
Theory-based Analysis of Cognitive Support in Software Comprehension Tools

Andrew Walenstein

Deparment of Computer Science,
University of Victoria, Victoria, B.C., Canada

walenste@csr.uvic.ca

Abstract

Past research on software comprehension tools has pro-
duced a wealth of lessons in building good tools. However
our explanations of these tools tends to be weakly grounded
in existing theories of cognition and human–computer in-
teraction. As a result, the interesting rationales underlying
their design are poorly articulated, leaving the lessons pri-
marily implicit. This paper describes a way of using ex-
isting program comprehension theories to rationalize tool
designs. To illustrate the technique, key design rationales
underlying a prominent reverse engineering tool (Reflexion
Model Tool) are reconstructed. The reconstruction shows
that theories of cognitive support can be applied to existing
cognitive models of developer behaviour. The method for
constructing the rationales is described, and implications
are drawn for codifying existing design knowledge, evalu-
ating tools, and improving design reasoning.

1. Introduction

When we speak of “software comprehension” we usu-
ally are referring to activities that humans do: understand-
ing, conceptualizing, and reasoning about software. In this
regard, a crucial aim of tools for software comprehension
is to assist and improve human thinking processes. Simply
put, software comprehension tool are considered “good” if
they support human cognition. There may be many other
reasons for why a tool is considered good (computational
efficiency, learnability, etc.), but its ability to support cogni-
tion is surely a central one. Ultimately, then, the explanation
offered for the design of a software comprehension tool will
need to rest on some account of which of its features assist
cognition and how.

It is important to be able to clearly articulate explana-
tions for why a tool is believed to support developer cogni-
tion. If the “claims” [4] about a tool are not made explicit,
it is extremely difficult to test them, to compare tools, or to
reuse design knowledge. Clearly, any claim about the cog-
nitive support provided by a tool will be at least partly psy-

chological in nature. So it seems prudent to desire that our
rationalizations be firmly grounded in well-received theo-
ries from cognitive science and HCI.

Unfortunately, software development tools are too rarely
analyzed for the psychological rationales underlying their
design. This makes it considerably less clear what general-
izable lessons can be drawn from the tool. For some of the
key lessons will relate to the cognitive benefits of the tools.
To grasp these, we must have “deep” psychological descrip-
tions of these benefits—not merely “shallow” explanations
at the technological level of visualization techniques, pro-
gram analysis algorithms, and interface features. The deep
psychological explanations make it possible to generalize
the lesson beyond the specific implementation context [8].

The problem is not so much that we have no knowledge
about how to build good tools—we have plenty of good
ideas and promising tools—but that we have lacked facility
in the theories and methods needed to articulate this knowl-
edge in a principled manner. It is also not the case that there
are no theories to draw upon; there are several existing mod-
els of software comprehension [24], and a wealth of cogni-
tive science is available to back any analytic efforts. In-
stead, the historically vexing problem has been putting this
knowledge to good use [3]: to know how to extract design
rationalizations from cognitive models. We have the tools
and we have the models, but too rarely do the two meet.

This paper proposes steps towards improving the analy-
sis of cognitive support in software comprehension tools.
The improvements come from a proposed theory-based
method for generating psychological rationales from cogni-
tive models. The method involves applying theories of cog-
nitive support to cognitive models. One particular reverse
engineering tool, the Reflexion Model Tool [13] (RMTool)
is chosen as a sample for a demonstration analysis. RMTool
is an interesting subject to analyze because it is a currently
topical reverse engineering tool, it stands apart from many
other tools in the way it supports reverse engineering, and it
has a design history that can be consulted [12].

It is worth reiterating that the main aim of the rationale
extraction exercise is to illustrate a method of theory-based

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

cognitive support analysis. The aim is not to propose new
theories, to argue the validity of any particular theory, or to
“prove” the superior qualities of RMTool. Instead, attention
is focused on methods for utilizing our existing theoretical
resources to extract the design rationales. Of course, a col-
lection of theories will be used in the paper, but should a
more suitable set of theories be chosen (or new, improved
ones become available in the future), the techniques for ex-
tracting rationales will remain largely the same.

Section 2 introduces the cognitive support theories that
will be used to extract the rationales. Section 3 briefly de-
scribes RMTool and covers its terminology, and Section 4 re-
constructs core rationales using the theories from Section 2.
Section 5 extends this theory-based rationale reconstruction
to additional aspects of RMTool. This illustrates that the the-
ories may be helpful for anticipating desirable tool features.
Finally, related work is briefly summarized in Section 6,
and conclusions and implications for software engineering
research are summarized in Section 7.

2. A simple cognitive support design heuristic

It is widely known that a variety of artifacts can aid
thinking and make problem solving easier. For instance,
consider the process of performing long division using pen-
cil and paper. Without pencil and paper (or a calculator of
some sort), most people cannot divide large numbers be-
cause their internal memory is quickly overwhelmed. Yet
with a pencil and a scrap of paper, even 100 digit numbers
can be readily divided. As Norman aptly states: “it is things
that make us smart” [17]. Artifacts can help solve problems
that involve hard thinking—and plenty of hard thinking is
involved in software development. The key to the long divi-
sion example is that partial results can be stored externally
rather than having to be remembered. Although this is a
simple example, it illustrates a generalizable principle for
supporting cognition: external memory can augment inter-
nal memory.

