft-
ware architectures [23, 90, 91]) and on different software
views (i.e., software structure and/or its run-time behav-
ior). For example, sv3D [21, 82] supports the visualization
of large-scale software to assist in comprehension and
analysis tasks at code level. This tools represents a line of
text from the source code using poly cylinders. Different
attributes, such as color, position, height and depth can
be associated with software properties and line oriented
metrics as well (e.g., color may reflect control structure
type and height nesting level).

In addition, many software visualization tools provide
an overview of structured or object-oriented systems.
For instance, FileVis [23] visualizes systems developed
in C using an abstract geometric representation, and
Code Mapping [83] uses a 3D graph representation, where
nodes representing software artifacts (procedures, vari-
ables, calls or data accesses) are mapped to spheres
and relationships between software artifacts to lines.
In particular, TraceCrawler [86, 181] helps to understand
both structure (i.e., classes and inheritance relationships)
and behavior of an object-oriented system (i.e., object
creations and message sends). This visualization dis-
plays the static structure of an application using a graph
representation (i.e., classes (nodes) and inheritance re-
lationships (edges)). On the other hand, the application
dynamic is represented as object instantiations (boxes)
and message sends between objects (connectors). The
boxes are displayed as towers of instances on top of
their defining classes in the class hierarchy view (see
Figure 13). The user can map several metrics to visual
attributes of the nodes (i.e., width, length and color).
Another system that proposes a unified single visual-
ization, although based on a real world metaphor, is
Unified City [125]. This unified single-view visualization
supports different kinds of tasks: it allows to see and
communicate current development, quality, and costs
of a software system quickly (Figure 14). Also, other
approach investigates how to improve the interpretation
of node-links diagrams using three-dimensional shaded
elements instead of simple lines and outlines [18].

Figure 13. TraceCrawler. Adapted from images courtesy
of O. Greevy, M. Lanza, and C. Wysseier. © 2005 IEEE

Finally, tools such as ArchView [90] and ABACUS [91,
186], focus on architectural abstractions. For example,
ABACUS is a tool that creates structural abstractions of
software architectures as 3D graph layouts for software
maintenance, as seen in Figure 15. This visualization
shows architectural structures and relationships present
in the code, and uses the color (shading) of the spheres
and the size of the cylinders to show metrics-based infor-

Figure 14. Unified City. Image courtesy of T. Panas, T.
Epperly, D. Quinlan, A. Saebjornsen, and R. Vuduc. ©
2007 IEEE.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on October 7, 2008 at 13:55 from IEEE Xplore. Restrictions apply.

14

Figure 15. ABACUS: 3D Overall Enterprise Architecture
View. The technique is "international patent pending" and
has been implemented through the ABACUS product
available from Avolution (www.avolution.com.au). Image
courtesy of K. Dunsire, T. O’Neill, M. Denford, and J.
Leaney. © 2005 IEEE

mation (e.g., Lines of Code (LOC), Lines of Comments,
Percent Comments, Executable Statements or Complex-
ity).

In conclusion, the third dimension helps to increase
information density [82, 86, 125], integrates multiples
views (i.e., structure and behavior) [86, 125] and facili-
tates perception [18].

8.4 Requirements Validation
A correct definition of the requirements of a system
has a great impact on the rest of the development
process. Thus, to assist software engineers to firm up
and explore requirements, several tools were proposed
using 3D graphics as a way to validate them as early
as possible. For example, PNVIS [76, 182] provides a 3D
visualization that helps to analyze the behavior of a
system modeled as Petri nets. ScenarioML [75] models
a collection of scenarios as social interactions between
agents by assigning a character to each actor and entity
in these scenarios. During their interaction, actors and
agents move to face each other, and speak their actions

≤ ≤

Figure 16. ReqViz3D. Image courtesy of CRL Publishing
Ltd. © 2005

Figure 17. OntoSphere3D: a multidimensional visualiza-
tion tool for ontologies. Image courtesy of A. Bosca and
D. Bonino. © 2006 IEEE

as a means of expressing their accomplishment. Finally,
ReqViz3D [74] is a tool to help users in the process of
requirements understanding and validation using 3D
visualization techniques. This tool allows specifying the
requirements in the formal language Z, defining a graph-
ical representation of them and creating a 3D animated
visualization of their execution through which the users
can validate them (see Figure 16). To sum up, the applica-
tion of the third dimension in this area helps to provide
familiarity, realism and real world representations [74,
75].

8.5 Other Purposes
Software visualization has also been applied for other
purposes such as ontology visualization and semantic
web [80, 183], and cyber attacks [79]. For example, Bosca
et al. [80, 183] proposed a solution (Ontosphere3D) for
the visualization and exploration of ontologies using
a 3-dimensional space, as shown in Figure 17. They
also reused the visualization component for supporting
semantic web applications. Lastly, Starmine [79] is a cyber
attack monitoring system that helps system administra-
tors to analyze threats and make a right decision. Using
3D graphics, the system integrates different typical views
of cyber threats (see Figure 18): geographical view (to
show statistical information of cyber attacks, and ge-
ographical location of the source and the destination
of each attack), logical view (to see automatic attacks
such as scans or Internet worms) and temporal view (to
understand transitions of the attacks).

9 CONCLUSIONS

The trend towards more and more visual information is
accelerating. There is an explosion of new software visu-
alization techniques that improve software abstractions,
create new representations based on real or abstract
metaphors, make better layout algorithms, or develop

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on October 7, 2008 at 13:55 from IEEE Xplore. Restrictions apply.

15

Figure 18. Visualizing cyber attacks

new navigation mechanisms to browse through complex
software representations. Indeed, current advances in
visualization are providing new ways to look at soft-
ware helping software engineers to comprehend, design
and analyze software. However, substantial research is
still needed to make software tools useful and not just
research prototypes. Considering current approaches,
discussions and challenges in information and software
visualization, and our own experiences as well, we have
identified the following areas of research and improve-
ment:

• Usability: Software developers want to do their
development as quickly and as better as possible.
However, many approaches just focus on creating
new visualization techniques with little attention on
user needs and capabilities. In fact, human factors
should play an important role in the design and
evaluation of software visualization tools [187].

• Computer supported collaborative visualization:
Software projects are inherently cooperative requir-
ing many stakeholders to coordinate their activities
to produce a software system. In particular, dur-
ing the last years, software development has also
become a geographically distributed activity [188].
Thus, research in collaborative visualization [189]
with focus on software may help to improve soft-
ware engineering process. For example, current
technology provided by 3D collaborative virtual
worlds for gaming and social interaction may sup-
port new ways of working, learning and visualizing
software [100, 190].

• Integration: Many 3D software visualization sys-
tems have been already produced, most of them
academic research projects. However, effective SV
techniques should be integrated into real working
environments, such as Eclipse [176, 180].

• New display technologies: As new devices such
as high-resolution displays [191] or mobile de-
vices [192] became more common, new techniques
must be created or adapted to support device capa-
bilities [134, 193, 194]. For example, take advantage

of large screens to simultaneously display more
data, but taking into account that some of it will
be outside the user’s focal visual field.

