
ARTICLE IN PRESS
0097-8493/$ - se

doi:10.1016/j.ca

�Correspond

E-mail addr

mudur@cs.con
Computers & Graphics 29 (2005) 311–329

www.elsevier.com/locate/cag
3D visualization techniques to support slicing-based
program comprehension

Juergen Rilling, S.P. Mudur�

Department of Computer Science and Software Engineering, Concordia University, 1455, de Maisonneuve West, Montreal, Que,

Canada H3G 1M8
Abstract

Graphic visuals derived from reverse engineered source code have long been recognized for their impact on

improving the comprehensibility of structural and behavioral aspects of large software systems and their source code. A

number of visualization techniques, primarily graph-based, do not scale. Some other proposed techniques based on 3D

metaphors tend to obscure important structural relationships in the program. Multiple views displayed in overlapping

windows are suggested as a possible solution, which more often than not results in problems of information overload

and cognitive discontinuity. In this paper, we first present a comprehensive survey of related work in program

comprehension and software visualization, and follow it up with a detailed description of our research which uses

program slicing for deriving program structure-based attributes and 3D-metaball-based rendering techniques to help

visualization-based analysis of source code structure. Metaballs, a 3D modeling technique, has already found extensive

use for representing complex organic shapes and structural relationships in biology and chemistry. We have developed a

metaball software visualization system in Java3D, named MetaViz. As proof of concept, using MetaViz, we

demonstrate the creation of 3D visuals that are intuitively comprehensible and communicate information about relative

component complexity and coupling among components and therefore enhance comprehension of the program

structure.

r 2005 Elsevier Ltd. All rights reserved.

Keywords: Software visualization; Program slicing; 3D modeling; Metaballs; Visual mapping
1. Introduction

Throughout a software product’s life cycle, many

different people are responsible for understanding the

design details of the software code. Learning the

structure of code developed by others is especially time

consuming and effort intensive during the software

maintenance phase. Maintenance programmers are

often not involved in the original design and implemen-
e front matter r 2005 Elsevier Ltd. All rights reserve

g.2005.03.007

ing author.

esses: rilling@cs.concordia.ca (J. Rilling),

cordia.ca (S.P. Mudur).
tation and therefore must necessarily rely on design and

testing documents to comprehend the design and the

related code. However, after several maintenance cycles

these documents are out of sync and often obsolete.

Clearly, software maintenance, reengineering, and reuse

involving large software systems are complex, costly,

and risky tasks, as a direct consequence of the difficult

and time-consuming task of program comprehension.

Many reverse engineering tools have been built to help

comprehension of large software systems. Software

visualization is one approach suggested and being

investigated worldwide for providing some assistance

in program understanding. It should be recognized that
d.

www.elsevier.com/locate/cag


ARTICLE IN PRESS
J. Rilling, S.P. Mudur / Computers & Graphics 29 (2005) 311–329312
visualization is a complementary technique and is to be

used in conjunction with other program understanding

techniques such as software inspection, metrics, static

and dynamic source code analysis.

1.1. Software comprehension

The increasing size and complexity of software

systems introduces new challenges in comprehending

overall program structure, their artifacts, and the

behavioral relationships among these artifacts. Numer-

ous theories have been formulated and empirical studies

conducted to explain and document the problem-solving

behavior of software engineers engaged in program

comprehension [1–8]. The bottom-up approach recon-

structs a high level of abstraction that can be derived

through reverse engineering of source code. The top-

down approach applies a goal-oriented method by

utilizing domain/application specific knowledge to

identify parts of the program that are necessary for

identifying the relevant source code artifacts. In [4,7] an

opportunistic approach is described that exploits both

top-down and bottom-up cognitive approach.

However, for comprehension of large systems, it is not

only impractical to attempt comprehension of the

complete system, it might also be unnecessary. Often it

suffices to obtain only some partial understanding

related to the particular aspect of interest and to build

a mental model one can rely on when performing a

particular maintenance activity, or to create a model for

locating places where such a change should be applied.

Typically, a program performs a large set of functions/

outputs. Rather than trying to comprehend all of a

program’s functionality, programmers will focus on

selected functions (outputs) with the goal of identifying

parts of the program that significantly influence a

particular function or functions. One approach is to

apply program slicing techniques to reduce the displayed

data by including only those software entities (files,

modules, classes, functions, statements and objects) that

are relevant with respect to the computation of a specific

program function of interest. Furthermore, the slicing

approach can be applied in combination with software

metrics to analyze and evaluate the quality of software

systems based on their comprehensibility and maintain-

ability.

1.2. Software metrics and program slicing for software

comprehension

For a number of years now, software metrics have

been used in the industry [1,9,10] to define, measure and

analyze software quality. Large amounts of data are

collected according to predefined analysis and quality

models, and ‘‘analyzed’’ to find patterns showing design

and code anomalies, etc. Extensive aggregation and
filtering of data has to be performed before meaningful

trends can be observed. The results of this analysis are

traditionally presented in the form of textual tables and

simple graphs.

Program slicing is a well-known decomposition

technique that transforms a large program into a smaller

one that contains only statements relevant to the

computation of a selected program function (output).

Weiser [8] defined a slice S as a reduced, executable

program obtained from a program P by removing

statements such that S replicates parts of the behavior of

P. Being able to apply slicing in combination with

metrics and synthesize partial views allows one to focus

on computation of particular metrics for only those

parts of the software that are of immediate interest. This

in turn can therefore significantly enhance the usability

of these metrics.

As in other disciplines of scientific visualization [11], it

makes sense to combine these metrics with more

sophisticated visualization techniques to assist the

user in comprehending the data and, consequently,

to find patterns/relationships that are not as obvious.

For example, the cognitive complexity of an object-

oriented system is of specific interest to all software

engineers. A good deal of this complexity is reflected

through the collaboration of classes in the system.

Metrics can be applied to measure this complexity of

systems and provide details about collaboration. There-

fore a more refined view of the structure of the software

system can be obtained. Using these metrics, relation-

ships between software artifacts and also those between

their components can be captured and then graphically

represented.

1.3. Visualization of software structure and software

metrics

Humans are limited in the density of textual informa-

tion they can resolve and comprehend [7,12–16]. It is

well established that a good visual representation will

often serve as an excellent comprehension aid and

facilitate study of complex problems in parallel [17]. A

number of software visualization techniques have there-

fore evolved. Section 3 provides a review of published

techniques.

Visualization of the internal structure of software

systems could be used for different purposes, but

primarily, it is to support program comprehension. The

goal is to acquire sufficient knowledge about a software

system by identifying program artifacts and under-

standing their relationships. As programs become more

complex and larger, the sheer volume of information to

be comprehended by the developers becomes daunting.

It would be ideal to be able to simultaneously view and

understand detailed information about a specific activity

in a global context at all times for any size of program.



ARTICLE IN PRESS
J. Rilling, S.P. Mudur / Computers & Graphics 29 (2005) 311–329 313
As Ben Shneiderman explains [18,19], the main goal of

every visualization technique is ‘‘Overview first, zoom

and filter, then details on demand’’. This means that

visualization should first provide an overview then let

the user restrict the source code on which the visualiza-

tion is applied, and then create views that provide more

details on the part of interest to the user.