Over the years a variety of ways of assisting human
thinking and problem solving have been studied. A mot-
ley potpourri of theories and theoretical frameworks have
been advanced to explain how the support works. Rather
than attempt to comprehensively gather and reconcile these
theories, a limited collection of salient results are extracted
below. Specifically, three cognitive support theories are de-

SUPPORT THEORY SIMPLE EXAMPLES

redistribution shopping list, theorem prover
perceptual substitution line chart instead of table
ends-means struct. reification compile-mode in Emacs

Table 1. Several cognitive support principles.

scribed in Section 2.1. With these in hand, a simple de-
sign heuristic (theory) called the “greedy cognitive support”
heuristic is defined in Section 2.2. These resources are used
in subsequent sections analyzing RMTool.

2.1. Cognitive support theories

The essential quality of cognitive support is that it makes
human cognition easier or better. We say a “cognitive sup-
port theory” is a generalized statement about how and why
some abstract class of artifacts (and their uses) manage to
make cognition better. The fact that the statement is gener-
alized is important: it is not specific to a fixed set of artifacts
or tasks. For instance, although it might be argued that pa-
per and pen support cognition when doing long division, (a)
the principle for the cognitive support can apply equally if
the pen and paper are replaced with a computerized note
pad, and (b) the paper and pen could support many other
tasks.

Three cognitive support theories are briefly outlined
here: redistribution, perceptual substitution, and ends-
means structure reification. These are listed in Table 1.

Redistribution. The key idea behind redistribution is that
cognitive resources or cognitive processing that are “in the
head” can be moved outside and into the world [17]. The
example of long division is an instance of redistributing par-
tial results onto an external memory. Various types of re-
distribution can be considered by specifying what cognitive
resources or processing are being distributed. For instance
constraints on problem solving might be externalized [28],
previous problem solving states could be offloaded [27],
and inferences might be externalized to be performed by
electronic or mechanical symbol manipulation [20].

Perceptual Substitution. Human thinking is not uniform
in ease and speed: some classes [18] of operations are quick
and effortless, while others are slow and laborious. Certain
perceptual operations like edge detection are rapid and un-
noticeable, whereas deliberate reasoning is comparatively
slow and requires conscious effort. Artifacts can support
cognition by transforming a task [16] in a way that allows
fast operations to substitute for slower operations [10]. For
instance, changing a representation can allow for percep-
tual substitution [5] in which fast perceptual operations are
utilized in place of more complicated reasoning. A simple
example of a bar chart enabling visual search substitution
is shown in Figure 1. Answering the question “what cell
contains the biggest value?” is generally easier and quicker
with the bar chart (especially for large tables) since visual
search routines can be employed to search for the tallest
bar. The two representations encode “the same” [10] infor-
mation, but certain questions are answered more easily or
quickly with the bar chart representation.

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

A B C
13.45 17.03 15.89

A B C

(a) table of values (b) bar chart

Figure 1. Perceptual substitution example.

Ends-means reification. The classic formulation of prob-
lem solving is that it consists of search in a problem
space [15]. A problem space is a graph of the possible states
of the world connected by actions that can be performed to
traverse from one state to another. In this view, one way to
solve problems is to repeatedly consider the current state,
determine what possible actions can be performed, and se-
lect an action such that progress is made towards the goal.
Such a strategy has been called “means-ends” search.

In classical works on problem solving, the problem space
is represented entirely in the head. However it need not
be. Parts of the problem space may be reified (made con-
crete) by being embedded in representations and external
constraints [28]. In particular, it is often helpful to reify
the mapping of ends to means [19] at any point in the prob-
lem solving process. If the solver has access to the set of
means for progressing towards the goal, she can assume an
interaction strategy [27] of repeatedly examining the dis-
play for actions that will progress towards her goals. This
general form of problem solving has been called display-
based problem solving [9]. Being able to perform display-
based problem solving normally makes problem solving
more facile.

For example, consider the compile-mode in the pop-
ular editor Emacs.1 In compile-mode, an error list is
presented in a separate window and whenever the user se-
lects an error to correct, the list is scrolled to show only the
selected error message and any following ones. As a result,
the error list always shows only the immediately next oper-
ations to perform when correcting a program. The user can
proceed by display-based selection of error entries. That
is, the ends-means mapping remains reified in the error list
window.

2.2. Greedy optimization design heuristic

Given the three principles from Table 1, it is easy to for-
mulate a simplistic design heuristic as follows:

1. Maximize redistribution.

2. Substitute perceptual operators wherever possible.

3. Reify the ends-means mapping structures.
1This functionality varies between different Emacs installations and

configurations. The functionality described here is commonly found in
later versions (e.g., version 21.1.0).

This greedy heuristic is, of course, simplistic and will fail
when the costs of using a support exceeds its benefits. How-
ever it suits our use in this paper by generating as many
cognitive support ideas as possible.

3. Reflection model tool description

RMTool [13] is a prototype tool for reverse engineering
and software comprehension. RMTool was designed to be
used in situations where an experienced systems engineer
is trying to modify or evaluate a system she is unfamiliar
with. Because of her experience, she has a great deal of
knowledge that can be applied when understanding the sys-
tem. The engineer’s particular software development tasks
are not that important; it is only required that some under-
standing is needed of how the system is structured. The
main thrust is that she has some knowledge with which to
proceed, and so she is not forced to work “bottom-up” [24].

The reader is referred to the RMTool literature [13, 12,
11] for details about the tool. The overall gist of the tool
can be conveyed by describing the models it encodes and
operates over, and the general process of using the tool.

