TAMPERE UNIVERSITY OF TECHNOLOGY
Institute of Software Systems

TOMMI REINIKAINEN

CONCERN MANIPULATION TOOLSET TO SUPPORT
SOFTWARE COMPREHENSION

Master of Science Thesis

Subject approved by the department council on

April 12, 2006

Examiners: Prof. Tarja Systa (TUT)
Dr.Tech. Imed Hammouda (TUT)

IT

FOREWORD

I have written this thesis while working at the Software Systems Institute at Tam-
pere University of Technology, between the months April and December during the
year 2006. The thesis was written as a part of two research projects, INARI and
SERIOUS. INARI is funded by a conglomerate of organisations, including Nokia,
Plenware, John Deere and Tekes. SERIOUS is funded by Nokia Reasearch Centre
and Tekes.

First and foremost I would like to thank Imed Hammouda, Professor Tarja Systé
and Professor Kai Koskimies for the support, advice and motivation during my thesis
work. Without them, this thesis surely would not have been completed. I would
like to give special thanks to Imed, who, as the tutor of this master’s thesis project,
was a source of knowledge and inspiration at all times and made it possible for me

to finish my work.

Special thanks are due to the people that worked beside me in INARI and SE-
RIOUS, for their willingness to help and explain whenever I needed it the most.

I would like to thank all my friends and family for their support and interest in
my work. Last but not least, I want to thank my girlfriend Johanna, who did more
than she ever should have had to by understanding, supporting and motivating me
all the way. This thesis is dedicated to her, for believing in me even when I did not

believe in myself.

Tampere, February 16, 2007

Tommi Reinikainen
Sammonkatu 35 B 33
33540 Tampere

<tommi.reinikainenQtut.fi>

I1I

TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Information Technology

Institute of Software Systems

REINIKAINEN, TOMMI: Concern Manipulation Toolset to Support

Software Comprehension

Master of Science Thesis, 44 pages, 1 Appendix page
March 2007

Major subject: Software engineering

Examiners: Prof. Tarja Systd, Imed Hammouda

Sponsors: Tekes, Nokia, Plenware, John Deere, TietoEnator

Keywords: Software comprehension, model-driven development, concerns,

concern-based decomposition, software decomposition

Abstract

Software comprehension is an important part of modern software development.
Due to the complex nature of software engineering, the limits of human capabilities
in terms of software comprehension are quickly met without a remarkable investment
in methods that further enhance software comprehensibility. This thesis examines a
technique, concern decomposition, to support comprehension and analysis of a soft-
ware system. The basis of this technique is to provide for the user a new abstraction
level that allows for a non-invasive re-decomposition of an already decomposed soft-
ware system. This technique is then further elaborated into a suite of tools that can
be used to create and analyse a concern-based decomposition of an existing soft-
ware system. In addition, the process of implementing this toolset in the context of
UML is described extensively. Finally, the toolset is applied to solve a specific task
regarding a software platform developed by mobile phone manufacturer Nokia and

used in several of its mobile phone products.

IV

TAMPEREEN TEKNILLINEN YLIOPISTO
Tietotekniikan osasto
Ohjelmistotekniikka

REINIKAINEN, TOMMI: Intressijaotellun Ohjelmiston Hallinointityokaluja

Ohjelmistojen Ymmartdmisen Tukemiseksi

Diplomityo, 44 sivua, 1 liitesivu

Maaliskuu 2007

Péddaine: Ohjelmistotuotanto

Tarkastajat: Prof. Tarja Systd, Imed Hammouda

Rahoittajat: Tekes, Nokia, Plenware, John Deere, TietoEnator

Avainsanat: Ohjelmiston ymmaéartdminen, intressiperustainen ohjelmiston jaot-

telu, ohjelmiston jakotekniikat, malliperustainen ohjelmistotuotanto

Tiivistelma

Koodin ja koodista muodostuvan ohjelmiston ymmértdminen on keskeisessi
roolissa nykyaikaisessa ohjelmistotuotannossa. Johtuen ohjelmistotuotannon mon-
imutkaisuudesta, ihmisen luontaisen kasityskyvyn rajat tulevat varsin varhaisessa
vaiheessa vastaan. Tamian vuoksi on tirkedd panostaa uusien ymmaérrysti helpot-
tavien tekniikoiden kehitykseen. Téssa diplomityossa tutkitaan erdstd ohjelmistojen
ymmarrystd tukevaa tekniikkaa: intressiperustaista ohjelmiston jaottelua. Tamén
tekniikan perustana on uuden abstraktiotason méaérittely, jonka avulla tekniikan
kiyttdja voi jaotella jo entuudestaan jaotellun ohjelmiston uudelleen koskemat-
ta alkuperdiseen jaotteluun. Néistd lahtokohdista johdetaan téssd diplomityGssa
joukko tyoOkaluja, joiden avulla kidyttdja voi tehdd olemassa olevalle ohjelmistolle
intressiperustaisen uudelleenjaottelun ja analysoida sitd. Lisdksi tyossd kasitellddn
niiden tyokalujen toteutusta kiayttden UML-mallinnuskieltd toteutuksen kohdeym-
paristoné. Lopuksi tyokaluja sovelletaan ratkaisemaan ennalta méaritelty ongelma
liityen erddseen matkapuhelinvalmistaja Nokian tuottamaan ja useissa sen matka-

puhelinmalleissa kiytossa olevaan ohjelmistoalustaan.

CONTENTS

1. Introduction 1
1.1 Motivation 1
1.2 Objectives 2
1.3 Thesis Structure 3

2. Concerns as Units of Software Decomposition 4
2.1 On software decomposition 4
2.2 Concern-based decomposition 6
2.3 Cross-cutting concernso 9
2.4 Concern Operations 10
2.5 Software Evolution -Driven Concern Evolution 12

3. Infrastructure for the Concern Manipulation Toolset 15
3.1 Representing Concerns With Aspectual Patterns and Roles 15
3.2 Concern Query Language, 17
3.3 Tracking Concern Evolution with Patterns 17

3.3.1 Concern evolves by losing artefacts 18
3.3.2 Concern evolves by gaining artefacts 18

4. Implementation of the Concern Manipulation Toolset 20

4.1 Implementation environment 20
4.1.1 Eclipse o 20
4.1.2 Rational Rose 20
4.1.3 Rational Software Architect 21
4.1.4 INARI 21

4.2 Tool Implementation L L 22
4.2.1 Userinterface 23
4.2.2 Query language 24
4.2.3 Patternizer tool for creating concerns 25
4.2.4 Concern operations 28
4.2.5 Version tracking tool oL 29

5.Casestudy 31
5.1 Background 31

5.2 Goals . ..o, 32

5.3 Main Results 33
5.4 Other uses for the concern manipulation toolset 35
5.4.1 Tracking evolution of ISA models 36
5.4.2 Mapping and studying product configurations 37
5.4.3 Mapping product features as concerns 37

5.5 Tool evaluation L 38
6. Conclusions 40
Bibliographyo 42

Appendixl: ANTLR Code 45

VII

TERMS AND DEFINITIONS

CASE Computer-Aided Software Engineering, an umbrella term for software that

assists in development and maintenance of software.

EBNF Extended Backus-Naur Form, a notation (aka. metasyntax) used to express

context-free grammars.

HTML HyperText Markup Language, the predominant language used in creating

web pages.

IDE Integrated Development Environment, a development environment usually

consisting of a set of tools to aid in performing a specific task.

INARI Name of the project under which this thesis work was done. Also the name
of the software that is the end product of that project.

JavaScript A scripting language commonly used to run client side functionality in

a web browser.

Parser Generator A program that generates source code for a parser from a pro-

gramming language description, such as an EBNF grammar.

Plug-In A computer program that serves as a part of a larger main application,

usually extending its features.

SDK Software Development Kit, contains tools for creating software into a certain

environment.

XML Extensible Markup Language, a general-purpose markup language used often

to present information in a structured form.

XSL eXtensible Stylesheet Language, a family of transformation languages which
allows one to describe how files encoded in XML standard are to be formatted

or transformed.

1. INTRODUCTION

Complex software consists of simple parts and relations; the program-

mer’s goal 18 human comprehension.

-Donald E. Knuth

1.1 Motivation

A modern software engineering effort is a massive undertaking. It is common for
a single software project to last several years and employ hundreds, if not even
thousands, of developers to produce hundreds of thousands of lines of code. Such an
environment is quite far from the early days of software engineering, when a single

programmer could be tasked with creating an entire program in a couple of months.

Such difficult circumstances require that special attention is taken in choosing
what methods and conventions to use, to ensure that the effort pays off. One of
the methods that must be carefully chosen is the strategy under which the soft-
ware is decomposed. This thesis proposes that the software is to be decomposed
according to the concerns of the various stakeholders. The decomposition is similar
to that suggested by Tarr et al. in their research on concern-based decomposition.
[TOHS99] [THO00] Though in some contexts the word "concern" brings with it a
negative meaning, this thesis sees the existence and study of such concerns as purely

beneficial.

When the software is decomposed according to concerns, the unit of this decom-
position is also logically called a concern. Concern as a unit can be understood as
a concrete representation of the concern of a particular stakeholder to the software
system. For example, a stakeholder may be concerned about software security. This
concern can be mapped to all the pieces of the software that in some way relate
to the security of the software, from the viewpoint of this particular stakeholder.