Source code views, primarily based on some diagram-

matic notation, have been evolving from the early days

of computing [16,20,21]. However, for large, complex

software systems, comprehension of such diagrammatic

depictions is restricted by the resolution limits [22] of the

visual medium (2D computer screen) and the limits of

user’s cognitive and perceptual capacities. One approach

to overcome or reduce the limitations of the visual

medium is to make use of a third dimension by mapping

source code structures and program executions to a 3D

space. Mapping these program artifacts into the 3D

space allows users to identify common shapes or

common configurations that may become apparent,

and which could then be related directly to design

features in the code. In this paper, we focus on the use of

metaballs (also referred to as metablobs, soft objects or

more generally implicit surfaces), a 3D modeling

technique that has found extensive use in representing

and visualizing complex organic shapes and structural

relationships such as the DNA, humans, animals and

other molecular surfaces [1,23–27] (cf. Fig. 1).

Earlier in [28], we proposed to extend the application

domain of metaballs to include the visualization and

comprehension of very large program artifacts. In this

paper our emphasis is on demonstrating its potential

and effectiveness in combination with program slicing-

based metrics in creating 3D visuals for comprehending

program structure. We demonstrate this using the Java

3D program we have developed for the same purpose.

The extent of applicability of the metaball modeling and

visualization technique in other domains has been such

that virtually every significant commercially available

3D modeling software incorporates metaball modeling

and rendering in some fashion or the other. Correspond-

ingly, there are a large number of free software sites for

packages supporting this technology [29]. However, to

the best of our knowledge, ours is the first such attempt

to apply the metaball metaphor in metrics-based soft-

ware visualization.
1.4. Metaball metaphor

The metaball metaphor is a 3D object modeling and

rendering technique which blends and transforms an

assembly of particles with associated shapes into a more

complex 3D shape, whose use is highly suitable for

animal and other organic forms. This technique models

particles in 3D space, which have energy (strength) and
have a well defined, parametrically controlled influence

over the surrounding and neighboring particles.

A metaball is defined by a so-called 3D variable

density field, radiating from a given center point.

The value of the field can vary linearly with distance

from the center, or in any other way expressible via a

mathematical formula. For example, a field can have a

negative density distribution, or even an eccentric

distribution. A metaball surface is constructed as the

set of all points in the field with the same density value,

which is given by the modeler or derived from the

modeling context.

If two or more metaballs are constructed in close

proximity to one another so that they overlap, they

coalesce and their fields are added in a process called

fusion to produce a composite field, which is then

evaluated to produce a composite surface. Metaball

fields can be transformed in a variety of ways to produce

organic shapes necessary to represent, for example, the

human form. Metaball surfaces are usually rendered as

polygons. Metaballs have found extensive use in

representing and visualizing complex organic shapes

and structural relationships such as DNA, humans,

animals, and other molecular surfaces. Extensions

include grouping of particles, selective influence over

other particles, hiding particles, etc.

By defining visually intuitive mappings between the

entities or parameters in the software slices and metaball

models, we can create a 3D virtual environment in which

it is possible to walk around these entities, to see what

significantly influences the entity of interest, or to hide

insignificant influences or zoom into entity-groups for

understanding more detailed interactions. By mapping

different entities in multiple views, say object or

functional, it becomes possible to use the same 3D

metaphor to help understand software from different

viewpoints. Mapping entity type to shape gives us the

potential to visually differentiate, for example, free

functions from member functions in a C++ program.

Interacting with a complex metaball model, by moving

an entity of interest closer to clusters of other entities

and observing the animated response, could further help

in visualizing the more dynamic aspects of a large

software program. In short, the metaball metaphor gives

us a constantly moving micro-universe of entities

(metaballs), which can be dynamically altered to model

program parameters and can be interactively walked

through for various reverse engineering purposes, such

as design evaluation, maintenance and testing.

1.5. Organization of this paper

The main focus of this paper is to show how 3D

modeling and rendering techniques can be applied to

assist in the task of program comprehension by creating

suitable 3D visual representations of the software and its



ARTICLE IN PRESS

Fig. 1. Traditional applications of meatballs: (a) DNA structure (www.scripps.edu/pub/olson-web); (b) organic visual (www.vi-

sualparadox.com); (c) molecular images (The Scripps Research Institute).

J. Rilling, S.P. Mudur / Computers & Graphics 29 (2005) 311–329314
internal structure. Specifically, we combine metrics

derived from program slicing techniques with metaball

representation to visually depict various aspects of

software, particularly relative sizes of software entities,

interrelationships, program slice membership, etc. For

this we define intuitive visual mappings for different

types of entities/metrics. The remainder of this paper is

organized as follows: Section 2 reviews program slicing

and metrics and their role in program comprehension.

Section 3 discusses the current state of the art in

software visualization, while Section 4 discusses applica-
tion of metaballs in combination with program slicing

for typical software comprehension tasks and also

intuitive visual mappings for various aspects of large

software. In Section 5, we demonstrate the applicability

and effectiveness of this technique by creating metaball

visuals of a Java 3D program called as MetaViz that has

been developed by us for software visualization pur-

poses. Lastly, in Section 6, we present our conclusions

based on our experience with the metaball metaphor in

visualizing program structures and discuss future

planned extensions to this work.

http://www.scripps.edu/pub/olson-web
http://www.visualparadox.com
http://www.visualparadox.com


ARTICLE IN PRESS
J. Rilling, S.P. Mudur / Computers & Graphics 29 (2005) 311–329 315
2. Software metrics and program slicing—a survey

2.1. Software metrics

The term software metrics is not uniquely defined.

In literature, software measure, software measurement

and software metrics are often used interchangeably.

IEEE does provide the following definition: The

application of a systematic, disciplined, quantifiable

approach to the development, operation, and maintenance

of software; that is, the application of engineering

to software. While the use of metrics is commonplace

in the traditional engineering world, it has yet to

become mainstream in the software domain, even

though it has been shown that software metrics can

provide software engineers and maintainers with gui-

dance in analyzing the quality of their design and code

and its future maintainability [1,9,30–34]. Software

metrics could address many aspects of the software life

cycle—process, product, people, quality, design main-

tenance etc. Li and Henry [32] concluded after using

their metrics to evaluate two software systems that there

‘‘is a strong relationship between metrics and main-

tenance effort in object-oriented systems’’ and that

‘‘Maintenance effort can be predicted from combina-

tions of metrics collected from source code’’. The

remainder of this section presents the design metrics

that we used for visualizing system structures using our

metaball visualization.

2.2. Software design metrics

Several design metrics are presented in the literature

[31,32,34,35] to evaluate the design and quality of

software systems, enabling the early identification of

maintenance and reuse issues in existing systems.

Two major categories of design metrics can be

distinguished: cohesion (internal aspects) and coupling

(structural aspects) design metrics. Within this paper, we

focus on coupling metrics that are traditionally used to

evaluate the structural quality of software systems

design.