Low-level model (LLM) and high-level model (HLM).
It is assumed that knowledge about the software system may
be decomposed into (at least) two levels of abstraction. The
LLM encodes information about the software which is less
abstract than the information encoded in the HLM. Mathe-
matically speaking, both models are simply collections of
binary relations (represented using directed graphs) [11].
The nodes are normally intended to represent entities and
the edges relationships between them. A typical applica-
tion of RMTool uses the LLM to encode a graph of the call-
ing, data, or type relationships within a program, and the
HLM to encode the system’s modules and their relation-
ships. Typically, this type of LLM can be automatically
extracted from the source code. The HLM, however, is fre-
quently not explicitly represented, and must be reverse engi-
neered. This, in turn, requires an understanding of the code
and its modular decomposition. Loosely speaking, the LLM
represents the code of the system and the HLM represents a
proposed abstraction or summary of that system.

Mapping between HLM and LLM (MAP). A MAP is
a mapping from nodes and edges in the HLM onto nodes
and edges in the LLM. A mapping from a HLM onto one or
more LLM nodes means that the HLM node is thought to
summarize that portion of the LLM. For instance, a HLM
node representing a file system module might map down
onto LLM nodes representing functions for manipulating
files (open, read, etc.)

Reflexion model (RM). A reflexion model encodes the
ways in which an existing system “matches” or conforms to
a HLM and MAP. The RM is a graph with the same nodes as

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

Kernel Fault
Handler

FileSystemPager

21

21

21

Kernel Fault
Handler

FileSystemPager

LEGEND

divergences
convergences

absences

12

21

2

0

(a) HLM (high-level model) (b) RM (reflexion model)

Figure 2. Illustrations of a HLM and a reflexion model.

the HLM, but with edges indicating how well the relations
in the HLM are mapped by MAP onto the actual relations
in the system. Three different edges encode three different
aspects of this conformance. A convergence edge indicates
that the LLM contains an edge corresponding to the one in
the HLM. A divergence edge indicates that the HLM does
not account for one or more LLM edges. An absence means
the LLM did not contain an edge corresponding to one of
the edges in the HLM. The RM can be computed automati-
cally given the LLM, HLM, and a MAP.

Model Construction Method. The typical aim is for
the engineer to incrementally construct a HLM and MAP
such that they collectively summarize the relationships in
the LLM. In other words, the engineer synthesizes an ab-
stract representation of the system structure and relation-
ships. The procedure is typically (more or less) as follows:
(1) A LLM is automatically extracted, (2) an initial, partial
HLM is created according to the engineer’s expectations of
the system structure, (3) an initial MAP is created which
indicates how the engineer expects the HLM to be imple-
mented in the system, (4) a RM is computed to indicate how
well the engineer’s HLM and MAP match the actual system,
(5) the engineer investigates the RM to determine how accu-
rate her models are, and (6) the engineer iteratively refines
the models as needed (i.e., she iterates through steps 2, 3, 4,
and 5 as necessary). Investigating the evidence presented in
the RM will, in our context, involve examining the source
code or other documentation in order to determine the rele-
vance or importance of each arc in the RM.

An illustration of a HLM and a corresponding RM is
given in Figure 2 (see the RMTool [11, 13] literature for a
more detailed discussion). In the present example, the rela-
tionships are presumed to be calling relationships between
modules. For this example, assume the MAP for the HLM
in Figure 2(a) maps the Pager node to all of the functions
in the file pager.c, and that it maps the FileSystem
node to all functions defined in the file filesall.c. Fig-
ure 2(b) shows two convergences between the Pager and

Kernel Fault Handler. In this example, this implies
that two expected function calls occur between the func-
tions of filesall.c and pager.c. It is up to the en-
gineer to examine the RM (and the source) to determine
whether or not the HLM and MAP are sufficient for her pur-
poses. Generally speaking, the “goal” is to create a RM with
only convergence arcs. Thus the engineer might investigate
why there are no calls from pager.c to filesall.c
when some were expected, and why there were twelve from
filesall.c to pager.c when none were expected.

The overall process of using RMTool is one of (hopefully)
convergent evolution. An initial HLM and MAP are ten-
tatively defined, and then iteratively refined until they are
found to abstract the actual LLM structure to a satisfac-
tory degree. Investigation of the RM drives the refinement.
Since the initial models represent a “guess” as to the struc-
ture of the system, the length of the iteration cycle is re-
lated to how good this initial guess is. In other words, one
of the best reasons for using RMTool is that there are gaps
and inaccuracies in the user’s knowledge, or uncertainty in
its accuracy. In the end, the engineer gains both an under-
standing of the system, and an increased level of confidence
that her interpretation is valid. So far, reported experience
with RMTool indicates that this general process is relatively
simple, quick, and successful [1, 2].

4. Theoretical reconstruction of rationales

The RMTool literature nicely conveys many of the advan-
tages of the RMTool approach. Nonetheless, improvements
to this description may be possible. A particular concern is
that essentially no references are made to cognitive assis-
tance principles even though the primary goal of the tool is
to aid in software comprehension—a task that is obviously
laden with psychological implications. Should it not be the
case that a tool for aiding software comprehension will be
successful, at least in part, as a result of its effects on cog-
nitive processes? Here one interpretation of the cognitive

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

support principles underlying RMTool is generated. Specif-
ically, we reconstruct psychological rationales underlying
RMTool from the viewpoint of one of the cognitive support
theories of Section 2.1.