These pieces would thus form a single unit in this decomposition, a concern.

This thesis introduces a mechanism to concretise the abstract and immaterial
stakeholder concerns by binding them to the concrete, physical elements that are

part of a software. After these concrete representations of the concerns have been

created, it is possible to further deepen one’s understanding of the software by study-
ing the relationships and dependencies between the various physical manifestations
of these concerns. For this purpose, a set of tools and operations is needed, to com-
pare and manipulate the many different concerns defined from the viewpoints of the

many different stakeholders.

The concept of different viewpoints is what truly justifies proposing such a mech-
anism for decomposing a software system. To get a deep understanding of a software
system, one must first be able to look at it from different perspectives. This is where
traditional modularisation mechanisms come short. The decomposition of a software
into traditional modules is always from a single dominant viewpoint, which often
means that studying the software from another viewpoint is extremely cumbersome.
This thesis aims at providing a set of tools that ultimately make it easier for an in-
dividual to come to an existing software project and gain understanding of the work
already done, more effectively than it is currently possible. In short, this thesis aims

to improve the comprehension of software.

1.2 Objectives

Most of the groundwork for this thesis has been laid down in the research of Imed
Hammouda and Professor Kai Koskimies, from the Institute of Software Systems in
Tampere University of Technology. The objective of this thesis is to further culti-
vate and refine this research work and to emphasise the programming comprehension
and understanding point of view. Some parts of the thesis, like the mathematical
set operations as concern operations (Section 2.4), have been derived entirely from
the publications of the aforementioned scientists, especially from Hammouda’s and
Koskimies” publication "Concern Based Mining of Heterogeneous Software Repos-
itories" [HKO06]. Other parts, like tracking concern evolution (Section 2.5), were
conceived while working on the thesis, but still owe much to the influence of the
aforementioned Hammouda and Koskimies, as well as Professor Tarja Systd, mem-
bers of the INARI and SERIOUS projects and other personnel at the Institute of

Software Systems.

The aim of this thesis is to present a convenient set of tools for decomposing any
given piece of software according to the concerns of the various stakeholders to that
piece of software. To do so, it is important to build a strong foundation in the form
of a unified theory for the concern manipulation concepts. Since simply defining a
theory does little to establish the feasibility of such a conceptual toolset, however, the
toolset was implemented and then placed into use in a real-life software development

project. Such an environment was provided by Nokia, one of the industrial partners

of the projects this thesis was developed for.

1.3 Thesis Structure

The thesis is structured in the following fashion:

In Chapter 2 a unified theoretical foundation is laid by introducing the core
concepts for this thesis.

In Chapter 3 the concepts are brought towards a working implementation by
defining what methods and structures can be used to implement them.

In Chapter 4 the actual process of implementing the conceptual model is ex-
plained in detail.

In Chapter 5 the implemented toolset is applied to a real life software system in

an externally defined case study.

In Chapter 6 the advantages and limitations of the presented approach are dis-

cussed. Also, a summary of this thesis project is drawn.

2. CONCERNS AS UNITS OF SOFTWARE
DECOMPOSITION

This chapter defines the theory around the thesis. This is done by defining the
concept of a concern and comparing concern-based decomposition to traditional
modularisation techniques. The thesis work is outlined by introducing a set of
operations for concern manipulation and discussing effects of software evolution to

existing concerns.
2.1 On software decomposition

Modern software engineering is a team effort. A prerequisite for a successful team
effort is that all members of the team understand the effort as a whole and also their
respective responsibilities, which are a part of that whole. One of the mechanisms
that aids this understanding is an efficient software decomposition strategy. It allows
the members of a software development team to comprehend and manage the devel-
oped software system with less effort. [TOHS99] It can even be argued, that without
a decent decomposition strategy, comprehending the structure and architecture of
even a medium-sized software system is close to impossible. [Mil56] Decomposing
complex information into smaller, manageable bits is natural human behaviour and
essential in the complex world of software development. That is not to say, however,
that the only reason for why software decomposition is exercised is the increase in

comprehensibility. After all, software is decomposable by its very nature.

Different decomposition strategies are often based on different programming
paradigms. For example, during the golden age of procedural programming, the
dominant decomposition strategy was modular decomposition, or modularisation.
This decomposition strategy improved the flexibility of the code, in terms of re-use
and distribution of work, as well as its comprehensibility. [Par72| Modularisation
is based on simplifying a complex system by giving it a hierarchical structure and,
simultaneously, limiting the amount of knowledge one has to have of the system to

be a part of its development.

The advent of object-oriented programming languages brought changes to soft-

ware decomposition strategies. [And91] In this object-oriented paradigm, software
is decomposed into classes, which are usually real-world concepts relating to the
problem field the software is addressing. Object-oriented decomposition can be seen
as an extension of the classic modularisation, rather than a replacement. A good
example of this is in the Java programming language, which is largely based on
classes. Java programs are decomposed into both classes and modules, the latter
being referred to as packages. An illustration of the relationships between classes

and packages can be seen in Figure 2.1.

== i
== kUt
- [s = H4 fi.but.cs.java.example
- java +-[J] ExampleClass. java

== example
|I| ExampleClass. java

{a) (b}
Figure 2.1: Packages (a) in the file system and (b) as they are seen in Java

Let us look at some of the drawbacks of this decomposition by using the Java

decomposition system as an example:

e Java packages are meant to contain only source files (i.e. classes). While
there is no explicit rule stopping the programmer from putting other kinds
of files into packages [Sun99|, there is an unwritten one that says that the
packages should be kept clean of non-source code files, except for the occasional
configuration file. In any case, scattering the documentation of a software

system across different packages would be impractical.

e Each source file can only belong to a single package. A package commonly
contains all the source files that are bound together by some logical rule (e.g.
all the source files that contain code to create the user interface are placed
inside the same package). Thus, if a source file contains code that makes
it eligible to be placed into any of a number of packages, the file must still
always be placed into a single, specific package. Doing so hides the fact that the
source file actually could have been placed elsewhere as well. This restriction

of modularising the software in only one way at a time is called the tyranny
of the dominant decomposition [TOHS99| |BZLO06].

Due to this tyranny of the dominant decomposition, Java formalisms allow us
to organise a program only from a single viewpoint. This is a constraint on how a
software written in Java can be organised. It also means that different stakeholders
to the software always share the same viewpoint to the software, which is usually

not desirable.

2.2 Concern-based decomposition

Before we venture any further, let us recapitulate a definition commonly used in
software development: an artefact. An artefact is an organisable item in a software
system. Examples of artefacts could be source files, documents, model drawings,
resource files or even a user interface icon. To put it simply, everything that can
be seen as a separate entity and that belongs to the software system in question is
an artefact of that software system. This thesis treats all software as a collection of
heterogeneous artefacts.

In this thesis work, the problems of modular decomposition that were presented
in Section 2.1 are addressed by concern-based decomposition. Defining a concern is
somewhat problematic. Here are some attempts at this:

e [A] matter for consideration. |Dic|
e Any matter of interest in a software system. [SR02]

o A concern is an aspect of a problem that is critical or otherwise important to

one or more stakeholders. [Kan03]

The last of the three definitions is the most appropriate in the scope of this thesis.
This thesis sees concerns as an alternative way to look at a software system: through

the concerns of the different stakeholders to that system.

As concerns themselves are very abstract and thus separate from an actual soft-
ware system, we need a mechanism to bind them to a system. This thesis calls
this binding a concern mapping. When mapping the concerns, we identify which
artefacts are addressed by which concern. Doing so, we bridge the gap between the

abstract and immaterial concerns and the physical software system.

A concern mapping can be understood as a set of artefacts and their respective
relationships, which can be seen as artefacts themselves. Any artefact may belong
to any number of different concern mappings, which in turn allows the mappings

to overlap (i.e. contain artefacts already found in other concern mappings). This

is a fundamental difference between concern mappings and modules and is possi-
ble only because concerns are defined on a higher abstraction level than modules.
Modules are the result of organisation of artefacts in a traditional, strictly hierar-
chical and non-relational file system, whereas concerns and concern mappings have

no restrictions of that sort. The concern mapping concept is illustrated in Figure
2.2.

N O\
Stakeholder 1 Stakeholder 2

| |
W W

C:J_n ce rm C:J_nt:erm

"
O 1
3

"I |f|
“N"
i
Il
If
—
| | »

NV W

Source Model
files drawings Documents

~. |

Software artefacts

Figure 2.2: Relationships between concerns and software artefacts.

In this thesis, a concern is defined by a stakeholder to the system. This means
that concerns are dualistic in nature: concerns define a certain feature of a software
system, but also the viewpoint from which the feature is being studied. This allows
for a single concern to be defined from the viewpoints of multiple stakeholders. Even
though two stakeholders may be concerned about the same thing, the elements those
concerns address (i.e. are mapped to) are probably different for each stakeholder,
assuming they have different viewpoints to the system. As an example, let us assume

an imaginary software project has two different stakeholders: a software engineer and

a client. Both have a concern regarding the security of the system, but that does not
mean the concerns equate on the artefact level. The software engineer may be more
interested in the implementation of security in the system, whereas the client might
be more interested in descriptive information regarding the planned, implemented
or rejected security features, or possibly rationalisations behind decisions concerning

security. This example is illustrated in Figure 2.3.