2.3. Coupling measurements

Coupling models the relationship and interaction

between modules or classes and is based traditionally

on the information flow. Besides cohesion, coupling is

one of the most significant quality attributes of every

software application or module design. Coupling, as

defined by Briand [36], is ‘‘the measure of the strength of

association established by a connection of one module

to another.’’ Strong coupling makes a system complex,

since a module is harder to understand, change, or

correct by itself if it is highly interrelated to other

modules. Coupling is studied simultaneously with
cohesion in structured programming and more recently

in object-oriented programming [31,36,37]. Ideally,

interacting objects should be as loosely coupled to one

another as possible for the following reasons: (1) fewer

interconnections between modules reduce the chance

that a fault in one module will cause a failure in other

modules, (2) fewer interconnections between modules

reduce the chance that changes in one module cause

problems in other modules and (3) fewer interconnec-

tions between modules reduce programmer time to

understand the details of other modules. Complexity can

be reduced by designing systems with the weakest

possible coupling between modules.

A large number of metrics are introduced and

discussed in object-oriented programming. The most

widely used and evaluated metric suites are from

Chidamber [37] and Li [32]. For example, coupling

between objects (CBO), introduced by Chidamber and

Kemerer [37], for a class corresponds to the count of

non-inheritance related couples with other classes.

Another way of expressing CBO is that an object is

coupled to another object if two objects act upon each

other, i.e., methods of one use methods or instance

variables of another. In order to improve modularity

and promote encapsulation, inter-object couples should

be kept to a minimum. Larger the number of couples,

higher is the sensitivity to changes in other parts of the

design. As a result maintenance and testing are more

difficult.

Similarly, Response for a Class [37] measures com-

munication among classes through message passing. A

message can cause an object to ‘‘behave’’ in a particular

manner by invoking a particular method. The response

set is a set of methods available to the object and its

cardinality is a measure of the attributes of an object.

Yet another, message passing coupling (MPC) was

introduced by Li and Henry [33] as part of their

extension to the original metrics suite presented by

Chidamber and Kemerer. MPC measures coupling

between classes by message passing and is calculated at

the class level. MPC is the static number of send

statements defined in a class, where a send statement is a

message sent out from a method of class a to class b.

Program slicing techniques can help in obtaining these

metrics from the source code of programs.

2.4. Program slicing

Weiser’s original research [8] on program slicing was

motivated by the need to help students understand and

debug their programs. Weiser discovered that the mental

process used by programmers when debugging their

code was slicing and tried to formally define this process

and the output by introducing his first algorithm.

Weiser [8] defined a static program slice as those parts

of a program P that potentially could affect the value of



ARTICLE IN PRESS
J. Rilling, S.P. Mudur / Computers & Graphics 29 (2005) 311–329316
a variable v at a point of interest. A large number of

extensions to the original slicing algorithms have been

presented in the literature (e.g. [38–44]).

Korel and Laski [45] introduced the notion of

dynamic slicing that can be seen as a refinement of the

static approach by utilizing additional information

derived from program executions on some specific

program input. The dynamic slice preserves the program

behavior for a specific input, in contrast to the static

approach, which preserves the program behavior for the

set of all inputs for which a program terminates. Later

extensions of the dynamic slicing algorithms to include

hybrid algorithms [46–49] that combine static and

dynamic information for the slice computation were

introduced in [50,21].

The reason for this diversity of slicing techniques and

criteria is that different applications require different

properties of slices. Program slicing is not only used in

software debugging [8,39,48,50–53], but also in software

maintenance and testing [5,34,43,53]. There are two

major approaches to locating places of low design

quality in an existing design. The first one is a systematic

approach that requires a complete understanding of the

program behavior before any code modification. The

second one is an ‘‘as needed’’ approach that can be

adopted as it requires only a partial understanding of the

program to locate as quickly as possible certain code

segments that need to be changed, tested, or maintained

for desired enhancement or bug-fixing.

2.5. Slicing-based coupling measures

The usefulness of traditional coupling measurements

like CBO, RFC and MPC has already been shown in a

number of empirical studies [1,9,30,31,36,47]. Some of

the application areas of these metrics are in testing and

maintenance activities for object-oriented systems. The

results of these empirical studies show that there is a

strong relationship between metrics and maintenance

effort in object-oriented systems and that maintenance

effort can be predicted from combinations of metrics

collected from source code.

As stated earlier, one might not always want to

analyze the whole software design and quality of the

system, but rather focus on the analysis of a particular

variable, function or feature. Traditional software

design metrics like, CBO, RFC, and MPC can be

combined with program slicing to capture design issues

related to a particular slicing criterion. These measure-

ments will therefore consider only those software

artifacts in the measurements that are included in the

slice. It should be noted that the slicing criterion might

not be restricted to the traditional variable/statement

level; it can also be applied for different levels of

abstractions, e.g. method, class or feature level [32] and

therefore provide different levels of granularity. The
provision of different levels of granularity allows the

user to select the level of abstraction that corresponds

closest to the mental models that one forms during a

particular comprehension or maintenance task [4].

Using slicing we can obtain not only a more focused,

but also a more precise measure of design quality with

respect to a particular slicing criterion. It also allows for

further detailed analysis of the level of information flow

among modules compared to traditional coupling

metrics. A detailed discussion of the applicability and

use of different slicing-based coupling and cohesion

measurements can be found in [34,43,54–56]. They

identified testing, comprehension and re-engineering as

some of the potential application areas for program

slicing-based measurements.
2.6. Slicing-based message passing coupling (SMPC)

In this paper, we focus on software visualization using

slicing-based MPC [32,57] metrics. We use these to

illustrate the applicability of the combination of 3D

visualization and program slicing to refine existing

software measurements. MPC measures the number of

methods that can be invoked from a class through

messages. MPC among classes is calculated at the class

level. MPC is a static measurement of send statements

defined in a module (class), where a send statement is a

message sent out from a method of module M1 to

module M2. An object/function call is included in the

slice if at least one statement within this program artifact

is included in a program slice. Similarly, a call relation-

ship connecting line between two modules M1 and M2

(where M1 calls M2) is included in the slice if at least one

‘‘call M2’’ statement inside of module M1 belongs to the

program slice. Larger the number of invoked messages

(MPC), greater is the complexity of the class and

correspondingly greater is the testing and debugging

effort required to comprehend module interactions. This

method often results in a large number of static

couplings (method calls) that leads to high MPC

measures, making meaningful analysis difficult.

Slicing-based MPC metric not only reduces complex-

ity of the metric itself, it also correlates the value of the

metric to the context of a particular program slice.

Coupling measurements can also be used to group and

organize software systems in loosely and highly coupled

subsystems. Clearly, slicing-based coupling metrics can

play a significant role in identifying coupling complexity

of software systems at different levels of granularity [57].

In combination with suitable visualization techniques

they provide a powerful mechanism to assist in program

comprehension on an ‘‘as needed’’ basis, and are

therefore an essential approach for program comprehen-

sion. Section 5 illustrates the use of program slicing-

based MPC metrics-based visualization.