• Widely availability of 3D advanced displays and
interactive facilities: One of the main difficulties of
3D is navigation caused by the discrepancy of using
2D screens and 2D input devices to interact with a
3D world, combined with missing motion and stereo
cues [38, 103, 106]. Once we turn into post-WIMP in-
terfaces and adopt specialized hardware (e.g., stereo
views, haptic displays, gaze, and motion tracking),
3D techniques may have a substantial effect on
software visualization [7].

ACKNOWLEDGEMENTS
The authors would like to thank all the peo-
ple and institutions who have allowed them to
use many of the figures present in this paper.
The anonymous reviewers deserve special thanks for
their effort making so detailed reviews. Finally, we
thank the members of the ISISTAN Research In-
stitute (http://www.exa.unicen.edu.ar/isistan/) of the
UNICEN University at Tandil, Argentina.

REFERENCES

[1] R. Mili and R. Steiner, “Software engineering - introduction,”
in Revised Lectures on Software Visualization, International Seminar.
London, UK: Springer-Verlag, 2002, pp. 129–137.

[2] M. E. Tudoreanu, “Designing effective program visualization
tools for reducing user’s cognitive effort,” in SoftVis ’03: Proceed-
ings of the 2003 ACM Symposium on Software visualization. New
York, NY, USA: ACM Press, 2003, pp. 105–ff.

[3] S. Card, J. MacKinlay, and B. Shneiderman, Eds., Readings in In-
formation Visualization: Using Vision to Think. Morgan Kaufmann
Publishers, 1998.

[4] C. Ware, Information visualization: perception for design. San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc. - Elsevier,
2004.

[5] C. Chen, Information Visualization: Beyond the Horizon. Secaucus,
NJ, USA: Springer-Verlag New York, Inc., 2006.

[6] J. T. Stasko, M. H. Brown, and B. A. Price, Eds., Software Visu-
alization: Programming as a Multimedia Experience. Cambridge,
MA, USA: MIT Press, 1997.

[7] S. Diehl, Software Visualization: Visualizing the Structure, Behaviour,
and Evolution of Software. Secaucus, NJ, USA: Springer-Verlag
New York, Inc., 2007.

[8] M. L. Staples and J. M. Bieman, “3-D visualization of software
structure,” Advances in Computer, vol. 49, 1999.

[9] K. Zhang, Ed., Software Visualization: From Theory to Practice.
Norwell, MA, USA: Kluwer Academic Publishers, 2003.

[10] D. Gracanin, K. Matkovic, and M. Eltoweissy, “Software visual-
ization,” Innovations in Systems and Software Engineering, A NASA
Journal, vol. 1, no. 2, pp. 221–230, Sep. 2005.

[11] C. Knight, “System and software visualisation,” in Handbook of
Software Engineering and Knowledge Engineering. World Scientific
Publishing Company, 2000.

[12] B. A. Myers, “Visual programming, programming by example,
and program visualization: a taxonomy,” in CHI ’86: Proceedings
of the SIGCHI Conference on Human factors in Computing Systems.
New York, NY, USA: ACM Press, 1986, pp. 59–66.

[13] G.-C. Roman and K. C. Cox, “A taxonomy of program visual-
ization systems,” Computer, vol. 26, no. 12, pp. 11–24, 1993.

[14] B. Price, R. Baecker, and I. Small, “A principled taxonomy of
software visualization,” Journal of Visual Languages and Comput-
ing, vol. 4, no. 3, pp. 211–266, 1993.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on October 7, 2008 at 13:55 from IEEE Xplore. Restrictions apply.

16

[15] J. I. Maletic, A. Marcus, and M. Collard, “A task oriented view
of software visualization,” in Proceedings of the 1st Workshop
on Visualizing Software for Understanding and Analysis (VISSOFT
2002). IEEE, Jun. 2002, pp. 32–40.

[16] K. Gallagher, A. Hatch, and M. Munro, “A framework for soft-
ware architecture visualization assessment,” in VISSOFT. IEEE
CS, Sep. 2005, pp. 76–81.

[17] I. Spence, “Visual psychophysics of simple graphical elements,”
Journal of Experimental Psychology: Human Perception and Perfo-
mance, vol. 4, no. 16, pp. 683–692, 1990.

[18] P. Irani and C. Ware, “Diagramming information structures using
3d perceptual primitives,” ACM Trans. Comput.-Hum. Interact.,
vol. 10, no. 1, pp. 1–19, 2003.

[19] R. Brath, M. Peters, and R. Senior, “Visualization for communi-
cation: The importance of aesthetic sizzle,” in IV ’05: Proceedings
of the Ninth International Conference on Information Visualisation
(IV’05). Washington, DC, USA: IEEE Computer Society, 2005,
pp. 724–729.

[20] J. T. Stasko and J. F. Wehrli, “Three-dimensional computation
visualization,” in Proc. IEEE Symp. Visual Languages, VL, E. P.
Glinert and K. A. Olsen, Eds. IEEE Press, 24–27 Aug. 1993, pp.
100–107.

[21] A. Marcus, L. Feng, and J. I. Maletic, “3d representations for
software visualization,” in SoftVis ’03: Proceedings of the 2003
ACM symposium on Software visualization. New York, NY, USA:
ACM, 2003, pp. 27–ff.

[22] B. Shneiderman, “Why not make interfaces better than 3d real-
ity?” IEEE Comput. Graph. Appl., vol. 23, no. 6, pp. 12–15, 2003.

[23] P. Young and M. Munro, “Visualizing software in virtual reality,”
in IWPC ’98: Proceedings of the 6th International Workshop on
Program Comprehension. Washington, DC, USA: IEEE Computer
Society, 1998, p. 19.

[24] E. R. Tufte, Visual Explanations: Images and Quantities, Evidence
and Narrative. Cheshire, CT, USA: Graphics Press, 1997.

[25] M. B. McGrath and J. R. Brown, “Visual learning for science and
engineering,” IEEE Comput. Graph. Appl., vol. 25, no. 5, pp. 56–63,
2005.

[26] D. M. Butler, J. C. Almond, R. D. Bergeron, K. W. Brodlie, and
A. B. Haber, “Visualization reference models,” in Proceedings of
the Visualization ’93 Conference, G. M. Nielson and D. Bergeron,
Eds. San Jose, CA: IEEE Computer Society Press, Oct. 1993, pp.
337–342.

[27] I. Russell M. Taylor, “Practical scientific visualization examples,”
SIGGRAPH Comput. Graph., vol. 34, no. 1, pp. 74–79, 2000.

[28] K. Einsfeld, A. Ebert, and J. Wolle, “Hannah: A vivid and flexible
3d information visualization framework,” in IV ’07: Proceedings of
the 11th International Conference Information Visualization. Wash-
ington, DC, USA: IEEE Computer Society, 2007, pp. 720–725.

[29] M. Tory and T. Moller, “Rethinking visualization: A high-level
taxonomy,” in INFOVIS ’04: Proceedings of the IEEE Symposium on
Information Visualization (INFOVIS’04). Washington, DC, USA:
IEEE Computer Society, 2004, pp. 151–158.