The reconstruction proceeds by applying the cognitive
redistribution theory from Section 2.1 to a model of the cog-
nitive task of software comprehension. In particular, we uti-
lize Brooks’ model [2] of software comprehension to con-
sider how RMTool redistributes the comprehension task. In
effect, we will be importing an existing high-level cognitive
model instead of performing a situation-specific cognitive
task analysis (see e.g., Chipman et al. [6]). Cognitive task
analysis is often performed during requirements analysis to
determine what functionality and interface features need to
be built. In this context, the role of a cognitive task analysis
is to determine the knowledge, mental states, and reason-
ing needed to solve a problem. Once these are modeled,
then they can be examined for ways of applying the support
theories to them to re-engineer them.

A necessary requirement for analyzing the results of the
cognitive task analysis in this fashion is that the resulting
model must be as free from tool-specific issues as is possi-
ble. This is not the norm for typical task analyses in HCI.
The reason for requiring tool-independence is simple: the
analysis otherwise generates a model of the task in the con-
text of specific tools. This makes it difficult to break the
analysis free of the device-specific aspects of the task. For
instance, in this analysis we are not interested in the task
of comprehending software specifically with the aid of vi
and grep. We therefore wish to avoid interface-specific
details (e.g., steps to load a file). It is in a sense fortuitous,
therefore, that practically all cognitive models in the field
(including Brooks’) are effectively models of purely “dis-
embodied” cognition, and so do not consider device-level
tasks lest they be rendered tool- or context- specific.

Although a preexisting, tool-independent comprehen-
sion model like Brooks’ does not lead directly to design
ideas, it can be employed as a starting point [26] for further
analysis. Specifically, once the cognitive task is modeled, a
cognitive redistribution analysis can be applied to determine
how cognition can be spread out onto tools. This analysis
is done in two steps. First Brooks’ model will be used as
a generalized cognitive task analysis, and then ways of dis-
tributing the cognitive processing onto tools are explored.

4.1. Brooks’ “top-down” comprehension model

Brooks [2] proposed a model of expert comprehension
of software. The central argument behind this model is that
in most circumstances expert software developers will use
their extensive knowledge to drive their comprehension pro-
cesses. Such a knowledge-based process is precisely the
context expected for effective use of RMTool. Although

MODEL MODEL ELEMENTS / DESCRIPTION

domain task reconstruct hierarchical mapping

representation model hypothesis hierarchy

(mental model) bindings between models

evidence for or against hypotheses

process retrieve hypothesized model

(hypothesis verify object/relationship and binding

refinement & search for evidence of binding

verification) recognize contradictions to model

backtrack to update model

Table 2. Summary of Brooks’ [2] model.

Brooks’ original works studied modestly sized programs,
recent evidence suggests that the basic points generalize to
large-scale system comprehension [24].

Brooks’ model contains three key features: (1) a domain
task analysis, (2) a suggestion as to the mental representa-
tions being used during comprehension, and (3) an analysis
of comprehension processes. A summary of this analysis is
presented in Table 2. There are other significant aspects of
Brooks model, but they are not used in the following.

Domain task analysis. Brooks argued that comprehend-
ing a program amounts to generating (i.e., reconstructing)
a hierarchical mapping of models [1, 2]. He called this
“domain bridging”. The models start at the domain level
and proceed through various intermediate levels such as
mathematical methods or system structure models. Each
model consists of, in part, a set of objects and relations;
the mapping between models consists of binding higher-
level objects (or relations) to lower-level objects (or rela-
tions). There is nothing particularly unusual in this hierar-
chical way of modeling software systems, as it resembles
other previously proposed hierarchical models of software
systems. Comprehension of a system is posed as a problem
of generating an internal representation of this hierarchical
mapping, that is, a mental model. Brooks argued that for
specific tasks, the required model will be partial, consisting
of a partial mapping of relevant aspects.

Mental representation model. At any point in the com-
prehension process, it is assumed that the mental model
of the system is a tentative collection of hypotheses. The
models at any level are considered to be hypotheses about
the system (e.g., “this is a standard Unix virtual memory
system”). Bindings to lower level models start out as sub-
hypotheses (e.g., “The file system must be implemented in
these functions here...”). It is presumed that in order to
mentally process the hypothesis refinement, the hypothe-

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

ses, mappings, and evidence must be mentally represented
(at least momentarily).

Processing model. Brooks’ model is termed “top-down”
because the hierarchical mapping is built by starting at the
high-level domain models and working “downwards” to
low-level code models. This aligns with so-called “top-
down” development methods, which propose that programs
are to be hierarchically refined in an analogous manner.
Brooks argues that comprehenders will develop high level
hypotheses about the meaning and structure of the sys-
tem being studied (e.g., by considering the program name).
These set up the gross hypotheses which are hierarchically
refined until bindings are considered verified. Verification
of a hypothesis is performed by searching for confirma-
tions or disconfirmations. Sometimes this search fails, or
encounters contradictory evidence. This causes backtrack-
ing to occur, resulting in refinements to the hypothesized
bindings, or to higher level hypotheses. Processing occurs
until the full (or partial) hierarchical model is constructed
and confirmed to the degree required. Cognitive tasks in-
volved therefore include: retrieving relevant structures from
expert memory, verifying a binding, searching for evidence
of a binding, recognizing conditions that contradict the cur-
rent hypotheses, and backtracking by refining the model. In
Brooks’ model, backtracking is initiated when a search for
evidence fails or happens to turn up contradictory evidence.