ARTICLE IN PRESS
J. Rilling, S.P. Mudur / Computers & Graphics 29 (2005) 311–329 317
3. Software visualization

3.1. Limitations of 2D graph-based visualization

Visualization in the form of reverse engineered 2D

diagrams (e.g., collaboration diagrams, call-graphs,

sequence diagrams, etc.) and models (UML class

models) have been suggested in the literature [12] to

provide users with higher abstraction views of the

software under investigation (cf. Fig. 2). The principal

aim is to ease program comprehension by enabling a

person to comprehend complex internal structure and

entity relationships through appropriate visual map-

pings. For large software systems, however, it becomes

increasingly difficult to comprehend these diagrams for

several reasons:
(1)
 The visualization technique does not scale up causing

increased clutter in the diagram because of the large

amount of information (entities and entity relation-

ships) to be displayed, essentially resulting in infor-

mation overload problems. Often, 2D inheritance

trees or call graphs of several thousands of entities

create space filling and incomprehensible visuals.
(2)
 Awkward layout techniques provided by the chosen

visualization mapping tend to obscure important

patterns and relationships in the software from the

user.
Fig. 2. Sequence diagram to visualize program executions—an
(3)
exa
Navigation tools are non-intuitive; pan-zoom and

overlapping multiple windows are typically the kinds

of navigation tools supported causing cognitive

discontinuity problems. There are some visualization

mappings such as fisheye-views [10], perspective

information walls [58] and hyperbolic trees [59],

which offer some solutions for focus versus detail.

They assist the user in not getting lost in the visual

space, but even these do not easily scale to very large

software.
(4)
 Often their scope is rather specialized to depict

only certain program artifacts and their relation-

ships.
3.2. 3D versus 2D visualization

As mentioned earlier, over the last decade, programs

have become larger and more complex, creating new

challenges to the programmer in visualizing these

complex and large source code structures. Providing a

few predefined views might not be sufficient as users are

still dealing with a large amount of information and

data. Also, not every visualization technique is equally

adept in displaying a particular aspect of software

structure [60]. The visualization technique might lack an

appropriate navigation support or may not allow

effective reduction of the amount of information

displayed through a choice of predefined views. The
mple of a graph-based visualization (Screen capture).



ARTICLE IN PRESS
J. Rilling, S.P. Mudur / Computers & Graphics 29 (2005) 311–329318
disadvantages of most of the commonly used high-level

abstractions such as call-graph, UML class models, and

collaboration diagrams. Have been discussed by other

authors as well [52].

Software visualization of source code structures and

execution behaviors could consist of both static views

and dynamic views [61,18,62]. Dynamic views are based

on information from the analysis of recorded or

monitored program executions. During recording of a

program execution, a large amount of data may be

collected. Although this is not a new problem, rapid

increases in the quantity of information available and a

growing need for more highly optimized solutions have

both added to the pressure to make good and effective

use of this information [63].

3D visual representations are often suggested and

presented as a solution to provide just this required extra

space and resulting ease of use in navigation and

abstraction level. While the advantages of adding a

third dimension are initially obvious, these are realizable

only if truly distinct and effective use is made of the

added dimension. However, most of the current

approaches are just transforming established 2D
Fig. 3. Mapping 2D sequence diagram not
visualizing techniques into a 3D space [16]. 3D software

structure visualizations are still centered on creating

standard call-graphs within a 3D space. For example,

the usage of 3D call-graphs does offer a greater working

volume for the graphs thereby increasing the capacity

for readability. However, at the same time, they

introduce undesirable effects that significantly affect

the gain from the added dimension. Problems that might

be introduced by 3D visualization techniques include

significant objects being obscured, disorientation, and

spatial complexity. To some limited extent, these issues

can be resolved by 3D interaction techniques where the

viewpoint of the 3D graph is actually within the graph

structure; otherwise, the 3D visualization is limited to

merely a 2D picture of a 3D structure (cf. Fig. 3).

3.3. 3D metaphors used in software visualization

Ultimately, for 3D visualizations to be effective,

techniques other than just mapping 2D models

onto the 3D space are required. These techniques

must introduce a more meaningful and abstract

program representation that makes full use of the 3D
ation into 3D space (Screen capture).



ARTICLE IN PRESS
J. Rilling, S.P. Mudur / Computers & Graphics 29 (2005) 311–329 319
environment and, thus, the engineer’s natural intuition

and perceptual skills [4,7]. 3D visualization techniques

for software are all based on the use of a suitable

metaphor which helps a user to mentally associate a

visual/spatial aspect to a corresponding aspect of the

software. For example, size or height/width of a visual

object may be directly related to the inherent complexity

of the software entity it represents; spatial proximity

may be related to a measure of cohesion, etc. A number

of 3D metaphors have been proposed. Each has its own

specific comprehension objectives and its own advan-

tages/disadvantages. These metaphors include the

following:
�
 cone-trees [64], ideally suited for inheritance/inclusion

kind of relationships;
�
 world cities [20,65], again well suited for object-

oriented package/class inheritance relationships;
�
 human agents [66], primarily introduced for visualiz-

ing tasks in an operating system like software;
�
 Immersive VR [63] emphasizes the use of a virtual

environment in which 3D representations of software

are viewed in computer supported collaborative

environment. Each user can obtain an independent

view of the same software.
�
 3D graphs [67], entities are represented using basic

shapes like spheres connected by 3D lines and the

metaphor of geometric distance is used to enable

recognition of structures/patterns, etc.
�
 Metaballs [28], introduced by the authors using the

metaphor of particle with attributes and energy

influencing its surrounding particles.

3.4. Related work in metrics-based software visualization

Demeyer et al. have presented in their paper [68] a

hybrid approach combining metrics and visualization.

They combine software metrics with traditional graph-

based visualization techniques, by mapping metrics

values to color or size of nodes. A major limitation of

their approach is that it utilizes different types of 2D

graphs as visuals and would entail context switching.

Further, scaling to large software would pose the type of

problems discussed earlier. Systä et al. [69] present their

research on applying OO metrics with graphical reverse

engineering tools [69,70].

Their work focused on creating new visualization

scripts for Rigi and to perform a case study on their

subject Java system. Again, their visualization techni-

ques were limited to more traditional 2D visualization

approaches. Lewerentz and Simon [45] presented a 3D

metrics-based visualization of OO programs. In their

research, they focus on mapping program structures into

a 3D graphs with nodes of different shapes. The primary

metaphor is that of geometric distance. Common to all

existing work in visualization of software metrics is the
attempt to visualize the overall structure of the software

system under investigation. So far, most are based on

traditional graph-based visualization techniques, pro-

viding programmers with large quantities of information

to be analyzed and interpreted. Often, these visualiza-

tion techniques do not support an intuitive simultaneous

mapping between the visual components and metrics,

complicating the analysis of the results even further.

The next section discusses further the metaball

metaphor for visualizing software structure with intui-

tive visual mappings for software artifacts/aspects,

abstraction and navigation techniques.
4. Application of metaball metaphor to software

visualization

Comprehension of OO programs is simplified if the

relationships that exist between classes and other parts

of the program are easily understood. Diagrammatic

notations that have evolved certainly help. Thus, UML-

based static and dynamic visualization techniques such

as class models, sequence and collaboration diagrams

can be applied for smaller software systems to provide

an overview of the relationships in a program. However,

for large software systems these diagrams do not provide

adequate abstraction to visualize all the dependencies.