Pl I
I\‘ _;I I\‘ _’I
rd : o
Software Engineer Client
| |
————W_————-__ Fﬂ____\l’_____x

(SEIIrity[S oftware Enginee_rzl> <Securityr[CIient]

ZANUL

FEEPMBERE
N VRN

Source Model
files drawings

Documents

Figure 2.3: Same concern defined by different stakeholders.

The benefits of using concern-based decomposition are many. One of them is the
possibility to decompose the system multi-dimensionally. [TOHS99] As an example
of this, let us look at a typical system feature already used in the previous example,
security. If there was such a thing as a security module in a modularly decomposed
system, that module would of course contain source code that manages the security
of the system. The system could also include other source code files that, though
containing security-related code, are not included in the security module, because
application security is not their primary emphasis. If a stakeholder of this system
would like to view the system’s security aspects, modular decomposition would offer

him an incomplete set of source code files.

In the concern-based alternative, security is first identified as a concern after

which a concern mapping for the security concern could be created. That mapping

would bind all security-related artefacts. This would be beneficial for two reasons.
Firstly, by mapping concrete elements to the concern, we can include all relevant
artefacts regardless of whether security is their primary emphasis, as they can still be
included in other concern mappings; inclusion does not exclude the artefacts from
anywhere else. Secondly, restricting the included artefacts to source files would
no longer be necessary. As the artefacts mapped by a concern mapping can be
heterogeneous, the artefacts could also be documents, drawings or schematics that
address security, without breaking any conventions or coding style rules that forbid

placing artefacts other than source code into a module.

In the scope of this thesis, concern-based decomposition can be seen as an ex-
tension of modular decomposition. Concern mappings are not meant to replace
modules. They are meant to fill the voids left by the modular decomposition, to
increase the system’s comprehensibility and to allow people outside the implemen-
tation team to have a clear vision of the system. Concerns can also be used to
analyse and to keep track of dependencies between different parts of the program:
if we know that two concerns overlap, i.e. that the concerns share an artefact, we

also know that by modifying this artefact we are also modifying both concerns.

2.3 Cross-cutting concerns

The already mentioned overlapping of concerns is an important issue. It allows more
flexibility in defining concerns, but more importantly, it allows us to identify and
define concerns that could not otherwise have been defined. These special concerns
are called cross-cutting concerns, because they cross-cut multiple parts of the system.
This term originates from the research done by Gregor Kiczales and his research
team at Xerox PARC. One of the outcomes of this research has been the concept
of aspect-oriented programming [KLM™97|, where the single unit of decomposition,
an aspect, is very close to the concept of concerns studied in this thesis; hence
the similarities in terminology. Another very similar concept is Hyper/J [OT00], a
tool for multi-dimensional separation and integration of concerns in Java. HyperJ
has been created by Peri Tarr, Harold Ossher and their team as part of the IBM
alphaWorks [aWs| program.

The concept of cross-cutting concerns is easier to explain through an example.
Let us loan one of the more popular examples of a cross-cutting concern (or an
aspect) from the field of aspect-oriented programming: logging.

Assume that in our software system 30% of the classes do logging. If the system
is decomposed solely by means of modular decomposition, the logging classes are

scattered among the non-logging classes. There is no reasonable way to convey that

10

a class does logging through modular decomposition conventions. One way to do
this would be to add a character or a word into the name of the class or source file,
which is not very rational concerning the limited importance of this information.
Another alternative, which is even less feasible, is to create a module that contains
all of the classes or source files that do logging. Since it is unlikely that logging is

the main functionality of all these classes, this approach would also be impractical.

The scattered nature of cross-cutting concerns makes it difficult to properly high-
light them with traditional decomposition mechanisms. The concern mechanism in-
troduced in this thesis has no problems mapping cross-cutting concerns, as there are
no limitations to whether or not a concern mapping may overlap another concern
mapping.

The two important keywords concerning cross-cutting concerns are, depending on
the point of view, tangling and scattering. On one hand artefacts of a cross-cutting
concern mapping are scattered among the rest of the artefacts and among other
concerns. On the other hand, when considering the issue from the point of view
of a single artefact, we can say that this artefact is tangled into multiple concerns.
Both of these relationship types are important and have served as inspiration for

this thesis’ concepts.

2.4 Concern Operations

After a software system has been mapped as concerns, we get a multi-dimensional
and usually clearer view of the system. The organisation is no longer under the
tyranny of the dominant decomposition and we may look at the system from many
different viewpoints. We may also continue to look for new concerns by examining

the relationships between the already existing mappings.

It is reasonable to assume that some of the concern mappings overlap. By looking
at two mappings and examining which parts of them overlap, and which do not, we
are able to explicitly see the dependencies between two parts of the system. As
was mentioned earlier, a concern mapping can be seen as sets of artefacts. As
a logical continuation of this assumption, Hammouda and Koskimies suggest that
mathematical set operations, loaned from the naive set theory [Hal60|, be used to
examine the relationships between concerns [HKO06|. This thesis is based on the
ideas presented in that publication.

The thesis focuses on a specific set of operations. Of the mathematical set opera-
tions, the ones implemented in the work leading to this thesis are union, intersection
and difference. Their concern counterparts are defined in Table 2.1, with the cor-

responding set operation in parenthesis. A fourth operation, nearest neighbourhood

11

(later just neighbourhood), was also implemented, although this is not originally a
mathematical set operation. It is rather an operation that was proven very useful in
the course of the work. A common feature for all of the operations is that they take
existing concerns as their parameters and return the result as a new concern. The
list of possible operations is in no way limited to the ones implemented here. For
example, one of the unused mathematical set operations, the Cartesian product, is
implementable in the concern realm. It was left unimplemented, however, as it did

not seem be of much use in the scenarios handled in this thesis work.

Table 2.1: Concern operations

Operation Sym- | Type | Description Commuta-
name bol tive
Merge (union) + binary | Merging of concerns A and B results | yes

in a concern containing all the ele-
ments of A and B, excluding dupli-

cates.
Overlap (inter- | & binary | Overlapping A and B results in a con- | yes
section) cern containing all the elements that

are common to both A and B.
Slice (difference) | - binary | The slicing of concern A with B re- | no

sults in a concern that contains the
elements that belong to A but do not

belong to B.
Nearest neigh- | | unary | The nearest neighbourhood of con- | -
bourhood cern A results in a concern that con-

tains all elements that have a relation-
ship with an element in A and that do
not belong to A.

All the operations can be chained to form more complex expressions. The prece-
dence between the binary operations is not defined (i.e. the precedence is from left
to right), but the unary operation takes natural precedence before the binary ones.
The order of execution can be altered by using parentheses. It is also important
to note that the laws of distributivity and associativity for mathematical naive set

operations [Hal60| are also valid for the concern operations.

As a simple demonstration of what can be done with the defined operations, let
us assume an existing system contains the following concerns: Security, Logging and
Documents. The system artefact repository contains source files and documents.
"Security" contains all source files and documents that have to do with the system’s
security. '"Logging" is mapped similarly to code files and documents that involve

logging. "Documents" contains all the document type artefacts belonging to this

12

system.

Some example questions that are answered using the above defined concern op-

erations:

1. What artefacts of "Security" do logging?
e Security & Logging

2. What are the documents that contain information about the system’s security?
o Security & Documents

3. What documents contain information of either logging or security (or both)?
e (Logging + Security) & Documents

4. What non-document artefacts does "Logging" include?
e Logging - Documents

5. Which artefacts have relationships with the artefacts in the concern "Secu-

rity"?

o |Security
2.5 Software Evolution -Driven Concern Evolution

As software systems evolve, so must the concerns. Since software evolution may
entail anything from addition or omission of artefacts to subtle changes in relation-
ships between artefacts, as well as merely changing a specific artefact, tracking the
change in concerns is problematic at best and impossible at worst. Nevertheless, a
tracking system is necessary. Without one, every new version would require a new

mapping of concerns and artefacts.

If we assume that relationships between artefacts in a concern are artefacts them-
selves and that changing an artefact actually means replacing the old artefact with
a new one, evolution of a software may cause any sequence of the following changes

to a concern:

1. The concern may gain artefacts.
2. The concern may lose artefacts.

3. The concern may remain unchanged.

13

Note that the first two scenarios are not mutually exclusive but can both occur as
the concern evolves. Also note that the third scenario is trivial. It does not require

any actions, because in this scenario, the concern does not evolve.

If the concern loses artefacts, we can easily find the remaining artefacts of the
original concern and thus the evolved concern. In some cases information on which
artefacts were lost is just as important, if not more so, than what could be recovered
from the old concern. If the concern gains artefacts, finding the evolved concern
is not as straightforward. This can be illustrated more thoroughly by using an

example:

Let us call the original version of the software (i.e. the set of artefacts that
represents the entire software) II. Furthermore, let us assume that there exists a
concern A that has been mapped to a subset of I[I. Now, as II evolves, we get a new
set of artefacts that depicts the software after it has evolved. Let us call this set .
Since the software has evolved, so must A. The evolved version of this concern is .
We may now define Equation 2.1.