4.2. Redistributing Brooks’ model

Brooks’ model is essentially a disembodied, unassisted
model of comprehension. The model is presented as being
applicable regardless of the tools available to the compre-
hender. Even so, if suitable care is taken when interpret-
ing the model, it is highly compatible with the projected
applications of RMTool, and can be utilized to understand
the cognitive support that RMTool provides. First, the ter-
minological differences between Brooks’ account and the
RMTool account must be reconciled. This is done by rein-
terpreting RMTool concepts in cognitivist terms matching
Brooks’ concepts. Then RMTool can be analyzed to deter-
mine how RMTool serves to redistribute cognitive resources
and processing.

The first step is relatively straightforward. The HLM
and MAP are effectively two-level hypotheses from Brooks’
model: the HLM is intended to represent the (hypothesized)
objects and relationships at a higher abstraction level, and
the MAP is intended to represent the (hypothesized) way
that these higher level abstractions are bound to the code
level. Thus the construction of an acceptable HLM and
MAP is RMTool’s version of Brooks’ concept of domain
bridging. The RM corresponds to known evidence about
the three conditions for refining the hypotheses. Specifi-

TERMINOLOGY

RMTool BROOKS’ MODEL

HLM models (hypotheses)

MAP bindings (hypothesized mapping)

RM evidence (hypothesis verification outcomes)
absences — failed search
convergences — evidence for found
divergences — contradiction / evidence against

reflexion search for evidence for/against hypotheses

Table 3. Mapping of RMTool terminology.

cally, a convergence corresponds to a case where a hypothe-
sis binding would seem to succeed, an absence corresponds
to a case where a search for evidence would fail, and a diver-
gence corresponds to a case where contradictory evidence is
encountered in the verification search. As a result, the pro-
cessing performed to construct the RM corresponds to the
processing to search for verification (reading through code,
following relationships, etc.). This mapping of terminology
is shown in Table 3.

Knowing this mapping, RMTool can be viewed as a re-
distributor of cognition. This is accomplished by examin-
ing how cognitive resources and processing identified in
Brooks’ unaided model (Table 2) are externalized. The
main insights are (1) that RMTool redistributes the hypothe-
ses so that they are externalized and need not be kept inter-
nally, and (2) that RMTool redistributes part of the hypoth-
esis verification search so that it need not be performed by
the engineer.

Notice that the cognitive processing is only partially ex-
ternalized, and still relies upon the engineer to perform part
of it. In particular, the evidence for verifying a hypothesis
cannot be fully evaluated externally, and the engineer must
still go through the RM to determine whether the evidence
is relevant, and how it should impact on the HLM and MAP.

Thus with RMTool it can be seen that the engineer and
tool form a joint cognitive system [7] in which processors
coordinate to incrementally refine a shared model. This can
be visualized as if two processors (human and computer)
share a memory, and then take turns updating it. Such an
architecture is reminiscent of agent or blackboard architec-
tures [14]. An illustration is shown in Figure 3. In the fig-
ure, the mental model is externalized onto a shared black-
board. Agents which update the model are shown as la-
belled ovals. These implement the process model of Ta-
ble 2.

Given this analysis, the redistributions enabled by
RMTool are as follows:

1. Redistribution: hypotheses. An unsupported engi-

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

verify pt 1

recognize pt 1recognize pt 2

verify pt 2

backtrack

retrieve

COMPUTERHUMAN

(unanticipated feature)
divergences

(evidence against hyp)
absences

(evidence for hyp)
convergences

LLM

MAP

HLM

control

(SHARED)

BLACKBOARD
knowledge

expert

Figure 3. Shared blackboard visualization of RMTool processing.

neer would need to maintain their current understand-
ing of the system in their head. That is, they would
need to maintain the abstract model and its binding to
code features. The HLM and MAP are seen to offload
these onto an external memory.

2. Redistribution: hypothesis verification. Hypoth-
esis verification is partially redistributed. This in-
volves redistributing the search and verify cognitive
tasks. Computing the reflexion model uses the HLM
and MAP to effectively search for possible evidence
that may confirm or disconfirm the hypotheses. The
arcs in the resulting RM constitute potential sources of
evidence for the accuracy of the sub-hypotheses. This
results in only a partial redistribution of verification
because these arcs must be investigated by the engi-
neer to determine what they truly imply. However even
this partial redistribution saves a great deal of work be-
cause otherwise these would have to be individually
navigated to and examined. The processing transforms
the tasks the engineer must perform [16] and in doing
so offloads cognitive processing.

Using the above analysis, the core rationale for RMTool
is the redistribution of the hypotheses and their processing.
Externalizing the hypotheses can reduce memory load and
increase the complexity of the hypotheses explored. Al-
though these could have been externalized onto, say, scrap
paper, externalizing them onto a computer makes it possi-
ble to electronically process them. The external processing
means that internal cognitive loads are reduced. Because
the systematicity of hypothesis exploration depends upon
diligence and a capacity to remember pending goals, the
wholesale processing of the hypotheses by RMTool suggests

that RMTool has the potential to make hypothesis evaluation
more systematic and thorough.