Particles in the metaball metaphor can be mapped to

software structures, with spherical or elliptical blobs

representing an object or a function (distinguished by

different shapes for particles) that are created dynami-

cally during a program execution and cylindrical blobs

connecting these software entities for representing the

interrelationship amongst them. The potential energy

surrounding a blob has traditionally been used to

indicate the influence the blob has with respect to its

surroundings. This can be very intuitively used to

visualize the strength of the coupling among program

artifacts. For example, the number of function invoca-

tions performed among objects could be one of the

parameters used to indicate the relationship (coupling)

among the blobs (cf. Fig. 4).

The dimensions or size of a blob can be used to

indicate a desired measure of the software entity, for

example, the number of statements in a function. Blobs

will be spatially located in clusters with spatial nearness

indicating an identifiable association between the soft-

ware entities that are mapped. We expect that a

programmer preferred spatial configuration of entities

is maintained in a persistent manner. This will enable the

programmer to retain the visual association with soft-

ware entities with very little effort.

One of the problems faced in most graph-based visual

representations is that association with source text, say

class/method/property names are difficult to maintain,

in the graph-based visual format. The metaball surface



ARTICLE IN PRESS
J. Rilling, S.P. Mudur / Computers & Graphics 29 (2005) 311–329320
can be easily texture mapped with a label to enable this

association with source code.

Fig. 5 shows a UML class diagram and a correspond-

ing 3D metaball visual. For this example, the number of

classes is small, and both visualizations appear to serve

the intended purpose. But it is obvious that with limits

on screen space the UML diagram does not scale. On

the other hand, with the ability to navigate in 3D space

and view the 3D structure from any viewpoint, the

available space for pictorially depicting entities and

relationships is vastly expanded. Further, combinations

in which UML diagrams of metaball sub-clusters can be
Fig. 4. Metaballs in visualizing software interaction. Top:

shows high coupling between two entities, middle: shows some

coupling between two entities and bottom: shows medium

coupling between two entities.

Fig. 5. Combination of classical UML diagram w
shown on demand would further enhance information

communication.

Frequently, it is advantageous to reduce the number

of visible elements. Limiting the number of visual

elements to be displayed improves the clarity and

simultaneously increases performance of layout and

rendering [66]. Various ‘‘abstraction’’ and ‘‘reduction’’

techniques have been applied by researchers in order to

reduce the visual complexity of graph-like structures.

One approach is to perform clustering.

Clustering can be described as the process of

discovering groupings or classes of data, based on

chosen semantics. Clustering techniques have been

referred to in the literature as cluster analysis, grouping,

clumping, classification, and unsupervised pattern recogni-

tion [66]. Engineering illustrations have traditionally

used the technique of explosion/implosion to depict/

coalesce the internal details of complex engineering

artifacts. For a visualization technique to be scalable to

represent large amounts of data, the metaphor has to

support similar techniques such as collapsing, hiding,

and expanding parts of the diagram, thereby giving the

user the ability to select the view granularity and

consequently the amount of information that has to be

displayed. Similar techniques are easily supported by

metaball models.

Collapsing/expanding particle clusters enables us to

visualize abstractions at different hierarchical levels,

mainly to provide users with an option to summarize

and analyze a program structure or a program execu-

tion. Such clustering techniques are less applicable in

visualizing dynamic changes (particularly for large
ith metaball visualization (Screen capture).



ARTICLE IN PRESS

Table 1

Visual mappings

Program artifact Metaball property

Software entities Particles

Entity types Blob shape

Entity measure (e.g. no. of statements in function) Blob dimensions

Entity association Particle clustering

Entity relationship (e.g. hierarchy, coupling) Cylindrical blob connecting two entity blobs

Relationship strength Energy potential amongst entity blobs and connection blobs

Hierarchic levels of abstraction Particle collapsing/expansion

Different dynamic behavioral aspects Blob colors, brightness, shininess, animated change in connections, etc.

J. Rilling, S.P. Mudur / Computers & Graphics 29 (2005) 311–329 321
software systems) because of navigation or orientation

issues. Grouping, and therefore, changing the layout

dynamically would distort a user’s ability to correlate

the clusters with a particular program structure or

content. Dynamically changing associations are visually

depicted by animating changes in appearance properties

of blobs/connections. Similarly, hiding or dimming

blobs that are insignificant or less significant to a

particular comprehension task gives us the ability to

present only details that matter. Transparency and

bounding spheres may be used to depict encapsulation.

Table 1 shows a partial list of visual mappings that are

supported by MetaViz, the Java 3D software that we

have developed. This program implements the metaball

metaphor for software visualization.

One basic requirement to enhance acceptance of

visualization techniques is to provide programmers with

navigation tools that provide easy navigation and a clear

perspective about how the current program part relates

to the overall structure of the software system. Browsing

through the source code is akin to navigating in this 3D

metaball space. Essentially one is provided full 3D

virtual space navigation capabilities, including collision

with software entities. Hence, the user can bring into

focus any desired software entity/cluster/relationship.

Additionally it is quite straightforward to provide rapid

moves to entities far away from the current view, more

like non-linear browsing of source code. For example, a

click on a particular metaball could bring that metaball

into focus, or the user could simply select the entity by

name. Consider another scenario. Let us assume that a

user would like to look at all the large software entities.

This could be done by automatically moving the view

from one large software entity to another.

4.1. Content-based clustering

The use of the semantic data associated with meta-

balls to perform clustering could be termed content-

based clustering. Content-based clustering can yield

groupings that are most appropriate for a particular
application and can even be combined with structure-

based clustering. Content-based clustering requires

application of specific data and knowledge. It is

important to note that clustering can be used for

functions such as filtering and search. In visualization

terms, filtering usually refers to the de-emphasis or

removal of elements from the view, while searching

usually refers to the emphasis of an element or group of

elements. Both filtering and search can be accomplished

by partitioning elements into two or more groups, and

then emphasizing one of the groups by graphics

techniques such as highlighting. The reader is referred

to an example of this later in Fig. 15 which illustrates

visual aids in clustering, utilizing program slicing.

4.2. Entity layout

Clustering data can also be used to arrive at the final

layout of the entities in the geometric space. The layout

algorithm should avoid cluttering of the metaballs. At

the same time, it should use the space optimally so that

appropriate detail is presented in all views. The general

3D layout problem is complex and layout for software

visualization has been studied to a limited extent by a

number of researchers [71,72]. Our MetaViz tool

consists of three major parts: the grid-layout, a

clustering and grouping algorithm and the metaball

rendering engine (see Fig. 6). The grid-layout part uses

an XML file as an input, which describes the software

artifacts and their internal relationships. It is based on a

traditional hill climbing optimizing approach. MetaViz

provides the user with continuous feedback about

progress made in the layout optimization by displaying

snapshots of the current layout (cf. Fig. 7) in the form of

a sphere-line 3D graph. Once a certain optimum is

reached, the layout is complete. The resulting layout will

be saved in an XML file to be rendered using the

metaball technique.