ACH A ACTI (2.1)

Now, if we look at a case where \ evolves by losing artefacts (denoted by the
sub-index L in the variable name), we know that due to this the evolved concern
and software system are actually subsets of the original concern and software, as
shown in Equation 2.2. Furthermore, we can express both the evolved concern (/)\\L,
Equation 2.3) and the set of removed artefacts (aka. change, A\;, Equation 2.4) by
using the concern operations defined in Section 2.4. Also note that expressing this

information only requires the original concern and the evolved software artefact set.

I, CI, ALCA (2.2)
A=A &0 (2.3)
A=A — A=A — (A&IIp) (2.4)

If, on the other hand, the concern evolves by gaining artefacts (denoted by the
sub-index G in the variable name), there is no way to determine the change in the
evolved concern by only examining A, II and ﬁg, which are the artefact sets we
always have access to. In other words, XG can not be expressed as a function of the
other artefact sets, unlike in the previous scenario with the concern losing artefacts.
Even though I has gained artefacts (and we know which these artefacts are), there

is no way of telling whether or not a given gained artefact should be a part of Xg,

14

so a corresponding equation to Equation 2.3 does not hold in this scenario. From

this information, we can derive Equation 2.5.

Ao # A & Tl (2.5)

We may now conclude that if the concern evolves by gaining artefacts, we always

need input from the stakeholder to define the evolved concern.

3. INFRASTRUCTURE FOR THE CONCERN
MANIPULATION TOOLSET

This chapter presents a group of techniques that can be used when implementing the
concepts presented in the previous chapter. It works as a stepping stone towards
describing the implementation of the concern manipulation toolset. This chapter
introduces aspectual patterns, which can be used as concern mappings in actual
software development projects. Furthermore, the set of operations introduced in
the previous chapter are now developed into an actual query language. Effects of
concern evolution, when considered from the point of view of aspectual patterns,

are also discussed.

3.1 Representing Concerns With Aspectual Patterns and

Roles

As previously mentioned, concern mappings are used to concretise the concerns of
the stakeholders. In this thesis work, aspectual patterns |[HKKO04| were used to repre-
sent concern mappings in the real-world software development process. One reason
for this was that these patterns hold all the qualities that are required of a concern
mapping; in brief, the capability to contain heterogeneous artefacts and to overlap.
Another reason was that there was an existing implementation of aspectual patterns
available at Tampere University of Technology as part of the INARI environment,

which is more thoroughly introduced in Section 4.1.4.

Figure 3.1 shows a conceptual model of an aspectual pattern defined in UML
[UML]. Patterns are essentially collections of roles, which in turn serve as attach-
ment points to actual artefacts. In this thesis work, the pattern concept was used
to represent the concerns and the concern elements (patterns and pattern roles re-
spectively) as well as to provide a non-invasive way to gain access to the software
repository elements. As may be concluded from the figure, patterns can be used for
other purposes as well, such as for marking the implicit dependencies between roles
that cannot be seen in a model diagram and for setting constraints for the different

roles. However, these features are not used in the context of concern mapping.

16

0." | pattern
1 o - | Dependency
o
target
0= 1
Role |1 source
o
chilg |multiplicity| 1 n.* Property
0.1 n.r
parent
is hound to W
Concern tool
1 1 Repository
Fragment|] 0.” |Repository Element
0.x
1
Repository

Figure 3.1: Conceptual model for aspectual patterns in UML [HKO06]

Let us look at the relationship between a concern and an aspectual pattern.
For each concern we wish to map, we create a new pattern. The pattern may or
may not be named after the concern, although doing so is simpler and thus a good
convention. After we have created our new and currently empty pattern, the next
step is to populate it with the various artefacts that we have decided are connected
to the concern the pattern is portraying. For each artefact to be bound, a new role
must be created under the selected pattern. The role represents a single concern
element (artefact) and also manages the connection, e.g. the binding to the actual
artefact. Although any number of artefacts can be bound to a role, the concern
manipulation toolset presented in this thesis operates under the assumption that

there is only a single artefact bound to any given role.

The connection between a role and the artefact is "weak", meaning that a change

in either may invalidate the connection. However, since the connection is meant to be

17

navigated only from the role to the artefact, we only need to worry about situations

where the artefact changes so that the connection is invalidated.

3.2 Concern Query Language

A set of operations to be used with mapped concerns was defined in Section 2.4.
This operation set was by no means meant to be complete or even exhaustive, so a
decision was made to create a simple but extensible query language that could be
later supplemented with new operations, such as the Cartesian product mentioned in
Section 2.4. The basic version of the language should have support for both unary
and binary operations, chaining of operations and changing operation precedence
with parentheses. From these requirements, a specification in Extended Backus-
Naur Form (EBNF) was created, as illustrated in Table 3.1:

Table 3.1: EBNF of query language

<exp> = <factor> { <binary_op> <factor> }

<factor> = | <unary op> | <primary>

<primary > = <allowed char> { <allowed char> } | ("’ <exp>’)’
<binary op> n= o | &

<unary_op> n=

<allowed _char> = [a-zA-Z0-9]

The language does not define any explicit precedence rules between the different
binary operations (the unary operation takes precedence over the binary operations
by its nature), as it was not deemed necessary in the scope of this thesis. Introducing
precedence rules into the language is relatively straightforward as well as expanding

the language with new unary or binary operations or allowed characters.

3.3 Tracking Concern Evolution with Patterns

As it was shown in Section 2.5, tracking concern evolution is a complex matter.
Using patterns does not change this, so the same limitations apply when studying
the scenario where a concern evolves by gaining artefacts, namely that it cannot
be done without stakeholder input. As previously mentioned, of the three possible
evolution scenarios for a concern, the one where the concern does not change is
trivial, and therefore will not be discussed here. The other two scenarios, however,

are valid for further discussion.

18

3.3.1 Concern evolves by losing artefacts

In this scenario, the evolved concern is a subset of the original concern. When this
is translated to patterns, we see that the pattern that depicts the evolved concern
(later referred to as the evolved pattern) consists of roles and role bindings that can
all be found from the pattern that depicts the original concern (later referred to
as the original pattern). In fact, the evolved pattern actually consists of the ezact
same set of roles as the original pattern did. The actual difference is that some of
the roles in the evolved pattern are not bound to any repository elements, simply
because these elements do not exist in the evolved software artefact repository. This

is illustrated in Figure 3.2.

: Pattern)
| | | |
<<r0|e|hinding>> <<m|e|binding>b <<r0|e|binding>> <<r0|e|bindingb> Concerr oo/
T T T T T T T T T T, I A ————
‘ : Repository Element ‘ ‘ : Repository Element | ‘ : Repository Element | ‘ : Repository Element ‘ Reposjto!y

(a)

: Pattern
- - _|Unbound roles
S Ranl— — - -
. - -~ —_— . - =

Concerm tool

| |
<<rn|e|binding>> <<r0|e|hinding>>
‘ : Repository Flement ‘ ‘ : Repository Element ‘ Reposjtory
(b)

Figure 3.2: (a) The original pattern with all roles bound, (b) the evolved pattern
with unbound roles

From the set of roles in the evolved pattern, we can separate those that are bound
to a repository element and those that are not. The set of bound roles is actually
the evolved concern, i.e. what is left of the original concern after the software has
evolved. The set of unbound roles is the change in the concern. Both pieces of

information can be useful, though usually in different situations.

3.3.2 Concern evolves by gaining artefacts

As was mentioned in Section 2.5, this scenario cannot be realised without stakeholder

help. Unlike in the previous scenario, this time the evolved pattern has actually

19

expanded its set of roles and role bindings. Finding these new roles and bindings
is impossible independently. If the original pattern was formed by some kind of
systematic rule (e.g. pattern consists of all repository elements whose name starts
with the word "Abstract"), the evolved concern could perhaps be found by applying
this rule to the evolved software. However, assuming this is what is wanted at all

times will most likely eventually lead to undesirable results.

A relatively common scenario is the changing of an artefact that is bound to
a pattern. In practice, this can be understood as the concern losing an artefact
and gaining an artefact, as was mentioned in Section 2.5. On the pattern level,
this situation is problematic only if the change that occurs in the artefact somehow
changes the way the artefact is perceived from the outside. An example of this
could be the changing of the artefact’s name. However, as long as the artefact

seems unmodified from the outside, any changes inside the artefact are allowed.

4. IMPLEMENTATION OF THE CONCERN
MANIPULATION TOOLSET

This chapter discusses the implementation-specific details of the thesis work. The
implementation environment is introduced along with some key software. The im-
plementation of the different tools is discussed in depth and the implementation

methods and philosophy are expressed.

4.1 Implementation environment

4.1.1 Eclipse

Eclipse [Ecl| is an open source, platform-independent integrated development envi-
ronment (IDE). It has become one of the most (if not the most) popular tool for Java
development, especially in the open source community. Eclipse is actually a collec-
tion of frameworks that fully support extending the IDE into whatever direction
needed. This means that there are extensions to Eclipse for developing in languages
other than Java, for developing to embedded devices, for controlling web servers and
application servers from within Eclipse, etc. All the different added features (as well

as the ones that come with Eclipse) are called Eclipse plug-ins.

4.1.2 Rational Rose

Rational Rose |Ros| is one of the older UML CASE-tools. Its history and devel-
opment is entangled with the history of UML, as UML itself was created by three
famous methodologists, James Rumbaugh, Grady Booch and Ivar Jacobson, who all
worked at Rational at the time. At one point, Rose was seen as the de facto tool
for UML modelling. It still continues to be in use in many of the world’s largest
software companies, though it is no longer in active development. It only supports

UML 1.4, so it is in the process of phasing out as the industry moves more and more
towards UML 2.0.