Two important aspects of the above account deserve to
be highlighted. First, the analysis tracks and accounts for
the cognitive work done by RMTool. The tool reduces the
cognitive burdens of the user, but these do not disappear.
Instead, the tool picks them up. Thus cognitive work is
viewed as being conserved when using a tool, much as
physical work is conserved when using a lever. Second,
by accounting for the cognitive work that was offloaded, it
is possible to properly perform a tradeoff analysis. New
task burdens are introduced, of course, by using the tool:
externalizing the interpretation, invoking reflexion analysis,
etc. These are overheads in the form of device tasks and
human–computer cooperation efforts. It is important to rec-
ognize that these overheads are necessary if the support is to
be provided, and that they can be tolerated only if the value
of the cognitive support they provide exceeds their cost.

This overall explanation of cognitive support in RMTool
aligns nicely with the RMTool literature. The main differ-
ences between the two accounts are their vocabulary and
the knowledge used to construct them. Prior accounts are
steeped in the particulars of the tool, which arguably hinders
the appreciation of generalizable design principles. In con-
trast, the analysis here is framed in cognitivist terms, and the
generalizable principle for design (cognitive redistribution)
was separated from the particulars of the tool or task (cog-
nitive task analysis). The prior accounts were made possi-
ble through practical experience with using the tool. The
analysis here stems instead entirely from an application of
a pre-existing cognitive task analysis and theory cognitive
support. The two evaluations are substantially different in
character and spring from entirely independent sources, yet

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

they are extremely compatible.
Thus it appears possible to more systematically articulate

psychological rationales for explaining the value of a tool’s
features. The rationales can be made in terms that relate to
general cognitive support principles, and can be grounded
in existing models of cognition.

5. Theory-based design analysis

One of the grand promises for studying developer cog-
nition is that an improved understanding of how developers
think would lead to improved designs for tools. Unfortu-
nately such models and theories are rather infamously dif-
ficult to convert to usable design knowledge [3]. This diffi-
culty led Singer et al. [21] to ask

... how does knowing that programmers will
sometimes use a top-down strategy to understand
code ... inform tool design? It doesn’t tell us what
kind of tool to build... ([21], pg. 210)

We wholeheartedly concur. What is needed in addition is
a theory of cognitive support. Without such a support the-
ory, the comprehension model itself says little to the tool
designer. As the previous section hints, such theories can
be invoked to generate arguments saying what parts cog-
nition might be beneficially redistributed. As it happens,
this was shown using a top-down comprehension model—
exactly the type singled out by Singer et al. as being rela-
tively unhelpful during design.

Since cognitive support theories appear to be able to gen-
erate tool design suggestions from cognitive task analyses,
they may be extremely useful during formative design. This
section further explores this possibility by expanding the
analysis of RMTool and comparing it to the design itera-
tion experienced published for RMTool. Early prototypes of
RMTool lacked some of the features that were added to later
versions in response to user feedback [12, 11]. The question
we ask here is: can design theories be used to help antici-
pate some of the requirements for tools so that the necessary
features do not have to be discovered after the tools are de-
livered to the users? It is impossible to fully answer this
question with a retrospective analysis of prior design histo-
ries: hindsight, as they say, is 20:20. But the results can be
suggestive. RMTool’s published design history provides a
good case in point.

Using the “greedy” cognitive support design heuristic
from Section 2.2, we can expand our current analysis of how
Brooks’ model may be reengineered. The key is to focus on
the partial redistribution of the evidence search and evalua-
tion process. Even though a great deal of the evidence eval-
uation is automated by RMTool, the evidence is only par-
tially checked: the user needs to sort through the RM and
determine how to refine the HLM and MAP appropriately.

The greedy heuristic can thus be applied to the evidence
evaluation task (“verify pt 2” in Figure 3). This will gener-
ate suggestions for creating further redistributions, percep-
tual substitutions, or ends-means reifications.

To evaluate the evidence, the engineer makes a series of
decisions that the computer cannot. The computer relies on
the human to be able to distinguish irrelevant and impor-
tant indicators of evidence, and to determine if and how the
HLM and MAP should be updated. The task presented to
the user is to go through each piece of evidence, determine
its relevance, and update the HLM and MAP as necessary.
At various points the user may backtrack by updating the
HLM and MAP. Updates would necessitate re-calculation
of the RM. After recalculation, some of it might change,
while other parts might not. The engineer must take these
changes into account when processing the evidence.

Invoking the greedy cognitive support design heuristic
yields at least four possibilities, as follows:

1. Redistribution: progress state. It will be a cogni-
tive burden for the engineer to mentally keep track of
her decisions about the salience of evidence. In other
words, the engineer must track progress. It should of-
ten be helpful to offload this information. One type of
data that might be beneficially offloaded are the deci-
sions to ignore particular LLM features. For instance,
the engineer may realize that the LLM contains false or
unimportant dependencies [13]. Another type of data
that might be offloaded are decisions to remove from
consideration those features that have already been un-
derstood as being important and accounted for in the
HLM and MAP. For instance, the edges from the
Kernel Fault Handler to the Pager might be,
at some point, investigated to the engineer’s satisfac-
tion. To avoid unnecessarily revisiting these edges, she
will have to remember this fact, and then take it into
account when progressing. This progress information
may also be offloaded.

2. Ends-means mapping reification: evidence selec-
tion. The engineer is responsible for going through
the evidence. This is the engineer’s “ends”. At any
point in the process there exists a pool of unvisited ev-
idence to examine: the pool defined by the RM minus
the edges already visited (i.e., those already ignored or
accounted for). To progress through the task, the en-
gineer must iteratively select the next bit of evidence
to examine. This is the engineer’s “means”. If the ex-
ternal display can be made to show the unvisited ev-
idence pool, then the engineer can resort to display-
based methods to progress through the task. For in-
stance, the pool of unvisited nodes might be repre-
sented in an on-screen priority queue (to-do list) or by
annotating the display of the RM in a way that indi-

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

cates which evidence remains unvisited.