The rendering engine part of MetaViz reads the XML

file as input to generate and render the metaballs in 3D

space by mapping the properties of software to the



ARTICLE IN PRESS
J. Rilling, S.P. Mudur / Computers & Graphics 29 (2005) 311–329322
properties of metaballs. After completion of the render-

ing process, the user can navigate through the visuals

and apply an overview, select and zoom approach to

refine the current view.

Since one of the major goals of software visualization

is to guide people during comprehension of software

systems, we use readability as the major criteria to

evaluate the quality of our layout algorithm. Similar

readability criteria as already applied in information

visualization can be applied for software visualization.
 XML files 

Grouping Layout Rendering

Metaball

CONCEPT 
Analyzer 

Fig. 6. MetaViz pipeline.

Fig. 7. Different stages in
Fig. 8 shows the importance of the different criteria for

the readability of a visualization technique, in general.

Clearly, the metaball metaphor provides us with a

visually rich environment to depict entities in a software

system along with visual techniques that enable mapping

of software structure and dynamic behavior onto highly

intuitive visual renderings.
5. Metaball visualization of a Java 3D program

To demonstrate the applicability and effectiveness of

3D metaball visuals in combination with program

slicing, we created 3D visuals for the application

itself—MetaViz, our Java 3D metaball visualization

program. This program consists of four packages and 26

classes and with a total of 10,000 lines of source code.

Fig. 9 shows a zoomed-in view of MetaViz as visualized

using itself and using different colors for related groups
the layout process.



ARTICLE IN PRESS

Minimize the number of edge crossings

Minimize the “projection crossings” 

Minimize the length of edges. 

Optimize density distribution 

Optimize drawing space (area) 

Achieve symmetry. 

Im
portance 

Fig. 8. Visualization criteria affecting layout of entities.

Fig. 9. A clip of the MetaViz source program visualized using

MetaViz itself (Screen capture).

J. Rilling, S.P. Mudur / Computers & Graphics 29 (2005) 311–329 323
of classes. We use this not as an example of a large

software system, but as a program which allows us to

demonstrate how the presented techniques can benefit

the comprehension of software systems and their

structures.

5.1. Hierarchic view

One of the first tasks in program understanding is to

obtain an overview of the software entities, their sizes

and static structural relationships such as inheritance.

The metaball inheritance network is a 3D graphic

structure that corresponds to a network depicting the

program’s inheritance hierarchy. Nodes denote

packages/classes and branches denote the inheritance
relationship. The size of the node is indicative of the

entity size and the color is indicative of the package to

which that the class belongs. With suitable text call outs

associated with a software entity, this inheritance

network makes it easier for a user to gauge the

maximum/minimum sizes of classes and also their

numbers. It also enables simple analysis such as

identification of classes which can be potential cases,

say, for refactoring a class into their super classes, or

break up highly bloated classes which have far too many

methods, etc.

Fig. 10 (left) shows a hierarchical representation

of the MetaViz system as provided by Sun One

IDE (or for that matter most other IDEs). The view

provides the list of classes and packages included in the

software system and its class hierarchy. Limitations of

this view are that for large systems it will require

scrolling through the listing making it difficult to

identify structural dependencies among the different

parts of the program.

Fig. 10 (right) shows the same class hierarchy using

our metaball approach. At the top level, we see the

various packages of the system. Packages are identified

by their names and an associated unique color.

The size of the metaballs is proportional to the

contained code size of the corresponding package/class.

Connected to the packages are the classes associated

with a particular package. The color and size scheme

also applies to metaballs on the class level. Other

options include the possibility to select packages of

interest. The selection process will lead to a customized

view, showing the classes that belong to the packages

and dimming the classes that do not belong. We will

now demonstrate how the metaball technique can be

applied to visualize program slices and program slicing-

based method coupling metrics (SMCP).

5.2. Design evaluation

Software systems have to be flexible in order to cope

with evolving requirements [2,4,5,73]. Although good

software engineering practice encourages programmers

to plan for future modifications, not every future design

change can be predicted. Traditional software metrics

are used for this purpose, but are often limited by their

textual or tabular representation. For example, Fig. 11

shows a partial snapshot of different coupling measure-

ments for MetaViz program that were computed using

Sun One metrics add-on.

One of the major shortcomings of a tabular repre-

sentation is that it does not intuitively correspond to a

programmer’s mental model of a software design.

Typically, a software design is represented and docu-

mented on a graphical abstraction level using, for

example, UML class models rather than a textual

representation. Additionally, from a user perspective,



ARTICLE IN PRESS

Fig. 10. Hierarchical structure in SunONE (left); same structure using Metaviz’s inheritance network (right).

J. Rilling, S.P. Mudur / Computers & Graphics 29 (2005) 311–329324
these measurements are somewhat disconnected making

it difficult for a programmer to interpret and correlate

the metrics within the context of the overall design and

structure of a software system.

For the purpose of demonstration, we focused on the

MPC metric. We applied the MPC metric for our

MetaViz environment. Fig. 12 shows a snapshot of a

tabular representation of the MPC measurements. The

table illustrates the MPC that exists between a pair of

classes. These metrics are then used to visualize the

information using metaballs, with particular interest in

the influence over neighboring entities.

The metaball diameter is indicative of class size; the

fusion between two classes indicates the existing MPC

among two classes and the strength of the coupling

among classes corresponds to the diameter of the

connecting cylinders among the entities. An example
of strong coupling is shown in Fig. 13, where the two

classes CText2D and Text are strongly coupled with

each other. The example illustrates how the metaball

approach can be applied intuitively, not only to

pictorially visualize a program structure but also to

represent and visualize design measurements. It facil-

itates the task of analyzing metrics directly in the context

of the overall program structure.

5.3. Combining program slicing with MPC

For large software systems, the metaball visualization

technique if directly used has the same problems as the

more conventional graph-based visualization techniques

in its ability to scale and visualize large amount of

information. Usually, programmers tend to apply an as

needed comprehension approach, to comprehend only



ARTICLE IN PRESS

Fig. 11. Snapshot of coupling measurements for MetaViz program.

Fig. 12. MPC measurement snapshot for MetaViz.

J. Rilling, S.P. Mudur / Computers & Graphics 29 (2005) 311–329 325
those parts of the systems that are relevant for the

particular task. Software metrics-based on program

slicing can be used to address this problem, by reducing

comprehension complexity, by focusing on a specific

comprehension aspect rather than the overall compre-

hension of the system. Additionally, the metaball

metaphor can also be extended to apply an as ‘‘needed

approach’’ to the visualization of software structures, by

displaying only those parts of the system that are

relevant for the current comprehension task. Combining

software visualization with source code analysis, in this

case program slicing, can enhance and improve the

applicability of these techniques. Specifically, we create

metaball visuals to display the SMPC for our MetaViz

system. Fig. 14 shows a snapshot of the SMPC

measurements. The classes that are included in the slice

and considered in the SMPC are highlighted in yellow.

Additionally, MPC metrics for the classes included in

the slice were updated, including only those MPC

measurements that are included in the program slice,

resulting in a reduction of the MPC values for these

classes.