21

4.1.3 Rational Software Architect

Rational Software Architect [RSA| is an IDE developed by IBM and Rational (cur-
rently owned by IBM). It is built upon the technology used in Eclipse, but it extends
Eclipse’s feature set significantly. One of the central features in RSA are its UML
modelling capabilities. It also enables software engineers to do model-driven de-
velopment [OMG] due to its code generation capabilities and it maintaining a link
between UML entities and program code. It is meant to replace Rational’s previous
modelling tool, Rational Rose, as the industry standard for UML modelling as it
fully supports UML 2.0.

4.1.4 INARI

Integrated Archirecting Environment (INARI) [HamO05| is the programmatical
bedrock for the concern toolset. INARI is a prototype toolset itself, intended to
enable architects to do model-driven development. It is a long-running project that
was first developed on the Eclipse platform and later ported onto RSA. INARI relies
heavily on a UML modeller. During the Eclipse era this modeller was an external
program, Rational Rose. The newer, RSA-based version of INARI uses RSA’s built-

in modeller.

The original implementation of the toolset was created as an Eclipse plug-in, on
top of the Eclipse-based INARI. After most of the coding work had been finished,

the toolset was ported onto INARI’s RSA-version. The INARI UI can be seen in
Figure 4.1.

22

& JavaFrames - demomodelZ: Main - Eclipse Platform [BEX]
File Edit Mavigate Search Project Diagram Run ‘Window Help
. Q- |- [fora —— =IF =] - - B -0 - o - =RE=R T [T | ¥ saveFrames
P rchitecture 12 > = 0| %4 *demomodelz.emx | [demomodelz::Main £2 a
ERET palette ’
® Models s [Select
MYC «interfaces
@® © Modelinterface CD
- UML Common
Use Case Diagram
© Rubberwheelvehicle - =4 E
€ (- Composite Structu...
[Aactrece |
[Deployment Diagram
| — = Component Diagram
(= Class Diagram
Geommetric Shapes
Concern = e
N (= Java *
repository i Packags
B (@ Class
view € Interface
| o ¥iew | A Extends
— # Implements
o diaw o
Models " asmiotion
©car © Train

RSA modelling

«instantiates» «instantiates»
% view

(3 ModelFactory

4 description is not avalable.

) Pattern View ©0 . Model Explorer | Properties | Pracess Advisor >~ =0
Borte Qo oot QL aberartiodel

& MW
B {absracttodel:

B Controller
B view
Concern view, listing
[defaultSpecializationCardinality = -: A
all concern elements defoultSperiaizationtiame = 51 rlehiame Concern
defaultTemplate = STI: <text> . 3
desarotian = STI: properties

insertLocationTag = STI: eodelnsertiorPoint
taskDescription = STI: Provide an UML class For the role* <#:rolebame > [v]
Z I

Figure 4.1: INARI environment Ul

4.2 Tool Implementation

Early on in the thesis project, a decision was made to focus on enabling the concern
operations to work on UML entities. While there is no reason why the operations
themselves could not be used with code files, packages, documents or any other
types of software artefacts, UML entities were seen as the best alternative when

illustrating the uses of the concern operations.

Another early design decision was to create each tool in the toolset as a separate
plugin, as shown in Figure 4.2. This decision was driven by several different factors.
Firstly, it was intended from the beginning that the set of implemented tools would
be later on supplemented with additional tools. By defining a common parent class
for all the tools and separating them from each other by dividing them into different
plugins, it also becomes easier to create new tools for the toolset. Secondly, the tools
are relatively independent from one another. Separating them into different modules
further underlines this fact and hopefully limits the amount of implicit dependencies
between the different tools.

During the implementation, the code had to be ported from Eclipse to RSA, as

23

I

==Pluglh==
ConcernTools

/ | Y
d ' \
s | “,
s | S,
A | -,
| , / —| v 4\1‘
==Plugln== ==Pluglh==
==Pluglr== 5 v ot
Patternizer QUET}' unner ersiontimerence

Figure 4.2: Structure of the different concern toolset plugins

the underlying platform, INARI, evolved. This was anticipated from the beginning
of the project, but was not deemed to be problematic due to the fact that RSA is
based on Eclipse. However, the fact that RSA is using an older version of Eclipse
than what was used to implement the tools caused some problems. Namely, the
old code had to be downgraded from Java 5.0 to Java 1.4, as RSA did not support
some of the features found only in 5.0. This unfortunately caused some deterioration
in the quality of the code, as many Java 5.0 -specific features had been used and
were difficult to re-implement with 1.4. However, from the user point of view this
operation caused hardly any changes to the toolset, disregarding some possible minor
change in performance and user interface details.

The implementation work can be drawn roughly into five independent phases:
creating user interfaces for all the different tools, building a parser for the query
language, creating a tool for the creating of the initial concerns, creating a tool
for running the queries and creating a tool for tracking concern evolution. These

different phases are covered in the following subsections.

4.2.1 User interface

The creation of the user interfaces for the tools was greatly dictated (but also aided
by) the fact that all of the tools were implemented as Eclipse plugins. Eclipse offers
an internal workbench UT -plugin to aid plugin developers in creating user interfaces
for their plugins. On top of the workbench UI, which defines attachment points to

which the developer may attach her plugin on the user interface level, the Eclipse

24

plugin developer SDK also offers the Standard Widget Toolkit (SWT) [SWT| and
the JFace framework. These contain a considerable amount of readily usable tools,
from low-level "widgets" such as buttons and text boxes (from SWT) to higher level
constructs such as dialogs and wizards (from JFace), that free the plugin developer

from having to re-invent the wheel in terms of user interface development.

The ideology behind the UI design was to keep everything as simple as possible,
but at the same time offer the user a clear route to access all the different function-
alities. It was also important that the Uls of the different tools were consistent in

appearance.

The most challenging of the tools, in terms of Ul implementation, was the pat-
ternizer tool (Figure 4.3). Not only is the UI set-up quite complicated with many
different composite elements, but the tool Ul also included several dialogs and wiz-
ard pages. To complicate matters even further, the Ul was built so that the tool
could later be extended with new element and constraint types, which are more
thoroughly discussed in Section 4.2.3. All in all, implementing the Ul made up a

significant part of the entire implementation.

4.2.2 Query language

A parser for the query language, which was defined in Section 3.2, was implemented
using ANTLR (ANother Tool for Language Recognition) [Par]. ANTLR is one of
many parser generators available for Java. It was chosen due to its relative simplicity
and its near-direct support for EBNF, in which the query language was originally
described. ANTLR was used to generate a parser/lexer pair for the language using a
EBNF-like language as input. The ANTLR input code can be found in Appendix 1.
The generated parser is used as a validation and navigation tool when interpreting
user-defined queries. It translates the query into an abstract syntax tree (AST), in
which form the execution of a query is relatively simple, regardless of the complexity

of the query.

After the AST has been formed, executing the query is a matter of traversing the
tree from top to bottom (i.e. from the root node to the leaf nodes) while executing
sub-parts of the query and passing the results of those as parameters to the next
part. The order of execution for these sub-parts is defined by the EBNF grammar.
The ANTLR-generated parser takes care that the correct order is represented in the
AST.

Due to this EBNF-driven approach to the language design, changing or supple-

menting the grammar requires only little change to the actual code. All that is

25

required is modifying the ANTLR description to be in accordance to the new gram-
mar and regenerating the parser. Of course, modifying the grammar is only a part of

the job: the functionality of the possible new operations must also be implemented.

4.2.3 Patternizer tool for creating concerns

At the beginning of this thesis project, it was decided that a tool was needed to
streamline the creation of the initial concerns, on which the operations could be
used. This tool, shown in Figure 4.3 came to be known as the patternizer (named
after the use of patterns to represent concerns). The patternizing tool made it
possible for the users to select which element types they wish to include into their
concern and then to specify constraints that would further determine which elements

are actually bound.

Start constraint ¢ - Y
creation wizard \@ Patternize concerns

M3 of result pattern: | Security|
Choose whidglements are patternized From the model;

v Classes: \ [Packages:

Add/remove constrainks

Constraints Canstrainks

MAME: "Securiby. " (regex)

[Operations: [Akkribukes:
Element
ty pes Constraints Constraints

M itfases: List of currently

defined constraints

Constraints

Messages

oK | Cancel

Figure 4.3: Screen shot of the patternizer tool user interface

The element types and their possible constraints were based on those of UML, as
at this point it had already been decided that the implementation would be restricted
to UML. As these UML-specific constraints are of little use outside UML, this design

26

decision restricts the patternizer to creating concerns of only UML models. Future
versions may include functionality to bind artefacts that do not belong to the UML

environment.

The tool works by iterating through all the elements of the active UML model,
checking whether or not the current element corresponds to the element type and
constraints specified. When it finds a match, it adds the found element to the
resulting pattern (or concern). The set of available constraints depends on the
element type. For example, it is logical to include a constraint for a class element to
examine if a class is a generalisation or a specialisation of another class. However,
the same constraint does not work if patternizing packages. This means that the set

of possible constraints is unique for each element type.