[30] E. Carson, I. Parberry, and B. Jensen, “Algorithm explorer:
visualizing algorithms in a 3d multimedia environment,” in
SIGCSE ’07: Proceedinds of the 38th SIGCSE technical Symposium
on Computer science education. New York, NY, USA: ACM Press,
2007, pp. 155–159.

[31] H. Gall, M. Jazayeri, and C. Riva, “Visualizing software release
histories: The use of color and third dimension,” in ICSM
’99: Proceedings of the IEEE International Conference on Software
Maintenance. Washington, DC, USA: IEEE Computer Society,
1999, p. 99.

[32] J. Rilling and S. P. Mudur, “On the use of metaballs to visually
map source code structures and analysis results onto 3d space,”
in WCRE ’02. Washington, DC, USA: IEEE Computer Society,
2002, p. 299.

[33] M. Tory, A. E. Kirkpatrick, and M. S. Atkins, “Visualization
task performance with 2d, 3d, and combination displays,” IEEE
Transactions on Visualization and Computer Graphics, vol. 12, no. 1,
pp. 2–13, 2006, member-Torsten Moller.

[34] S. Baumgartner, A. Ebert, M. Deller, and S. Agne, “2d meets
3d: a human-centered interface for visual data exploration,” in
CHI ’07: CHI ’07 extended abstracts on Human factors in computing
systems. New York, NY, USA: ACM Press, 2007, pp. 2273–2278.

[35] E. R. Tufte, The Visual Display of Quantitative Information.
Cheshire, Connecticut, U.S.A.: Graphics Press, 1983.

[36] J. Wen, “Exploiting orthogonality in three dimensional graphics
for visualizing abstract data,” Brown University - Department
of Computer Science, Technical Report CS-95-20, Jun. 1995.

[37] G. Robertson, S. K. Card, and J. D. Mackinlay, “Information
visualization using 3D interactive animation,” Communications
of the ACM, vol. 36, no. 4, pp. 57–71, Apr. 1993.

[38] C. Ware and G. Franck, “Evaluating stereo and motion cues for
visualizing information nets in three dimensions,” ACM Trans.
Graph., vol. 15, no. 2, pp. 121–140, 1996.

[39] J. D. Mackinlay, G. G. Robertson, and S. K. Card, “The perspec-
tive wall: Detail and context smoothly integrated,” in Proceed-
ings of ACM CHI’91 Conference on Human Factors in Computing
Systems, ser. Information Visualization, 1991, pp. 173–179.

[40] H. Koike, “The role of another spatial dimension in software
visualization,” ACM Transactions on Information Systems, vol. 11,
no. 3, pp. 266–286, 1993.

[41] P. Strauss, “Iris inventor, a 3d graphics toolkit,” in OOPSLA ’93,
1993, pp. 192–200.

[42] H. Sowizral, K. Rushforth, and M. Deering, The Java 3D API
Specification. Addison-Wesley, 1998.

[43] E. Parris and K. William, “Application graphics modeling sup-
port through object orientation,” IEEE Computer, vol. 25, no. 10,
pp. 84–90, 1992.

[44] S. P. Reiss, “An engine for the 3d visualization of program
information,” Journal of Visual Languages and Computing, vol. 6,
no. 3, pp. 299–323, 1995.

[45] R. Dachselt, M. Hinz, and K. Meissner, “Contigra: an xml-based
architecture for component-oriented 3d applications,” in Web3D
’02. New York, NY, USA: ACM Press, 2002, pp. 155–163.

[46] K. Larry and W. Wayne, “Groop: An object oriented toolkit for
animated 3d graphics,” in OOPSLA’93, 1993, pp. 309–325.

[47] Web3D-Consortium, “Communicating with real-time 3d across
applications, networks, and xml web services,” http://www.
web3d.org, 2005.

[48] VRML-Consortium, “The virtual reality modeling language,”
http://www.web3d.org/technicalinfo/specifications/vrml97/
index.htm, 1997.

[49] T. Panas, R. Lincke, and W. Lowe, “Online-configuration of
software visualizations with vizz3d,” in SoftVis ’05: Proceedings
of the 2005 ACM Symposium on Software Visualization. New York,
NY, USA: ACM Press, 2005, pp. 173–182.

[50] J. F. Hopkins and P. A. Fishwick, “The rube framework for
personalized 3-d software visualization,” in Revised Lectures
on Software Visualization, International Seminar. London, UK:
Springer-Verlag, 2002, pp. 368–380.

[51] J. Heer, S. K. Card, and J. A. Landay, “prefuse: a toolkit for
interactive information visualization,” in CHI ’05: Proceedings of
the SIGCHI Conference on Human factors in Computing Systems.
New York, NY, USA: ACM Press, 2005, pp. 421–430.

[52] A. Telea and L. Voinea, “A framework for interactive visualiza-
tion of component-based software,” in EUROMICRO ’04: Pro-
ceedings of the 30th EUROMICRO Conference (EUROMICRO’04).
Washington, DC, USA: IEEE Computer Society, 2004, pp. 567–
574.

[53] K. P. Herndon, A. van Dam, and M. Gleicher, “The challenges of
3d interaction: a chi ’94 workshop,” SIGCHI Bull., vol. 26, no. 4,
pp. 36–43, 1994.

[54] D. A. Bowman, E. Kruijff, J. J. L. Jr., and I. Poupyrev, “An
introduction to 3D user interface design,” Presence, vol. 10, no. 1,
pp. 96–108, 2001.

[55] C. Plaisant, J. Grosjean, and B. B. Bederson, “Spacetree: Support-
ing exploration in large node link tree, design evolution and
empirical evaluation,” infovis, vol. 00, p. 57, 2002.

[56] A. Cockburn and B. McKenzie, “Evaluating the effectiveness
of spatial memory in 2d and 3d physical and virtual environ-
ments,” in CHI ’02: Proceedings of the SIGCHI Conference on Human
factors in Computing Systems. New York, NY, USA: ACM, 2002,
pp. 203–210.

[57] A. J. Hanson, E. A. Wernert, and S. B. Hughes, “Constrained
navigation environments,” dagstuhl, vol. 00, p. 95, 1997.

[58] D. A. Bowman and L. F. Hodges, “User interface constraints
for immersive virtual environment applications,” Graphics, Vi-
sualisation and Usability Center, Georgia Institute of Technology,
USA, Tech. Rep. 95-26, 1995.

[59] S. Hughes and M. Lewis, “Robotic camera control for remote
exploration,” in CHI ’04: Proceedings of the SIGCHI Conference on

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on October 7, 2008 at 13:55 from IEEE Xplore. Restrictions apply.

17

Human Factors in Computing Systems. New York, NY, USA: ACM
Press, 2004, pp. 511–517.

[60] A. Ahmed and P. Eades, “Automatic camera path generation
for graph navigation in 3d,” in APVis ’05: Proceedings of the 2005
Asia-Pacific Symposium on Information Visualisation. Darlinghurst,
Australia, Australia: Australian Computer Society, Inc., 2005, pp.
27–32.