3. Perceptual substitution: visual search. If the RM
display is annotated as suggested above, then the engi-
neer can use it as a resource from which to select ac-
tions. However she may still need to search the display
for unvisited edges. If the appropriate visual cues are
used, efficient perceptual search can replace effortful,
conscious search. For instance, unvisited edges can be
marked by colour that can be perceptually searched for
(much as unvisited links in hypertext browsers are).

4. Redistribution: dependent decision rollback. Veri-
fication of evidence will normally be interleaved with
refinements to the HLM and MAP. Each refinement
may effectively invalidate prior decisions, especially
decisions to ignore bits of evidence. Determining the
decisions to unroll requires cognitive processing; this
processing can be offloaded if rules are formalized for
determining invalidated decisions.

The updated [12, 11] RMTool contains some features that
implement the above suggestions. In particular, the updated
version added tagging and annotation features. Tagging
features allow the user to “tag” specific arcs in the RM to in-
dicate that they are to be considered temporarily irrelevant.
The visualization engine uses these tags to elide the ignored
evidence arcs. If the HLM and MAP are changed such that
the relevance of that evidence might change, these tags are
undone. These features implement the supports numbered
1 and 4. The annotation mechanism allows the user to ex-
ternalize whether and how an arc is resolved. The visual-
ization engine subsequently indicates this resolution status
visually (by displaying the fraction of evidence resolved for
any given arc on the diagram). This way of representing res-
olution status is unlikely to enable visual search for the next
goal to examine (the engineer must interpret [17] the num-
bers). Nonetheless, it still enables display-based processing
because the user can search for unfinished arcs when con-
sidering what to do next. Collectively these features imple-
ment the support numbered 2 above.

In sum, the tagging and annotation facilities effectively
implement all supports suggested above except the substi-
tution with visual search (#3). The experiences reported in-
dicate that these features are significant aspects of the over-
all RMTool approach. The important point to note is that
a theory-based analysis could predict several tool improve-
ments which became apparent after user studies.

6. Related work

Attempts are occasionally made to rationalize or justify
the designs of comprehension tools using comprehension
models or other theories. One common use of such mod-
els is to argue the design is consistent with the model. For

instance, Storey et al. [22] argued that tools must facilitate
switching behaviour noted in cognitive models. In a differ-
ent vein, von Mayrhauser and Lang [23] performed a de-
tailed evaluation of a tool based on an information needs
analysis constructed from a model of software comprehen-
sion. Tool feature rationalizations in this tradition typically
rely on a (tacit) design heuristic of automating functional-
ity or reducing task complexity. Our analysis complements
these prior approaches by explicitly using theories to ratio-
nalize the value of the tool in terms of the cognitive support
provided.

Our approach to linking tool features to theory-based ra-
tionalizations was heavily influenced by the psychological
claims analysis work of Carroll et al. [4]. A key suggestion
in claims analysis is that the psychological claims of tools
need to be made explicit if design is to be well grounded in
theory. Another similarity is that the claims analysis method
of Carroll et al. [4] uses a high-level model of HCI to struc-
ture the generation of possible claims. Our application of
the greedy design heuristic to cognitive task analyses fol-
lows a similar route. A key difference between their claims
work and our work is that we concentrate on theory-driven
rationalization generation whereas in the claims analysis,
claims are first created and only afterwards are suitable the-
ories sought out for justifying the claims.

7. Conclusions and implications

This paper outlines a general method for constructing
psychological rationales for complicated software compre-
hension tools. These rationalize the value of the tool in
terms of the cognitive support they provide. We showed
that key design ideas for a tool of current research interest
(RMTool) can be reconstructed using pre-existing theories.
To perform this analysis, no new theories or models needed
to be created. This leads us to suspect that the currently
available theories have been insufficiently plumbed for use
in tools research. Obviously, it would be helpful to have a
more complete and well-organized exposition of different
theories of cognitive support. We have made a start on that
project [25], but that is outside the scope of this paper.

It is important to note that, as a scientific explanation
of cognitive support, the preceding analysis may rightly be
viewed with suspicion. The skeptic may wonder, for in-
stance, about the validity of Brooks’ model, or of the cog-
nitive support theories applied. Proper validation of the
rationalizations might require demanding experimentation.
However the point is that such experimentation is possible
only after one has articulated rationales to validate. This
paper describes a method for building cognitive support-
related ones.

Furthermore, as a design analysis, veridicality plays sec-
ond fiddle to utility. The preceding analysis could be valu-

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

able to designers merely by providing an explicit explana-
tion to reflect upon [4]. Moreover, the essential hope of
using an existing theory is that there is a good chance that
the theory-based analysis will provide a better explanation
than raw intuition alone would generate. This is especially
important for relatively novice designers, or designers not
trained in cognitive science.

Ultimately, the analysis technique presented here links
the world of cognitive theory to the world of tool design.
Currently, these two worlds are tenuously connected. This
need not be so. Existing cognitive theories can be leveraged
to build cognitive support explanations. Such explanations
can be tested; they may be used to guide design. In short,
the ability to systematically generate design rationales from
theories is an important step towards grounding tools re-
search in the existing science base.