For visualization of the MPC metrics, we update the

fusion among the different metaballs by reflecting only
the MPC included in the slice. One approach to display

a slice is by highlighting the modules (blobs) and call

relationships that belong to the slice in the original

metaball diagram, showing the complete program.

Another approach is to display a metaball sub-diagram

that is constructed from the original metaball diagram

by hiding/dimming all modules (blobs) and their calling

relationships that do not belong to the slice (cf. Fig. 15).
6. Conclusions

It is a well-known fact that a major share of systems

development effort goes into the comprehension of

large systems and their source code, about which

we usually know very little [4]. The large and

complex programs developed and maintained in current

software environments are the ones that can most

benefit from the visualization and source code analysis

techniques presented in this research. Our paper first

presented a comprehensive review of techniques for

program comprehension through software metrics and

visualization. This was followed by introducing a novel

approach of applying the metaball metaphor to visualize

source code and source code analysis information.

Specifically, in combination with program slicing, this

technique provides a rich, powerful, and intuitive

method of visual presentations that can considerably

enhance and accelerate program comprehension. Com-

bined with program slicing, it allows for a reduction of

the information to be displayed, and it also enables us to

provide additional source code insights that can be

applied to a variety of source code-based comprehension

tasks (e.g. debugging, testing, performance analysis,

etc.). We have illustrated how the metaball approach



ARTICLE IN PRESS

Fig. 13. Metaball visuals of MPC measurements (Fig. 12).

Fig. 14. Slicing-based MPC measurement for MetaViz (Screen

capture).

J. Rilling, S.P. Mudur / Computers & Graphics 29 (2005) 311–329326
can be combined with program slicing to visualize

software metrics.

Given the complexity of software and the different

problem solving characteristics of programmers, it is

now well recognized that there is unlikely to be any one

single visualization metaphor that can be considered

most optimal for software visualization. Instead, differ-

ent metaphors may be better suited to specific program

comprehension purposes and for particular types of

analyses results. In our opinion, the metaball metaphor

is rich and has the potential to be a very good candidate

for a number of software reverse engineering tasks. This

is largely because it is highly effective in visually

capturing the relationships between software entities

such as coupling, relevancy, and influence relationships

that play a vital role in virtually all program compre-

hension and reverse engineering tasks. While there is a

large body of powerful software available for visualizing

metaballs both commercial and public domain, all of it
is tailored toward applications in domains such as

molecular modeling, animation, and electronic gaming.

Our use of metaballs is similar but not identical to those

domains. It was important to develop MetaViz, our own

metaball visualization software. MetaViz is specifically

tailored to producing the kind of visuals and 3D

interactions that have been elaborated upon in earlier

sections. Presently it includes a JDBC interface to a

database to obtain the data/values resulting from source

code analysis. These are then modeled and rendered as

3D visuals.

MetaViz development and application have just

commenced. A number of tasks/extensions are planned.

The more important of these are listed below:
�
 We are investigating the possibility of undertaking

actual case studies in comprehension of large

programs from industry/external organizations.

These case studies will allow us to properly validate

the effectiveness and applicability of the metaball

metaphor for large software visualization.
�
 Usability studies are another important aspect. The

effectiveness of software visualization tools must be

validated beyond merely anecdotal evidence. Usability

of these tools must be evaluated for functional,

practical, aesthetic and problem solving support aspects.
�
 Presently, MetaViz is a stand alone tool that uses

JDBC to access data created within CONCEPT [52],

a software engineering automation environment

being developed here. We would attempt the integra-

tion of MetaViz into the CONCEPT environment



ARTICLE IN PRESS

Fig. 15. Slicing-based MPC measurement for MetaViz (Screen capture).

J. Rilling, S.P. Mudur / Computers & Graphics 29 (2005) 311–329 327
with the intention of supporting round trip software

engineering activities.
Acknowledgements

We gratefully acknowledge partial funding support

through research Grants from NSERC, Canada and

Concordia University ENCS Faculty Research Funds.

We also thank our Master’s student Jian Qun Wang for

his help in carrying out the software implementation.
References

[1] Bassil S, Keller RK. Software visualization tools: survey

and analysis, Proceedings of the IEEE ninth international

workshop on program comprehension (IWPC’01), 2002. p

7–17.

[2] Favre JM. GSEE: a generic software exploration environ-

ment. Proceedings of the ninth international workshop on

program comprehension (IWPC’2001), Toronto, Canada,

May 2001, p. 233–44.

[3] Harel D. Biting the silver bullet, toward a brighter future

for system development. IEEE Computer 1992;25(1):8–20.

[4] Mayrhauser A, Vans AM. Program understanding beha-

vior during adaptation of large scale software. Proceedings

of the sixth international workshop on program compre-

hension, IWPC ‘98, Ischia, Italy, June 1998. p. 164–72.

[5] Rilling J. Maximizing functional cohesion of comprehen-

sion environments by integrating user and task knowledge.

Proceedings of the eighth IEEE working conference on

reverse engineering (WCRE 2001), Stuttgart, Germany,

October 2001. p. 157–65.

[6] Sanlaville R, Favre JM, Ledru Y. Helping various

stakeholders to understand a very large software product.
Proceedings of the European conference on component-

based software engineering, September 2001.

[7] Storey M-A, Fracchia F, Müller H. Cognitive design

elements to support the construction of a mental model

during software exploration. Journal of Software Systems

1999;44:171–85 (special issue on program comprehension).

[8] Weiser M. Program slicing. IEEE Transactions on Soft-

ware Engineering 1982;SE-10(4):352–7.

[9] Basili V, Briand L, Melo W. Measuring the impact of reuse

on quality and productivity in object-oriented systems.

Technical report, CS-TR-3395, University of Maryland,

Department of Computer Science, 1995.

[10] Furnas G. Generalized Fisheye views. Proceedings of the

SIGCHI human factor in computing, 1986. p. 18–23.

[11] Nielson GM, Hagen H, Mueller H. Scientific visualization:

overviews, methodologies, and techniques. Silver Spring,

MD: IEEE Computer Society Press; 1997.

[12] Ball T, Eick SG. Software visualization in the large. IEEE

Computer 1996;29(4):33–43.

[13] Baker MJ, Eick SG. Space-filling software visualization.

Journal of Visual Languages and Computing 1995;6:

119–33.

[14] Kreuseler M, Schuman H. Information visualization using

a new focus + context technique in combination with

dynamic clustering of information space. Proceedings of

the ACM workshop on new paradigms in information

visualization and manipulation, Kansas city, 1999. p. 1–5.

[15] Michaud J, Storey MAD, Muller HA. Programs, integrat-

ing information sources for visualizing java. Proceedings

of the international conference of software maintenance

(ICSM’2002), Italy, 2001.

[16] Price B, Baecker R, Small I. A principled taxonomy of

software visualization. Journal of Visual Languages and

Computing 1994. p. 211–66.

[17] Reiss SP, Cruz IS. Practical software visualization. CHI’94

workshop on software visualization.

[18] Shneiderman B. Tree visualization with tree-maps: a 2-D

space-filling approach. In: ACM transactions of the

computer–human interaction, vol. 11(1), 1992, p. 92–9.