[61] R. P. Darken and J. L. Sibert, “A toolset for navigation in virtual
environments,” in Proceedings of the ACM Symposium on User
Interface Software and Technology, 1993, pp. 157–165.

[62] R. Ingram and S. Benford, “Legibility enhancement for informa-
tion visualisation,” in IEEE Visualization ’95, G. M. Nielson and
D. Silver, Eds. IEEE Computer Soc. Press, 29–30 Oct. 1995, pp.
209–216.

[63] N. G. Vinson, “Design guidelines for landmarks to support
navigation in virtual environments,” in CHI ’99: Proceedings of
the SIGCHI Conference on Human factors in Computing Systems.
New York, NY, USA: ACM Press, 1999, pp. 278–285.

[64] M. C. Chuah, S. F. Roth, J. Mattis, and J. Kolojejchick, “SDM:
Selective dynamic manipulation of visualizations,” in Proceedings
of the ACM Symposium on User Interface Software and Technology,
ser. 3D User Interfaces, 1995, pp. 61–70.

[65] K. Mullet, D. L. Schiano, G. Robertson, J. Tesler, B. Tversky,
K. Mullet, and D. J. Schiano, “3d or not 3d: More is better or
less is more?” in Proceedings of ACM CHI’95 Conference on Human
Factors in Computing Systems, ser. Panels, vol. 2, 1995, pp. 174–
175.

[66] R. Koschke, “Software visualization for reverse engineering,” in
Software Visualization, S. Diehl, Ed. Springer Verlag, 2002, vol.
2269 of LNCS State-of-the-Art Survey.

[67] S. Diehl, Ed., Software Visualization. Springer Verlag, 2002, vol.
2269 of LNCS State-of-the-Art Survey.

[68] G. Parker, G. Franck, and C. Ware, “Visualization of large nested
graphs in 3D: Navigation and interaction,” J. Vis. Lang. Comput,
vol. 9, no. 3, pp. 299–317, 1998.

[69] Bentley and Kernighan, “System for algorithm animation,” Com-
put Syst, vol. 4, no. 1, pp. 5–30, 1991.

[70] G.-C. Roman, K. C. Cox, C. D. ox, and J. Y. Plun, “Pavane: A sys-
tem for declarative visualization of concurrent computations,”
Journal of Visual Languages and Computing, vol. 3, pp. 161–193,
1992.

[71] M. H. Brown and M. A. Najork, “Algorithm animation using 3d
interactive graphics,” in UIST ’93: Proceedings of the 6th Annual
ACM Symposium on User interface software and technology. New
York, NY, USA: ACM Press, 1993, pp. 93–100.

[72] H. Koike, T. Takada, and T. Masui, “Visualinda: A framework for
visualizing parallel linda programs,” in VL ’97: Proceedings of the
1997 IEEE Symposium on Visual Languages (VL ’97). Washington,
DC, USA: IEEE Computer Society, 1997, p. 174.

[73] K. Osawa, N.and Asai, M. Suzuki, Y. Sugimoto, and F. Saito, “An
immersive programming system: Ougi,” in Proceedings of the 12th
International Conference on Artificial Reality and Telexistence (ICAT
2002), 2002, pp. 36–43.

[74] A. R. Teyseyre and M. Campo, “Early requirements validation
with 3d worlds,” Computer Systems Science & Engineering, vol.
Automated Tools for Requirements Engineering, no. 20, pp. 61–
72, January 2005.

[75] T. A. Alspaugh, B. Tomlinson, and E. Baumer, “Using social
agents to visualize software scenarios,” in SoftVis ’06: Proceedings
of the 2006 ACM Symposium on Software visualization. New York,
NY, USA: ACM Press, 2006, pp. 87–94.

[76] H. Giese, E. Kindler, F. Klein, and R. Wagner, “Reconcil-
ing scenario-centered controller design with state-based system
models,” in SCESM ’05: Proceedings of the Fourth International
Workshop on Scenarios and state machines: models, algorithms and
tools. New York, NY, USA: ACM Press, 2005, pp. 1–5.

[77] H. Koike and H.-C. Chu, “Vrcs: Integrating version control and
module management using interactive 3d graphics,” in VL ’97:
Proceedings of the 1997 IEEE Symposium on Visual Languages (VL
’97). Washington, DC, USA: IEEE Computer Society, 1997, p.
168.

[78] X. Xie, D. Poshyvanyk, and A. Marcus, “Visualization of cvs
repository information,” in WCRE ’06: Proceedings of the 13th
Working Conference on Reverse Engineering (WCRE 2006). Wash-
ington, DC, USA: IEEE Computer Society, 2006, pp. 231–242.

[79] Y. Hideshima and H. Koike, “Starmine: a visualization system
for cyber attacks,” in APVis ’06: Proceedings of the 2006 Asia-Pacific

Symposium on Information Visualisation. Darlinghurst, Australia,
Australia: Australian Computer Society, Inc., 2006, pp. 131–138.

[80] A. Bosca, D. Bonino, M. Comerio, S. Grega, and F. Corno, “A
reusable 3d visualization component for the semantic web,” in
Web3D ’07: Proceedings of the Twelfth International Conference on
3D web technology. New York, NY, USA: ACM Press, 2007, pp.
89–96.

[81] Y. Frishman and A. Tal, “Visualization of mobile object environ-
ments,” in SoftVis ’05: Proceedings of the 2005 ACM Symposium
on Software Visualization. New York, NY, USA: ACM, 2005, pp.
145–154.

[82] J. I. Maletic, A. Marcus, and L. Feng, “Source viewer 3d (sv3d):
a framework for software visualization,” in ICSE ’03: Proceedings
of the 25th International Conference on Software Engineering. Wash-
ington, DC, USA: IEEE Computer Society, 2003, pp. 812–813.

[83] D. Bonyuet, M. Ma, and K. Jaffrey, “3d visualization for software
development,” in ICWS ’04: Proceedings of the IEEE International
Conference on Web Services (ICWS’04). Washington, DC, USA:
IEEE Computer Society, 2004, p. 708.

[84] P. McIntosh, M. Hamilton, and R. G. van Schyndel, “X3D-UML:
enabling advanced UML visualisation through X3D,” in Proceed-
ings of the Tenth International Conference on 3D Web Technology,
N. W. John, S. Ressler, L. Chittaro, and D. A. Duce, Eds. ACM,
2005, pp. 135–142.

[85] M. Balzer and O. Deussen, “Hierarchy based 3d visualization of
large software structures,” in VIS ’04: Proceedings of the Conference
on Visualization ’04. Washington, DC, USA: IEEE Computer
Society, 2004, p. 598.4.

[86] O. Greevy, M. Lanza, and C. Wysseier, “Visualizing live software
systems in 3d,” in SoftVis ’06: Proceedings of the 2006 ACM
Symposium on Software Visualization. New York, NY, USA: ACM
Press, 2006, pp. 47–56.

[87] O. Radfelder and M. Gogolla, “On better understanding uml
diagrams through interactive three-dimensional visualization
and animation,” in AVI ’00: Proceedings of the Working Conference
on Advanced visual interfaces. New York, NY, USA: ACM Press,
2000, pp. 292–295.