Many of the constraints use regular expressions. For example, for the name
constraint (a constraint that filters unwanted elements based on their names and
can be used with all element types) the user may define a regular expression for
the name of the element. The element is included into the concern if and only if
the name of the element matches the regular expression. The wizard for assigning

constraints for a UML element is shown in Figure 4.4.

The patternizer was later extended to support adding elements manually to the
active concern mapping straight from the model diagram. This functionality is
illustrated in Figure 4.5.

@ Constraints

List of currently
defined constraints

27

—
Zurrent conskrainks: /

MAME: "Security, " (reges:) -

Add new. .. I Remove selected |

i @ Add constraint

QK |

Select the constraint bvpe

The actual constraint:
in this case a
regular expression

List of available
constraint types

Sy

Select bype:

" NAME

" YISIBILITY
15 _ABSTRACT

¥ STEREOTYPE
" INHERITAMNCE

@Add constraint

/

Give the reqular expressigh For the element

skereotype constraink

= Back. I et = I

FEimi

Define regex: /

Security,*

Figure 4.4: Screen shot of the constraint creation process

1 |
winterfaces

. & ModelInterfac
Add UL

=
ol
- - &dd Diagram
m Add Mote

é Fun Yalidation

Add to current pattern

=] show Properties Yiew

Propetties

< Back. | Mt = | Finish I Zancel
' Pattern Wiew &3 Model £

Patkern Yiew (fmandatary 0, opkional
=€ MewPatkern
[Modelinterface

Figure 4.5: Adding a UML interface element to the active concern mapping by hand.

28

4.2.4 Concern operations

When designing the implementation for the query tool and for the various concern
operations (screen shot of the query tool shown in Figure 4.6), some details had to
be carefully addressed beforehand. It was clear from the beginning that the set of
operations should in no way be limited to the ones we had decided to implement. As
the grammar was designed to be extendible in the future, the same philosophy should
be employed with the implementation of the operations. This thinking resulted in
writing the code so that adding new operations would be relatively simple and, more

importantly, would not affect the execution of existing operations.

r@' Run QGuery ﬁ

Mame of result patternfconcern

| ResultPattern
Available patterns/concerns
(g Concerns

{F) Security Available
& Logging COncerns
& U

Available
operations

Query in textual form

Operatlu

Error messages etc.
Querv forun

| Securiby & Logging

Messages

QK | Cancel ‘

Figure 4.6: Screen shot of the query running tool user interface

Another thing that merited extra consideration was the chaining of several op-
erations to form complex queries. This issue was simplified by the fact that the
separately generated parser would create a directed tree of the different operations,
which was easy to follow from top to bottom while executing operations one by one.
The only problem left to be resolved was how to combine the middle products into
the final result. All middle products of a complex query are concerns themselves,

but from the point of view of the user they are not very interesting. A mechanism

29

had to be crafted to enable the use of concerns for middle products without filling

the concern repository with unwanted concerns.

The implementation of the operations became more complex because of the fact
that, especially for operations derived from the mathematical set operations, a heavy
use of recursion was required. There was also a number of situations where there
was no clear way to implement a certain operation for certain parameter concerns.
As an example from UML, imagine a situation where we slice a concern with another
concern, the latter consisting only of a single, empty UML package. This could be
interpreted in a number of ways. For example, the package found in the slicing
concern (e.g. the concern that slices the other concern, see Section 2.4 for a more
in-depth explanation) may be understood to mean the package and also every other
element inside that package (analogous to for example removing a directory in a file
system). On the other hand, it can also be interpreted so that the slicing should have
any effect to the target concern only if an exactly similar UML element structure is

found. In this case, exactly similar would mean an empty package.

These questions are left open by the theoretical definition of the operations,
simply because they are dependent on the chosen implementation. The theory
cannot dictate implementation-level details and the end result is always formed
from the subjective decisions of the implementer. For the scenario described above,
it was decided that this particular implementation would treat UML packages in
the same manner as directories in a traditional file system. That means that if the
slicing concern consists of packages, the packages found are removed with whatever
content they may have. However, if the slicing concern consists of packages and, for
example, UML classes inside those packages, the elements targeted to be sliced are

only those classes that can be found from those packages.

4.2.5 Version tracking tool

The implementation of the version tracking tool, shown in Figure 4.7, was quite
straightforward. The functionality of the tool is quite simple: it goes through the

original concern and tries to find elements from the model that are similarly named.

At one point during the development process, the version tool was planned to be
more complex. It was envisioned that the tool would include support for analysing
the structure of the model to find structural similarities between the old and new
versions of the model. The tool would also be able to successfully guess which
new elements would be included into the evolved concern as the underlying model

evolved. While determined in Section 2.5 that there is no absolute way to say which

30

Name of the
resulting concern

@' Version difference /

Result pattern name:

| ResultPattern

Messages

0K | Cancel

A

Error messages efc.

Figure 4.7: Screen shot of the version difference user interface

elements are to be added to the evolved concern as the model evolves, one can al-
ways make educated guesses. Unfortunately, for the system to work the "guessing
algorithm" must be very sophisticated to avoid getting constant false positives (e.g.
elements included into the evolved concern that do not actually belong there). Im-
plementing such an algorithm was seen as beyond the scope of this thesis, but could

be implemented as a future improvement of the toolset.

As it stands, the version tracking tool works more as a conveniency tool to stream-
line the transition of concerns from an old model to a newer one, rather than a
full-fledged concern evolution analysis tool. However, justification for its existence
is irrefutable. It fills an important void in the toolset, enabling the toolset to be

used in a constantly evolving environment.

5. CASE STuUDY

A case study was undertaken to test the applicability of the concern manipula-
tion toolset in a practical environment. The toolset was to be tested on a reverse

engineered model of Nokia’s [Nok| ISA software platform.

5.1 Background

ISA is a proprietary software platform created and maintained by Nokia. It includes
the operating system used in all of Nokia’s Series 40 mobile phones. It is a closed
system that is controlled by Nokia alone and does not support native third-party
applications (Mobile Java applications provide an exception to this rule, though

their access to the OS core functionality is very limited).

ISA contains a wide array of functionalities, ranging from user interface driven
applications, such as the phone book or the calendar, to complex, hardware-oriented
functionalities such as telephony or camera operation. All this dictates that, on the
source code level, ISA is a fairly complex system and dispersed in nature. This is
not aided by the fact that ISA is in a continuous state of evolution to include more
features and functionalities. Also, as is quite commonly known, software evolution
tends to further increase complexity and weaken the understandability and main-
tainability of a software system, regardless of the quality of the implementers and

the maintainers. [Har03]

Another feature underlining the dispersed nature of ISA is that for each product
(e.g. mobile phone) that is running ISA software, a configuration specific for that
product exists, defining which of the features of ISA are to be included in that
product. No one mobile phone contains all the possible features that ISA contains,
so what is actually installed on a product is always a subset of the entire ISA feature
set. These characteristics of ISA provide a fine test environment for the concepts

and tools presented in this thesis.

32

5.2 Goals

ISA can be understood as a collection of compilation units containing modules,
each of which is dependent on a number of header files. At some point during the
development, a design decision was made to place the different header files in a single,
global directory to streamline the compilation. However, as the platform evolved
and grew, the number of header files placed in the global directory multiplied and

reached a size that started to cause more problems than it solved.

@ D Uze Caze View Global headerfile

— D Logical Yiew / rEpDEltUly
-7 «<I54 Package: » include
- |:| <154 Packager» source —_— . .
503 <<I54 Packages» cul Nested compilation
+-[J «<I54 Packager» eul 1 units
+- 7 <<I54 Packages»eul 2
=3 «<I54 Packager» cul_3
7 <<I5A4 Packages»eul 2 1
3 <«<ISA Packagerreul 3 2
3 <<I5A Packager»eul 2 3
3 <<I54 Packagesrcul_3 4
b zir ___,--—""""—"E"‘ module
Bl <<Libran:>rmodule29.a
= Associations
=07 «<ISA Packages» eul 4
—-CJ <«<I5A Packageyreul_4 1
ETY
B <<Librans s module30.a
= Aszociations

+

4[] [E

Figure 5.1: Structure of the ISA dependency model (element names changed for
confidentiality reasons)

The primary objective of the case study was to help solve the aforementioned
problem: to reduce the amount of dependencies between ISA’s global header file
repository and the different modules. To achieve this, Nokia Research Center (NRC)
created a model that focused on presenting the hierarchy between different compi-
lation units and modules and the dependencies each of those modules have with the
header files. One of the goals of this case study was to identify header files that
were endpoints for only a small amount of modules (0-3 dependencies). Another

goal was to find the specific compilation unit, under which all modules dependant

33

on a specific header file resided. The results could then be used to find an optimal

location for each header file in the hierarchy of compilation units.

The data on the modules and their dependencies was presented as a Rational Rose
UML 1.X model. An example screen capture of this model can be seen in Figure
5.1. In the model, the modules that are dependent on the header files are presented
as UML classes (tagged with the stereotype «Library»), while the header files are
depicted as UML interfaces. Compilation units are depicted as UML packages (with
stereotype «ISA Package») and the dependencies as UML dependencies. The model
consists of the (global) repository of header files and a hierarchy of compilation units,
each containing one or more modules. To show the dependencies for a single module
more clearly, the model also contains a view for every compilation unit showing all
the modules and the header files those modules are dependent on. An example of
such a view can be seen in Figure 5.2. Though the view is associated to a specific
compilation unit, that does not mean that the header files presented in that view
actually reside in that compilation unit in the hierarchy, nor that they should reside
there. The view can be understood as a cross-cutting view of the system from the

perspective of that compilation unit.