References

[1] R. E. Brooks. Using a behavioral theory of program compre-
hension in software engineering. In Proceedings of the 3rd
International Conference on Software Engineering, pages
196–201, 1978.

[2] R. E. Brooks. Towards a theory of the comprehension of
computer programs. International Journal of Man-Machine
Studies, 18(6):543–554, 1983.

[3] J. M. Carroll, editor. Designing Interaction: Psychology
at the Human-Computer Interface. Cambridge University
Press, 1991.

[4] J. M. Carroll and M. B. Rosson. Getting around the task-
artifact cycle: How to make claims and design by scenario.
ACM Transactions on Information Systems, 10(2):181–212,
1992.

[5] S. M. Casner. A task-analytic approach to the automated de-
sign of graphic presentations. ACM Transactions on Graph-
ics, 10(2):111–151, 1991.

[6] S. F. Chipman, J. M. Schraagen, and V. L. Shalin. Intro-
duction to cognitive task analysis. In J. M. Schraagen, S. F.
Chipman, and V. L. Shalin, editors, Cognitive Task Analysis,
chapter 1, pages 3–23. Lawrence Erlbaum, 2000.

[7] E. L. Hutchins. Cognition in the Wild. MIT Press, 1995.
[8] A. Kirlik. Requirements for psychological models to support

design: Toward ecological task analysis. In J. Flach, P. Han-
cock, J. Caird, and K. J. Vicente, editors, Global Perspec-
tives on the Ecology of Human–Machine Systems, chapter 4,
pages 68–120. Lawrence Erlbaum Associates, 1995.

[9] J. H. Larkin. Display-based problem solving. In D. Klahr
and K. Kotovsky, editors, Complex Information Processing:
The Impact of Herbert A. Simon, chapter 12, pages 319–341.
Lawrence Erlbaum Associates, Hillsdale, NJ, 1989.

[10] J. H. Larkin and H. A. Simon. Why a diagram is (sometimes)
worth ten thousand words. Cognitive Science, 11(1):65–99,
1987.

[11] G. C. Murphy. Lightweight Structural Summarization as an
Aid to Software Evolution. PhD thesis, Dept. of Computer
Science and Engineering, University of Washington, 1996.

[12] G. C. Murphy, D. Notkin, and K. J. Sullivan. Extending
and managing software reflexion models. Technical Report
TR–97–15, University of British Columbia, Department of
Computer Science, Sept. 1997.

[13] G. C. Murphy, D. Notkin, and K. J. Sullivan. Software re-
flexion models: Bridging the gap between design and im-
plementation. IEEE Transactions on Software Engineering,
27(4):364–380, April 2001.

[14] A. Newell. Some problems of the basic organization in
problem-solving programs. In M. C. Yovits, G. T. Jacobi,
and G. D. Goldstein, editors, Proceedings of the Second
Conference on Self-Organizing Systems, pages 393–423,
New York, 1962. Spartan Books.

[15] A. Newell and H. A. Simon. Human Problem Solving.
Prentice-Hall, Inc., 1972.

[16] D. A. Norman. Cognitive artifacts. In Carroll [3], chapter 2,
pages 17–38.

[17] D. A. Norman. Things That Make Us Smart: Defending Hu-
man Attributes in the Age of the Machine. Addison-Wesley,
Reading, Massachusetts, 1993.

[18] J. Rasmussen. Skills, rules, knowledge: Signals, signs, and
symbols and other distinctions in human performance mod-
els. IEEE Transactions on Systems, Man, and Cybernetics,
13(3):257–267, 1983.

[19] J. Rasmussen, A. M. Pejtersen, and L. P. Goodstein. Cog-
nitive Systems Engineering. John Wiley & Sons, Inc., New
York, NY, 1994.

[20] M. Scaife and Y. Rogers. External cognition: How do graph-
ical representations work? International Journal of Human-
Computer Studies, 45(2):185–213, 1996.

[21] J. A. Singer, T. C. Lethbridge, N. Vinson, and N. Anquetil.
An examination of software engineering work practices. In
Proceedings of the Seventh Centre for Advanced Studies
Conference (CASCON’97), pages 209–223, Nov. 1997.

[22] M.-A. D. Storey, K. Wong, and H. A. Müller. How do
program understanding tools affect how programmers un-
derstand programs? Science of Computer Programming,
36(2):183–207, Mar. 2000.

[23] A. von Mayrhauser and S. Lang. Evaluating software main-
tenance support tools for their support of program compre-
hension. In Proceedings of the 1998 IEEE Aerospace Con-
ference, pages 173–187, 1998.

[24] A. von Mayrhauser and A. M. Vans. Program comprehen-
sion during software maintenance and evolution. Computer,
28(8):44–55, Aug. 1995.

[25] A. Walenstein. Cognitive Support in Software Engineering
Environments: A Distributed Cognition Framework. PhD
thesis, School of Computing Science, Simon Fraser Univer-
sity, May 2002 (to appear).

[26] A. E. Walenstein. Developing the designer’s toolkit with
software comprehension models. In Proceedings of the 13th
IEEE International Conference on Automated Software En-
gineering, pages 310–313. IEEE, 1998.

[27] P. C. Wright, R. E. Fields, and M. D. Harrison. Analyzing
human–computer interaction as distributed cognition: The
resources model. Human Computer Interaction, 15(1):1–41,
Mar. 2000.

[28] J. Zhang and D. A. Norman. Representations in distributed
cognitive tasks. Cognitive Science, 18:87–122, 1994.

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