[88] G. Langelier, H. Sahraoui, and P. Poulin, “Visualization-based
analysis of quality for large-scale software systems,” in ASE
’05: Proceedings of the 20th IEEE/ACM International Conference on
Automated software engineering. New York, NY, USA: ACM, 2005,
pp. 214–223.

[89] J.-Y. Vion-Dury and M. Santana, “Virtual images: interactive
visualization of distributed object-oriented systems,” in OOPSLA
’94: Proceedings of the Ninth Annual Conference on Object-oriented
programming systems, language, and applications. New York, NY,
USA: ACM Press, 1994, pp. 65–84.

[90] L. Feijs and R. D. Jong, “3D visualization of software architec-
tures,” Communications of the ACM, vol. 41, no. 12, pp. 73–78,
Dec. 1998.

[91] M. Denford, T. O’Neill, and J. Leaney, “Architecture-based visu-
alisation of computer based systems,” in ECBS ’02: Proceedings of
the 9th IEEE International Conference on Engineering of Computer-
Based Systems. Washington, DC, USA: IEEE Computer Society,
2002, pp. 139–146.

[92] J. Rekimoto and M. Green, “The information cube: Using trans-
parency in 3d information visualization,” in Proc. 3rd Annual
Workshop on Information Technologies and Systems, 1993, pp. 125–
132.

[93] T. Panas, R. Berrigan, and J. Grundy, “A 3d metaphor for
software production visualization,” in IV ’03: Proceedings of
the Seventh International Conference on Information Visualization.
Washington, DC, USA: IEEE Computer Society, 2003, p. 314.

[94] S. M. Charters, C. Knight, N. Thomas, and M. Munro, “Visualisa-
tion for informed decision making; from code to components,”
in SEKE ’02: Proceedings of the 14th International Conference on
Software engineering and knowledge engineering. New York, NY,
USA: ACM Press, 2002, pp. 765–772.

[95] C. Knight and M. Munro, “Virtual but visible software,” in
IV ’00: Proceedings of the International Conference on Information
Visualisation. Washington, DC, USA: IEEE Computer Society,
2000, p. 198.

[96] D. Ploix, “Building program metaphors,” in Proceedings of PPIG
Workshop, 1996, pp. 125–129.

[97] H. Graham, H. Y. Yang, and R. Berrigan, “A solar system
metaphor for 3d visualisation of object oriented software met-
rics,” in APVis ’04: Proceedings of the 2004 Australasian Symposium

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on October 7, 2008 at 13:55 from IEEE Xplore. Restrictions apply.

18

on Information Visualisation. Darlinghurst, Australia, Australia:
Australian Computer Society, Inc., 2004, pp. 53–59.

[98] B. A. Malloy and J. F. Power, “Using a molecular metaphor to
facilitate comprehension of 3d object diagrams,” in VLHCC ’05:
Proceedings of the 2005 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC’05). Washington, DC, USA:
IEEE Computer Society, 2005, pp. 233–240.

[99] K. Kahn, “Drawings on napkins, video-game animation, and
other ways to program computers,” Commun. ACM, vol. 39,
no. 8, pp. 49–59, 1996.

[100] B. Kot, B. Wuensche, J. Grundy, and J. Hosking, “Information
visualisation utilising 3d computer game engines case study: a
source code comprehension tool,” in CHINZ ’05: Proceedings of the
6th ACM SIGCHI New Zealand Chapter’s International Conference
on Computer-human interaction. New York, NY, USA: ACM, 2005,
pp. 53–60.

[101] J. Mackinlay, “Automating the design of graphical presentations
of relational information,” ACM Transactions on Graphics, vol. 5,
no. 2, pp. 110–141, Apr. 1986.

[102] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis, Graph
Drawing: Algorithms for the Visualization of Graphs. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 1998.

[103] I. Herman, G. Melançon, and M. S. Marshall, “Graph visual-
ization and navigation in information visualization: A survey,”
IEEE Transactions on Visualization and Computer Graphics, vol. 6,
no. 1, pp. 24–43, 2000.

[104] H.-J. Schulz and H. Schumann, “Visualizing graphs - a general-
ized view,” in IV ’06: Proceedings of the Conference on Information
Visualization. Washington, DC, USA: IEEE Computer Society,
2006, pp. 166–173.

[105] C. Ware and P. Mitchell, “Visualizing graphs in three dimen-
sions,” ACM Trans. Appl. Percept., vol. 5, no. 1, pp. 1–15, 2008.

[106] ——, “Reevaluating stereo and motion cues for visualizing
graphs in three dimensions,” in APGV ’05: Proceedings of the 2nd
Symposium on Applied perception in graphics and visualization. New
York, NY, USA: ACM, 2005, pp. 51–58.

[107] B. Shneiderman and A. Aris, “Network visualization by seman-
tic substrates,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 5, pp. 733–740, Sept.-Oct. 2006.

[108] M.-A. Storey, C. Best, and J. Michaud, “Shrimp views: An inter-
active environment for exploring java programs,” iwpc, vol. 00,
p. 0111, 2001.

[109] M.-A. Storey, N. F. Noy, M. Musen, C. Best, R. Fergerson, and
N. Ernst, “Jambalaya: an interactive environment for exploring
ontologies,” in IUI ’02: Proceedings of the 7th International Confer-
ence on Intelligent user interfaces. New York, NY, USA: ACM,
2002, pp. 239–239.

[110] J. I. Maletic, A. Marcus, G. Dunlap, and J. Leigh, “Visualizing
object-oriented software in virtual reality,” iwpc, vol. 00, p. 0026,
2001.

[111] S. P. Reiss, “Bee/hive: A software visualization back end,” in
Proceedings of ICSE 2001 Workshop on Software Visualization, 2001,
pp. 44–48.

[112] T. Munzner, “H3: laying out large directed graphs in 3d hy-
perbolic space,” in INFOVIS ’97: Proceedings of the 1997 IEEE
Symposium on Information Visualization (InfoVis ’97). Washington,
DC, USA: IEEE Computer Society, 1997, p. 2.

[113] C. Lewerentz and A. Noack, “Crococosmos – 3d visualization
of large object-oriented programs,” in Graph Drawing Software.
Springer-Verlag, 2003, pp. 279–297.

[114] T. Dwyer, “Three dimensional uml using force directed layout,”
in APVis ’01: Proceedings of the 2001 Asia-Pacific Symposium on
Information visualisation. Darlinghurst, Australia, Australia:
Australian Computer Society, Inc., 2001, pp. 77–85.

[115] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Massachusetts:
Addison Wesley, 1994.

[116] M. Campo, T. Price, and A. Teyseyre, “Uma abordagem 3d para
a visualização de padrões de projeto,” in Anais XI Simpósio
Brasileiro de Engenharia de Software, Fortaleza, Brasil, October
1997.

[117] G. G. Robertson, J. D. Mackinlay, and S. K. Card, “Cone trees:
Animated 3D visualizations of hierarchical information,” in Pro-
ceedings of ACM CHI’91 Conference on Human Factors in Computing
Systems, ser. Information Visualization, 1991, pp. 189–194.