5.3 Main Results

The key in solving the problem described in the previous section is the neighbour-
hood operation, defined in Section 2.4. Running the neighbourhood operation on
a concern that consists of a header file returns a concern that lists every module
that has a dependency relationship with that header file. The result concern also
contains the structural location of the found modules, in a similar manner, as can
be seen later in Figure 5.3. After getting this result concern, it is straightforward to
deduce the number of dependencies for that header file, as well as for the topmost

compilation unit in the hierarchy.

Some modifications to the original concern query tool were made to facilitate
running the operation for all of the header files as a batch run. It was decided that
due to the thousands of resulting concerns, the results of the batch run would be
presented in a more convenient format instead of the result patterns in the INARI
tool. It was argued that browsing the results in INARI would be too slow in terms
of usability and performance.

Instead, an XML-based [XML| result format was developed, allowing only the
essential parts of the resulting data to be presented. For each header file, we would
only present information on the name of the file, the amount of modules dependent

on it, the topmost compilation unit containing those models, and the location of

O

headerls.h

(fram include)

headerls.h

O

header325.h !

(from include)

(from include) 1

" "
"]
" [

headerZUU.h‘fﬁ .

(from include) . ' !

\\ kl kl

- . '

o - . !
L

L " Lo

header20.h Tl .

Header
files
header2&.h
header.2.h
(from include)
A _ﬁj.(frnm include)
; s headerz23.h

:';.? (from include) O
h . . . % header3zzh

(from include)

(from include)

module217.a

v ,:"ﬂhmﬁdule
"1 ==Library=> / =

- headerll5.h

T (from include)

headerlss.h zr”F sz ;J .: I: l*‘\\\ -‘H"'u._\ -E}O
(fram include) ,z*z zzrr ;’J r-: :'. \‘1‘ \“\\ h“nn headerlls.h
-_z'--' ,'J ,’J JI : 1‘\ \‘\ iO (from include)
L S RN
O xzr rf :' = . . headerl41l.h
headerl87.h rrJ r: .rl : O \»::',‘ (from include)

(fram includejrfJ 6 :'
& ;
O header221.h.

headergs.h

headerl&l.h

rfram include) -

rfrom include)
headerz01.h

rfrom include)

header29.h

O (from include) paoderziah

(from include)

' (from include)

34

Figure 5.2: A screen capture of the ISA dependency model (element names changed

for confidentiality reasons)

35

PRl wersion="1.0%" encoding="UTF-5f 2>
~headers>
<header devendencies="2Z" name="headernamel.h'
top-package="ocul_1":>
<hierarchvy>
<directory name="Logical VWiew'™:
<directory name="cul':
<directory name="cul 17>
<directory name="cul 1 17>
<class nawe="modulel.a™ />
< /directorys
<directory namwe="ou 1 1 27
<o lass nawe="moduleZ.a™ />
</directorys
</directorys
</directorys
</directorys
</hierarchys>
</ header>
<header dependenci
top-package="T
<hierarchy /> | Filter dependencies: Al v
</ header>
<header dependenci
top-package="1
<hierarchy />
</ header>
<header dependenci

Headeifile Dependencies Top-level package

=
1
: Logical View

1 cul

' cul_1

: cul 11
1 B modulela
1

1

1

1

L

headername 1. h 2

cu 112
B module2a

headernarme? h] NO TOP PACEAGE

headernarne?. h 0 NO TOP PACEAGE

Figure 5.3: Converting the XML result into HTML (element names changed for
confidentiality reasons)

the dependent modules in the compile unit hierarchy. This XML-data was then
transformed into HTML [HTM] using XSL [XSL]| transformation. In HTML-form,
and with the help of some JavaScript, the result data could be ordered by the
different features or filtered according to the amount of dependencies. A mock-up
example of the resulting XML- and HTML-formatted data is shown in Figure 5.3.

5.4 Other uses for the concern manipulation toolset

The case study that was requested by NRC, although clearly a valid proving ground
for the concern manipulation toolset, was somewhat limited in scope to what could
be done with the toolset. For that reason it is necessary to study other potential

scenarios where the toolset can be used for benefit. These scenarios include tracking

36

the evolution of the concerns in the ISA model, as well as studying how different

product configurations relate to one another.

5.4.1 Tracking evolution of ISA models

The dependency model received from Nokia was based on a specific weekly build of
ISA. To elaborate the case study, we were able to get access to another model based
on newer build of ISA. While it is outside the scope of the original boundaries of
the case study, this offered an opportunity to test the version tracking aspect of the
toolset. Unfortunately, due to the fact that the complete result data of the original
case study was presented only in XML/HTML-format, the version tracking could
only be done to single header files at a time instead of the entire studied data. A
similar, customised batch operation could have been implemented for studying the
evolution of the different dependencies, as was done with the original case study.
However, it was decided that this did not fit into the scope of the thesis and thus

the idea was discarded.

What was learned was that, indeed, transition from an earlier version of the model
to a newer one was easier by using the version tracking tool. After the individual
concerns, bound earlier to the old version of the model, were remapped to the new
version, the user only needed to go through the concerns one by one, delete the
elements that had not been bound and add those thought to belong to the concern
in question in the new version of the model. Of course, concerns that had been
created as a result of queries can usually not be remapped so easily, because the
original query result was for the older version of the model. In such a case, to get
a valid concern one must first remap the original, fundamental concerns that had
been used as parameters for the query and only then re-execute the query. This is
the only way to be absolutely certain that the contents are in accordance with what

was expected.

One specific evolutionary feature that was was the change in the global header
file repository. Since the dependency analysis was done for both of the versions of
the dependency model, we already had a concern mapping containing all the header
file elements from both of the models. To examine the evolutionary change in the
model, the version tracking operation was run to the header concern in the later
version in regard to the older version’s model (i.e. the header elements of the later
version were remapped to the older version). From the result it was possible to
determine what header files had been added to the model between the two versions,
as those elements understandably could not be bound to the elements found in the

older version. The operation could have also been executed in the opposite direction,

37

in which case we could have learned which header files had been dropped from the

system between the two versions.

5.4.2 Mapping and studying product configurations

Another place where concerns can be used is in the mapping of the different prod-
uct configurations in the model. As was previously mentioned, no single product
contains the entire set of modules ISA has to offer. Defining each configuration as
its own concern would allow us to study how the different configurations overlap
and relate to one another. Also, by using the version tracking tool, we could very
easily see if there is a problem with one of the product configurations due to the
evolution of the system: elements of a certain product configuration concern could

not be entirely mapped to the new version if some of the elements were missing.

As a practical example, let us assume there exists a concern mapping that maps
all the required modules to build a certain product, hereafter denoted as product A.
After the underlying platform evolves, we run the version tracking tool for product A
in respect to the new version of the model. The resulting concern mapping shows us
whether or not the artefacts that were earlier needed to build a working product A
are still present in the model. Missing artefacts may mean that a mistake was made,
however, they may also simply mean that some artefacts have been combined, but
the contents still exist. Nevertheless, the original product configuration is clearly no

longer valid.

5.4.3 Mapping product features as concerns

The following scenario somewhat overlaps with the one presented in the previous
section. The premise is that, instead of products, we identify functional features
(e.g. the calendar) and create concern mappings for those. After we have done this,
we can create any combination of features to form a new product configuration.
By using the union operation we simply combine all the different feature concerns
into a composition concern that is bound to all the necessary artefacts for that

configuration.

The usefulness of this approach is limited by the fact that most of the features
may already be split into their separate modules and are therefore already mapped.
Whether or not this is the case is unclear from the models that we worked on. The
models are clearly heavily modularised, but whether a single module equates to a

single feature or service, we do not know. If it were commonplace that the features

38

would cross-cut different modules, this approach could be seen useful, as it would

define clear boundaries for a specific feature.

5.5 Tool evaluation

The case study gave an interesting perspective to the theory and implementation
of the concepts presented in this diploma thesis. Some problems materialised upon
applying the tools to the case study. One of these was the performance of the tools
when handling large base material. Manipulating and generating results from the
base models required processing time of several minutes up to an hour, depending on
the complexity of the action. While it is good to remember that the analysed model
was quite substantial in size, there is no denying that the tool implementation could
have been more efficient performance-wise. As was mentioned in Section 4.2, one of
the implementation philosophies was the possibility to extend the toolset at a later
time. As it is well known that extensibility often implies a decrease in performance
(and, equally importantly, vice versa), the performance problems did not come as a
surprise. To further explain the limitations in performance, it should also be noted
that the toolset was built upon an extensible architechting environment (INARI),

which in turn was also implemented on top of an extensible platform (Eclipse).

Another, less predicted deficiency were the constrictions set by the user interface
of the tools, especially when analysing large models. It was clear from very early
on when implementing the case study that the user interface could not meet the
requirements of the case study and thus had to be bypassed. Improving the user

interface to scale for larger tasks is a candidate for future development.