[118] R. Berghammer and A. Fronk, “Applying relational algebra in
3D graphical software design,” in RelMiCS, ser. Lecture Notes

in Computer Science, R. Berghammer, B. Möller, and G. Struth,
Eds., vol. 3051. Springer, 2003, pp. 62–74.

[119] W. Wang, H. Wang, G. Dai, and H. Wang, “Visualization of large
hierarchical data by circle packing,” in CHI ’06: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. New
York, NY, USA: ACM Press, 2006, pp. 517–520.

[120] F. van Ham and J. J. van Wijk, “Beamtrees : Compact visualiza-
tion of large hierarchies,” infovis, vol. 00, p. 93, 2002.

[121] B. Johnson and B. Shneiderman, “Tree-maps: a space-filling
approach to the visualization of hierarchical information struc-
tures,” in VIS ’91: Proceedings of the 2nd Conference on Visualization
’91. Los Alamitos, CA, USA: IEEE Computer Society Press, 1991,
pp. 284–291.

[122] S. P. Reiss, “An overview of bloom,” in PASTE ’01: Proceedings of
the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program analysis
for software tools and engineering. New York, NY, USA: ACM
Press, 2001, pp. 2–5.

[123] S. G. Eick, J. L. Steffen, and J. Eric E. Sumner, “Seesoft-a tool for
visualizing line oriented software statistics,” IEEE Trans. Softw.
Eng., vol. 18, no. 11, pp. 957–968, 1992.

[124] P. Young, “Visualising software in cyberspace,” Ph.D. Thesis,
University of Durham, Oct. 1999.

[125] T. Panas, T. Epperly, D. Quinlan, A. Saebjornsen, and R. Vuduc,
“Communicating software architecture using a unified single-
view visualization,” in ICECCS ’07: Proceedings of the 12th IEEE
International Conference on Engineering Complex Computer Systems
(ICECCS 2007). Washington, DC, USA: IEEE Computer Society,
2007, pp. 217–228.

[126] R. Wettel and M. Lanza, “Program comprehension through
software habitability,” in ICPC ’07: Proceedings of the 15th IEEE
International Conference on Program Comprehension. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 231–240.

[127] J. Wise, J. Thomas, K. Pennock, D. Lantrip, M. Pottier, A. Schur,
and V. Crow, Visualizing the non-visual: spatial analysis and interac-
tion with information for text documents. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1999, pp. 442–450.

[128] A. Celentano, M. Nodari, and F. Pittarello, “Adaptive interaction
in web3d virtual worlds,” in Web3D ’04: Proceedings of the Ninth
International Conference on 3D Web technology. New York, NY,
USA: ACM Press, 2004, pp. 41–50.

[129] U. Wiss and D. A. Carr, “An empirical study of task support in
3d information visualizations,” iv, vol. 00, p. 392, 1999.

[130] R. Dachselt and M. Hinz, “Three-dimensional widgets revis-
ited—towards future standardization,” in New directions in 3D
user interfaces, D. Bowman, B. Froehlich, Y. Kitamura, and
W. Stuerzlinger, Eds. Springer-Verlag, 2005, pp. 89–92.

[131] R. Dachselt and A. Hübner, “Virtual environments: Three-
dimensional menus: A survey and taxonomy,” Comput. Graph.,
vol. 31, no. 1, pp. 53–65, 2007.

[132] B. Reitinger, D. Kranzlmuller, and J. Volkert, “The most immer-
sive approach for parallel and distributed program analysis,” iv,
vol. 00, p. 0517, 2001.

[133] M. Tory and T. Moller, “Evaluating visualizations: Do expert
reviews work?” IEEE Comput. Graph. Appl., vol. 25, no. 5, pp.
8–11, 2005.

[134] A. Kerren, A. Ebert, and J. Meyer, “Introduction to human-
centered visualization environments,” in Human-Centered Visu-
alization Environments, ser. LNCS Tutorial, A. Kerren, A. Ebert,
and J. Meyer, Eds. Springer, 2007, vol. 4417, ch. 1, pp. 1–9.

[135] R. Kosara, C. G. Healey, V. Interrante, D. H. Laidlaw, and
C. Ware, “User studies: Why, how, and when?” IEEE Computer
Graphics and Applications, vol. 23, no. 4, pp. 20–25, 2003.

[136] P. Rheingans, “Are we there yet? exploring with dynamic visual-
ization,” IEEE Computer Graphics and Applications, vol. 22, no. 1,
pp. 6–10, 2002.

[137] M. Winckler, P. Palanque, and C. Freitas, “Tasks and scenario-
based evaluation of information visualization techniques,” in
TAMODIA ’04: Proceedings of the 3rd Annual Conference on Task
models and diagrams. New York, NY, USA: ACM Press, 2004,
pp. 165–172.

[138] D. House, V. Interrante, D. Laidlaw, R. Taylor, and C. Ware,
“Design and evaluation in visualization research,” vis, vol. 00,
p. 117, 2005.

[139] C. Plaisant, “The challenge of information visualization evalua-
tion,” in AVI ’04: Proceedings of the Working Conference on Advanced
visual interfaces. New York, NY, USA: ACM Press, 2004, pp. 109–
116.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on October 7, 2008 at 13:55 from IEEE Xplore. Restrictions apply.

19

[140] G. Ellis and A. Dix, “An explorative analysis of user evaluation
studies in information visualisation,” in BELIV ’06: Proceedings
of the 2006 AVI Workshop on BEyond time and errors. New York,
NY, USA: ACM Press, 2006, pp. 1–7.

[141] C. Chen and Y. Yu, “Empirical studies of information visualiza-
tion: a meta-analysis,” Int. J. Hum.-Comput. Stud., vol. 53, no. 5,
pp. 851–866, 2000.

[142] O. Kulyk, R. Kosara, J. Urquiza, and I. Wassink, “Human-
centered aspects,” in Human-Centered Visualization Environments,
ser. LNCS Tutorial, A. Kerren, A. Ebert, and J. Meyer, Eds.
Springer, 2007, vol. 4417, ch. 2, pp. 10–75.

[143] J. Stasko, A. Badre, and C. Lewis, “Do algorithm animations
assist learning?: an empirical study and analysis,” in CHI ’93:
Proceedings of the INTERACT ’93 and CHI ’93 Conference on Human
Factors in Computing Systems. New York, NY, USA: ACM Press,
1993, pp. 61–66.

[144] D. Sun and K. Wong, “On evaluating the layout of uml class
diagrams for program comprehension,” iwpc, vol. 00, pp. 317–
326, 2005.

[145] A. F. Blackwell, C. Britton, A. L. Cox, T. R. G. Green, C. A. Gurr,
G. F. Kadoda, M. Kutar, M. Loomes, C. L. Nehaniv, M. Petre,
C. Roast, C. Roe, A. Wong, and R. M. Young, “Cognitive di-
mensions of notations: Design tools for cognitive technology,” in
CT ’01: Proceedings of the 4th International Conference on Cognitive
Technology. London, UK: Springer-Verlag, 2001, pp. 325–341.

[146] M.-A. D. Storey, D. Cubranie, and D. M. German, “On the use
of visualization to support awareness of human activities in
software development: a survey and a framework,” in SoftVis ’05:
Proceedings of the 2005 ACM Symposium on Software Visualization.
New York, NY, USA: ACM Press, 2005, pp. 193–202.

[147] H. C. Purchase, L. Colpoys, M. McGill, and D. Carrington, “Uml
collaboration diagram syntax: An empirical study of comprehen-
sion,” vissoft, vol. 00, p. 13, 2002.

[148] C. F. J. Lange and M. R. V. Chaudron, “Interactive views to
improve the comprehension of uml models - an experimental
validation,” in ICPC ’07: Proceedings of the 15th IEEE International
Conference on Program Comprehension. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 221–230.

[149] S. Yusuf, H. Kagdi, and J. I. Maletic, “Assessing the compre-
hension of uml class diagrams via eye tracking,” in ICPC ’07:
Proceedings of the 15th IEEE International Conference on Program
Comprehension. Washington, DC, USA: IEEE Computer Society,
2007, pp. 113–122.

[150] Y.-G. Guéhéneuc, “Taupe: towards understanding program com-
prehension,” in CASCON ’06: Proceedings of the 2006 Conference
of the Center for Advanced Studies on Collaborative Research. New
York, NY, USA: ACM, 2006, p. 1.

[151] P. Irani and C. Ware, “The effect of a perceptual syntax on
the learnability of novel concepts,” in IV ’04: Proceedings of the
Information Visualisation, Eighth International Conference on (IV’04).
Washington, DC, USA: IEEE Computer Society, 2004, pp. 308–
314.

[152] A. Marcus, D. Comorski, and A. Sergeyev, “Supporting the evo-
lution of a software visualization tool through usability studies,”
in IWPC ’05: Proceedings of the 13th International Workshop on
Program Comprehension. Washington, DC, USA: IEEE Computer
Society, 2005, pp. 307–316.

[153] M.-A. D. Storey, K. Wong, H. A. Mueller, P. Fong, D. Hooper, and
K. Hopkins, “On designing an experiment to evaluate a reverse
engineering tool,” in WCRE ’96: Proceedings of the 3rd Working
Conference on Reverse Engineering (WCRE ’96). Washington, DC,
USA: IEEE Computer Society, 1996, p. 31.

[154] J. A. Jones and M. J. Harrold, “Empirical evaluation of the
tarantula automatic fault-localization technique,” in ASE ’05:
Proceedings of the 20th IEEE/ACM International Conference on Au-
tomated software engineering. New York, NY, USA: ACM Press,
2005, pp. 273–282.

[155] B. de Alwis, G. C. Murphy, and M. P. Robillard, “A compar-
ative study of three program exploration tools,” in ICPC ’07:
Proceedings of the 15th IEEE International Conference on Program
Comprehension. Washington, DC, USA: IEEE Computer Society,
2007, pp. 103–112.

[156] S. Bassil and R. K. Keller, “Software visualization tools: Survey
and analysis,” in Proceedings IWPC 2001, 2001, pp. 7–17.

[157] R. A. Amar and J. T. Stasko, “Knowledge precepts for design
and evaluation of information visualizations,” IEEE Transactions

on Visualization and Computer Graphics, vol. 11, no. 4, pp. 432–442,
2005.

[158] C. North, “Toward measuring visualization insight,” IEEE Com-
put. Graph. Appl., vol. 26, no. 3, pp. 6–9, 2006.

[159] D. Shreiner, M. Woo, J. Neider, and T. Davis, OpenGL(R) Pro-
gramming Guide: The Official Guide to Learning OpenGL(R), Version
2 (5th Edition) (OpenGL). Addison-Wesley Professional, 2005.

[160] L. P. Deutsch, “Design Reuse and Frameworks in the Smalltalk-
80 System,” in Software Reusability, T. J. Biggerstaff and C. Richter,
Eds. acm press, 1989, vol. II — Applications and Experience,
ch. 3, pp. 57–71.

[161] J. Kelso, L. E. Arsenault, R. D. Kriz, and S. G. Satterfield, “Di-
verse: A framework for building extensible and reconfigurable
device independent virtual environments,” in VR ’02: Proceedings
of the IEEE Virtual Reality Conference 2002. Washington, DC, USA:
IEEE Computer Society, 2002, p. 183.

[162] A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and
C. Cruz-Neira, “Vr juggler: A virtual platform for virtual reality
application development,” in VR ’01: Proceedings of the Virtual
Reality 2001 Conference (VR’01). Washington, DC, USA: IEEE
Computer Society, 2001, p. 89.

[163] X. Zhang and D. Gračanin, “From coarse-grained components to
dve applications: a service- and component-based framework,”
in Web3D ’07. New York, NY, USA: ACM Press, 2007, pp. 113–
121.

[164] J.-D. Fekete, “The infovis toolkit,” in INFOVIS ’04: Proceedings
of the IEEE Symposium on Information Visualization (INFOVIS’04).
Washington, DC, USA: IEEE Computer Society, 2004, pp. 167–
174.

[165] R. Orosco and M. Campo, “Mamp: A design model for object-
oriented visualization systems,” in Engineering for Human Com-
puter Interaction, C. S. and D. P., Eds. Kluwer Academic, 1998.

[166] M. Campo, R. Orosco, and A. Teyseyre, “Automatic abstraction
management in information visualization systems,” in IV ’97:
Proceedings of the IEEE Conference on Information Visualisation.
Washington, DC, USA: IEEE Computer Society, 1997, p. 50.

[167] M. Meyer, T. Gîrba, and M. Lungu, “Mondrian: an agile infor-
mation visualization framework,” in SoftVis ’06: Proceedings of the
2006 ACM Symposium on Software visualization. New York, NY,
USA: ACM Press, 2006, pp. 135–144.

[168] Q. Wang, W. Wang, R. Brown, K. Driesen, B. Dufour, L. Hen-
dren, and C. Verbrugge, “Evolve: an open extensible software
visualization framework,” in SoftVis ’03: Proceedings of the 2003
ACM Symposium on Software Visualization. New York, NY, USA:
ACM Press, 2003, pp. 37–ff.

[169] A. Fronk and J. Schröder, “Effects - a framework for 3d software
visualization,” Poster IEEE International Conference on Auto-
mated Software Engineering (ASE 04), Sep. 2004.

[170] M. Campo and T. Price, “Luthier- building framework-
visualization tools,” in Implementing Object-Oriented Application
Frameworks: Frameworks at Work, M. Fayad and R. Johnson, Eds.
Wiley, 1999.

[171] W. Löwe and T. Panas, “Rapid construction of software compre-
hension tools,” International Journal of Software Engineering and
Knowledge Engineering, vol. 15, no. 6, pp. 905–1023, December
2005.

[172] R. I. Bull, M.-A. Storey, J.-M. Favre, and M. Litoiu, “An ar-
chitecture to support model driven software visualization,” in
ICPC ’06: Proceedings of the 14th IEEE International Conference on
Program Comprehension (ICPC’06). Washington, DC, USA: IEEE
Computer Society, 2006, pp. 100–106.