On the positive side, the case study proved that there indeed is use for tools such
as those implemented in this project. Analysing ISA by hand would have required
considerably more time than it did when using the toolset to do the mechanical work.
It was also fairly easy to customise the toolset to fit the specific needs of this case
study (i.e. to create a single new action that composed the existing functionality in
a way that was needed by the case study scenario). This is a positive consequence
of the decision to emphasise extensibility during implementation. It can also be
argued that time saved with a better performing tool would have been lost when

customising the tool for this specific need.

Also, even such a restricted case study proved that there is much promise in
the tool proposed. It is relatively easy to envision a number of similar analysis-
and enhancement -driven scenarios, where the toolset would come in handy. In
such situations it would be good to have a customisable multi-purpose set of tools
that can be modified with little effort to fill the respective needs. That said, it is

39

important to note that the toolset implemented is only a prototype and as such
requires further development and enhancement before such roles can be realistically

envisioned.

All in all, the case study can easily be called a success. Not only were the
requirements of the client met, but the client was also pleased with the results and
the way they were portrayed. It is still unclear whether the toolset will be taken into
active use by the client. However, the fact that an additional analysis was requested

for a newer version of the model, does seem promising.

6. CONCLUSIONS

Concern-based decomposition of software is a powerful tool in managing the ever
increasing complexity of software systems. This thesis presents a set of mechanisms
that can be used to take advantage of a software system organised into concerns.
It also argues that the correct use of these mechanisms will lead to a better under-

standing of complex software systems.

Although the implementation of the concepts presented in this thesis is partly
constrained to UML, the concepts and ideas scale beyond UML to practically any
environment or platform. In fact, there is no reason why a similar implementation
of these concepts could not be made for environments outside even the scope of
software engineering itself. Controlling complexity and enhancing comprehensibility

is certainly important in fields other than just software engineering.

The primary goals of this thesis were to serve as an example implementation of
such a mechanism and as a proof of concept. The implemented toolset was very
successfully used in a non-theoretical environment, which meant that the original
expectations were surpassed: the implementation went beyond being a mere proof
of concept to being a tool justified to exist in its own right. Still, much work is left

to be done and, even in the scope of this thesis, more could have been done.

The main positives of this diploma thesis are that the originally quite humble
goals of creating a toolset for creating and querying concern mappings were reached
and, on most fronts, surpassed. Many new ideas were conceived and included as
part of this thesis work. The final suite, while far from perfect, is a fully functional
and feature-rich tool that gives an array of opportunities and possibilities to those
that appreciate the concepts behind it. The case study was the final proof that uses
and interest for such a tool indeed exists, and that the implementation itself was

mature enough to cope with the challenges placed upon it in the case study.

Some aspects of the thesis project still left room for improvement. For example,
now that the benefit of hindsight is available, setting the final boundaries for the
thesis was done too late in the project. Though it might have limited what could
have been accomplished in this thesis, setting clearer boundaries earlier into the

project would have made a difference in the writing process and would have also

41

made it easier to schedule the entire project. This is especially important when
bearing in mind the inexperience of the writer. Likewise, work on the case study
had begun too late. Since the underlying theme of this thesis is largely dictated by
the case study, the fact that it was completed so late in the project caused some
complications in this thesis’ writing process. These were clearly the most significant

deficiencies faced when writing this thesis.

Implementing the concern manipulation toolset and writing this thesis was an
effort that took close to nine months of full-time, active development. When ex-
amined from that perspective, it is truly a pleasure to say that the project was
successful and filled all the expectations that were put upon it. From an extremely
subjective viewpoint, there seems to be no reason why the concept of concern-based
decomposition could not be applied successfully in many future situations. What
remains to be seen is whether it is perceived useful enough to become commonly

applied in software development.

42

BIBLIOGRAPHY

[Ando1]

[aWs]

[BZLO6]

[Dic|

[Ecl]
|Hal60]

[HamO5|

[Har03]

[HKO6]

[HKKO04|

[HTM]

[Kan03|

John A. Anderson. Manageable object-oriented development: Abstrac-
tion, decomposition, and modeling. Proceedings of the conference on
TRI-Ada °91: today’s accomplishments; tomorrow’s expectations, pages
199-212, December 1991.

IBM. alphaWorks research program. http://www.alphaworks.ibm.com/,
January 2007.

Silvia Breu, Thomas Zimmermann, and Christian Lindig. Mining eclipse
for cross-cutting concerns. In MSR ’'06: Proceedings of the 2006 inter-
national workshop on Mining software repositories, pages 94-97, New

York, NY, USA, 2006. ACM Press.

Merriam-Webster Online Dictionary. Concern. http://www.m-w.com,
October 2006.

Eclipse Foundation. Eclipse. http://www.eclipse.org, January 2007.
P.R. Halmos. Naive Set Theory. Litton Ed. Publ. Inc., 1960.

Imed Hammouda. Multi-Dimensional Structuring of Software Systems:
Tools and Applications. PhD thesis, Tampere University of Technology,
2005.

Maarit Harsu. Ohjelmion ylldipito ja uudistaminen. Talentum, first edi-
tion, 2003.

Imed Hammouda and Kai Koskimies. Concern based mining of hetero-
geneous software repositories. In MSR ’06: Proceedings of the 2006 in-
ternational workshop on Mining software repositories, pages 80-86, New
York, NY, USA, 2006. ACM Press.

Imed Hammoud, Mika Katara, and Kai Koskimies. A tool environment
for aspectual patterns in UML. In Proceedings of WoDiSEE, pages 58-65.
IEE, May 2004.

World Wide Web Consortium. HyperText Markup Language.
http://www.w3.org/MarkUp/, January 2007.

Mohammed M. Kandé. A Concern-Oriented Approach to Software Ar-
chitecture. PhD thesis, Ecole Polytechnique Fédérale de Lausanne, 2003.

43

[KLM*97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,

[Mil56]

[Nok|
[OMG]

[0T00]

[Par]

[Par72|

[Ros]

[RSA|

[SRO2]

[Sun99|

[SWT]

Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In ECOOP, pages 220242, 1997.

George A. Miller. The magical number seven, plus or minus two: Some
limits on our capacity for processing information. 7The Psychological
Review, 63:81-97, 1956.

Nokia Incorporated. http://www.nokia.com/, January 2007.
Object Management Group. http://www.omg.org/, January 2007.

H. Ossher and P. Tarr. Multi-dimensional separation of concerns and the
hyperspace approach. In Proceedings of the Symposium on Software Ar-
chitectures and Component Technology: The State of the Art in Software
Development. Kluwer, 2000.

Terence Parr. Another tool for language recognition (antlr).
http://www.antlr.org, December 2006.

D.L. Parnas. On the criteria to be used in decomposing systems into
modules. Communications of the ACM, 15(12):1053-1058, December
1972.

Rational Software. Rational Rose. http://www.rational.com/, January
2007.

IBM Rational. Rational Software Architext. http://www-
306.ibm.com /software/awdtools/architect /swarchitect/, January
2007.

Stanley M. Sutton, Jr. and Isabelle Rouvellou. Modeling of software
concerns in cosmos. In AOSD ’02: Proceedings of the 1st international
conference on Aspect-oriented software development, pages 127-133, New
York, NY, USA, 2002. ACM Press.

Sun Microsystems. Code Conventions for the Java Programming Lan-
guage, 1999. http://java.sun.com/docs/codeconv/, October 2006.

Eclipse Foundation. Standard Widget Toolkit.
http://www.eclipse.org/swt/, January 2007.

44

[THOT00] Peri Tarr, William Harrison, Harold Ossher, Anthony Finkelstein,

[TOHS99)

[UML]

[XML]

IXSL|

Bashar Nuseibeh, and Dewayne Perry. Workshop on multi-dimensional
separation of concerns in software engineering (workshop session). In
ICSE °00: Proceedings of the 22nd international conference on Software
engineering, pages 809-810, New York, NY, USA, 2000. ACM Press.

Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr.
N degrees of separation: multi-dimensional separation of concerns. In
ICSFE ’99: Proceedings of the 21st international conference on Software
engineering, pages 107-119, Los Alamitos, CA, USA, 1999. IEEE Com-

puter Society Press.

Object Management Group. Unified Modelling Language.
http://www.uml.org/, January 2007.

World Wide Web Consortium. Extensible Markup Language.
http://www.w3.org/XML/, January 2007.

World Wide Web Consortium. The Extensible Style Sheet Language
Family. http://www.w3.org/Style/XSL/, January 2007.

45

APPENDIX 1: ANTLR CODE

header {

package fi.tut.cs.practise.inari.queryrunner.parser;

class QueryParser extends Parser;
options {
buildAST=true;

defaultErrorHandler=false;

}

query: factor ((MERGE~|OVERLAP~|SLICE~) factor)* ;
factor: (EXCLUSION~|BOUNDARY")? primary ;

primary: ALLOWED_CHAR | LPAREN! query RPAREN! ;

class QueryLexer extends Lexer;

options {
k=2;
charVocabulary=’\u0000’..’\u007F’; // allow ascii
}
LPAREN A G
RPAREN D)
QUOTE . °*"°
MERGE R SN
OVERLAP &
SLICE =
EXCLUSION S SN
BOUNDARY L
ALLOWED_CHAR : ((’a’..’z’)[(’A>..7Z2°)[(°07..797))+ ;
WS N G
| ’\r> ’\n’
7\n)
7\t)

|
|
)
{ $setType(Token.SKIP); };

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