[173] M. Itoh and Y. Tanaka, “3d component-based visualization
framework for generating simple 3d applications using web
services,” in WI ’06: Proceedings of the 2006 IEEE/WIC/ACM
International Conference on Web Intelligence. Washington, DC,
USA: IEEE Computer Society, 2006, pp. 823–830.

[174] Y. Okada and Y. Tanaka, “Intelligentbox: a constructive visual
software development system for interactive 3d graphic ap-
plications,” in CA ’95: Proceedings of the Computer Animation.
Washington, DC, USA: IEEE Computer Society, 1995, p. 114.

[175] R. I. Bull, C. Best, and M.-A. Storey, “Advanced widgets for
eclipse,” in eclipse ’04: Proceedings of the 2004 OOPSLA Workshop
on Eclipse technology eXchange. New York, NY, USA: ACM Press,
2004, pp. 6–11.

[176] A. Fronk, A. Bruckhoff, and M. Kern, “3d visualisation of code
structures in java software systems,” in SoftVis ’06: Proceedings of

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on October 7, 2008 at 13:55 from IEEE Xplore. Restrictions apply.

20

the 2006 ACM Symposium on Software visualization. New York,
NY, USA: ACM Press, 2006, pp. 145–146.

[177] A. Tal and D. Dobkin, “Visualization of geometric algorithms,”
IEEE Transactions on Visualization and Computer Graphics, vol. 01,
no. 2, pp. 194–204, 1995.

[178] M. Najork, “Web-based algorithm animation,” in DAC ’01: Pro-
ceedings of the 38th Conference on Design Automation. New York,
NY, USA: ACM, 2001, pp. 506–511.

[179] H. Koike and H.-C. Chu, “How does 3d visualization work in
software engineering?: empirical study of a 3d version/module
visualization system,” in ICSE ’98: Proceedings of the 20th Interna-
tional Conference on Software Engineering. Washington, DC, USA:
IEEE Computer Society, 1998, pp. 516–519.

[180] M. Burch, S. Diehl, and P. Weibgerber, “Visual data mining in
software archives,” in SoftVis ’05: Proceedings of the 2005 ACM
Symposium on Software visualization. New York, NY, USA: ACM,
2005, pp. 37–46.

[181] O. Greevy, M. Lanza, and C. Wysseier, “Visualizing feature
interaction in 3-d,” in VISSOFT ’05: Proceedings of the 3rd IEEE
International Workshop on Visualizing Software for Understanding
and Analysis. Washington, DC, USA: IEEE Computer Society,
2005, p. 30.

[182] E. Kindler and C. Páles, “3D-visualization of petri net models:
Concept and realization,” in Applications and Theory of Petri Nets
2004, ser. Lecture Notes in Computer Science, J. Cortadella and
W. Reisig, Eds., vol. 3099. Springer, 2004, pp. 464–473.

[183] A. Bosca and D. Bonino, “Ontosphere3d: A multidimensional
visualization tool for ontologies,” in DEXA ’06: Proceedings of
the 17th International Conference on Database and Expert Systems
Applications. Washington, DC, USA: IEEE Computer Society,
2006, pp. 339–343.

[184] A. Kerren and J. T. Stasko, “Algorithm animation - introduction,”
in Revised Lectures on Software Visualization, International Seminar.
London, UK: Springer-Verlag, 2002, pp. 1–15.

[185] M. H. Brown and M. Najork, “Algorithm animation using inter-
active 3d graphics,” in Software Visualization: Programming as a
Multimedia Experience, J. Stasko, J. Domingue, M. H. Brown, and
B. A. Price, Eds. MIT Press, 1997, ch. 9, pp. 119–135.

[186] K. Dunsire, T. O’Neill, M. Denford, and J. Leaney, “The abacus
architectural approach to computer-based system and enterprise
evolution,” in ECBS ’05: Proceedings of the 12th IEEE International
Conference and Workshops on the Engineering of Computer-Based
Systems (ECBS’05). Washington, DC, USA: IEEE Computer
Society, 2005, pp. 62–69.

[187] M. Tory and T. Moller, “Human factors in visualization re-
search,” IEEE Transactions on Visualization and Computer Graphics,
vol. 10, no. 1, pp. 72–84, 2004.

[188] B. Sengupta, S. Chandra, and V. Sinha, “A research agenda for
distributed software development,” in ICSE ’06: Proceedings of the
28th International Conference on Software Engineering. New York,
NY, USA: ACM, 2006, pp. 731–740.

[189] J. Wood, H. Wright, and K. Brodlie, “Collaborative visualiza-
tion,” in VIS ’97: Proceedings of the 8th Conference on Visualization
’97. Los Alamitos, CA, USA: IEEE Computer Society Press,
1997, pp. 253–ff.

[190] B. Damer, “Meeting in the ether,” interactions, vol. 14, no. 5, pp.
16–18, 2007.

[191] G. Wallace, O. Anshus, P. Bi, H. Chen, Y. Chen, D. Clark, P. Cook,
A. Finkelstein, T. Funkhouser, A. Gupta, M. Hibbs, K. Li, Z. Liu,
R. Samanta, R. Sukthankar, and O. Troyanskaya, “Tools and
applications for large-scale display walls,” IEEE Comput. Graph.
Appl., vol. 25, no. 4, pp. 24–33, 2005.

[192] L. Chittaro, “Visualizing information on mobile devices,” Com-
puter, vol. 39, no. 3, pp. 40–45, 2006.

[193] P. Baudisch, “Interacting with large displays,” Computer, vol. 39,
no. 4, pp. 96–97, 2006.

[194] A. Bezerianos and R. Balakrishnan, “View and space manage-
ment on large displays,” IEEE Computer Graphics and Applications,
vol. 25, no. 4, pp. 34–43, 2005.

Alfredo R. Teyseyre received a BSc degree in
Systems Engineering and a Master degree in
Systems Engineering from the UNICEN Univer-
sity, Tandil, Argentina, in 1997 and 2001, respec-
tively. Currently he is a PhD candidate at the
Department of Computer Science, UNICEN Uni-
versity, Tandil, Argentina. He is also an Adjunct
Professor at Computer Science Department of
the UNICEN University at Tandil, Argentina.
His research interests include software visual-
ization, information visualization, software archi-

tecture and frameworks, and lightweight formal methods.

Marcelo R. Campo received a PhD. Degree in
Computer Science in the Universidade Federal
do Rio Grande do Sul, Porto Alegre, Brazil in
1997 and the Systems Engineer degree at the
UNICEN University, Tandil, Argentina in 1988.
Currently he is an Associate Professor at Com-
puter Science Department and Head of the ISIS-
TAN Research Institute of the UNICEN Univer-
sity at Tandil, Argentina. He is also a research
fellow of the National Council for Scientific and
Technical Research of Argentina (CONICET)

and National Coordinator of the IT area. He has over 50 papers
published in main conferences and journals about software engineering
topics.
His research interests includes intelligent aided software engineering,
software architecture and frameworks, agent technology and software
visualization.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on October 7, 2008 at 13:55 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