ARTICLE IN PRESS
J. Rilling, S.P. Mudur / Computers & Graphics 29 (2005) 311–329328
[19] Shneiderman B. Designing the user interface, 3rd ed.

Reading, MA: Addison-Wesley; 1997.

[20] Knight C, Munro M. Visualising software—a key research

area. Proceedings of the international conference on

software maintenance; ICSM’99. New York: IEEE Press;

1999.

[21] Rilling J, Karanth B. A hybrid program slicing framework.

IEEE international workshop on source code analysis and

manipulation SCAM 2001, Florence, Italy, November 2001.

[22] Blinn JF. A generalisation of algebraic surface drawing.

ACM Transactions on Graphics 1982;1(3):135–256.

[23] Bloomenthal J. Polygonization of implicit surfaces. Com-

puter Aided Geometric Design 1988;5(4):341–55.

[24] Stasko J, Domingue J, Brown MH, Price BA, editors.

Software visualization: programming as a multimedia

experience. Cambridge, MA: MIT Press; 1998.

[25] Wyvill G, McPheeters C, Wyvill B. Data structure for soft

objects. The Visual Computer 1986;2(4):227–34.

[26] Wyvill G, McPheeters C, Wyvill B. Animating soft objects.

The Visual Computer 1986;2(4):235–42.

[27] Wyvill B, Wyvill G. Field functions for implicit surfaces.

Visual Computer 1989;5:75–82.

[28] Rilling J, Mudur SP. On the use of metaballs to visually

map source code structures and analysis results onto 3D

space. Proceedings of the IEEE WRCE 2002.

[29] 3D ARK, 3D related software list, http://www.3dark.com/

resources/products/softwarelist.htm.

[30] Basili VR, Briand LC, Melow WL. A validation of object-

oriented design metrics as quality indicators. IEEE

Transactions on Software Engineering 1996;22(10):751–61.

[31] Fenton N. Software metrics: a rigorous approach.

London: Chapman & Hall; 1991.

[32] Li B. A hierarchical slice-based framework for object-

oriented coupling measurement. TUCS technical report

no. 415, Turku Centre for Computer Science, Turku,

Finland, July 2001.

[33] Li W, Henry S. Object-oriented metrics that predict

maintainability. Journal of Systems and Software 1993;

23(2):111–22.

[34] Martin R. OO design quality metrics—an analysis of

dependencies. Position paper, workshop on pragmatic and

theoretical directions in object-oriented software metrics,

OOPSLA’94, October 1994.

[35] Hitz M, Montazeri B. Chidamber & Kemerer’s metrics

suite: a measurement theory perspective. IEEE Transac-

tions on Software Engineering 1996;22(4):267–71.

[36] Briand L, Devanbu P, Melo W. An investigation into

coupling measures for C++. Technical Report ISERN

96-08, IEEE ICSE’97, Boston, USA, May 1997.

[37] Chidamber SR, Kemerer CF. A metrics suite for object

oriented design. IEEE Transactions on Software Engineer-

ing 1994;20(6):476–93.

[38] Agrawal H, Horgan, J. Dynamic program slicing. In:

Proceedings of the ACM SIGPLAN’90 conference on

programming language design and implementation, SIG-

PLAN notices, vol. 25(6), 1990; p. 246–56.

[39] Agrawal H, DeMillo R, Spafford E. Debugging with

dynamic slicing and backtracking. Software—Practice and

Experience 1993;23(6):589–616.

[40] Harman M, Hierons RM, Danicic S, Laurence M,

Howroyd J, Fox C. Pre/post conditioned slicing. Proceed-
ings of the IEEE international conference on software

maintenance (ICSM’2001), Florence, Italy, 2001.

[41] Harman M, Danicic SA. A new algorithm for slicing

unstructured programs. Journal of Software Maintenance

1998;10(6):415–41.

[42] Horwitz S, Reps T, Binkley D. Interprocedural slicing

using dependence graphs. ACM Transactions on Program-

ming Languages and Systems 1990;12(1):26–61.

[43] Horwitz S, Reps T. The use of program dependence graphs

in software engineering. In: Proceedings of the 14th

International conference on software engineering, Mel-

bourne, Australia, 1992. p. 392–411.

[44] Larsen LD, Harrold MJ. Slicing object oriented software.

In: Proceeding of the 18th international conference on

software engineering, March 1996.

[45] Korel B, Laski J. Dynamic program slicing. Information

Processing Letters 1988;29(3):155–63.

[46] Gopal R. Dynamic program slicing-based on dependence

relations. In: Proceedings of the conference on software

maintenance, 1991. p. 191–200.

[47] Kamkar M, Krajina P. Dynamic slicing of distributed

programs. In: Proceedings of the international conference

on software maintenance, October 1995. p. 222–9.

[48] Korel B. Computation of dynamic slices for unstructured

programs. IEEE Transactions on Software Engineering

1997;23(1):17–34.

[49] Zhao J. Dynamic slicing of object-oriented programs.

Technical-Report SE-98-119, Information Processing So-

ciety of Japan, May 1998. p. 17–23.

[50] Gupta R, Soffa M, Howard J. Hybrid slicing: integrating

dynamic information with static analysis. ACM Transac-

tions on Software Engineering and Methodology 1997;

6(4):370–97.

[51] Lyle J, Weiser M. Experiments on slicing-based debugging

tools. Proceedings of the first conference on empirical

studies of programming, 1986. p. 187–97.

[52] Rilling J, Seffah A. The CONCEPT project—applying

source code analysis to reduce information complexity of

static and dynamic visualization techniques. IEEE VIS-

SOFT workshop, Paris, 2002.

[53] Tip F. A survey of program slicing techniques. Journal of

Programming Languages 9/1995;3(3):121–89.

[54] Harman M, Okulawon M, Sivagurunathan B, Danicic S.

Slice-based measurement of coupling. IEEE/ACM ICSE

workshop on process modeling and empirical studies of

software evolution (PMESSE’97), Boston, MA, 17th–23rd

May 1997. p. 28–32.

[55] Ott L, Thuss J. Slice-based metrics for estimating cohesion.

Proceedings of the IEEE-CS international software metrics

symposium, 1993. p. 71–81.

[56] Ott L, Thuss J. The relationship between slices and module

cohesion. Proceedings of 11th international conference on

software engineering 1989. p. 192–204.

[57] Rilling J, Meng WJ, Ormandjieva O. Context driven

slicing-based coupling measures. Proceedings of the 20th

IEEE international conference on software maintenance

(ICSM’04), Vol. 00, Chicago, IL, 2004. p. 532.

[58] Mackinlay J, Robertson G, Card S. The perspective

wall: detail and context smoothly integrated. Proceedings

of the SIGCHI human factors in computing, 1991.

p. 173–9.

http://www.3dark.com/resources/products/softwarelist.htm
http://www.3dark.com/resources/products/softwarelist.htm


ARTICLE IN PRESS
J. Rilling, S.P. Mudur / Computers & Graphics 29 (2005) 311–329 329
[59] Lamping J, Rao R, Pirolli P. A focus+context technique

based on hyperbolic geometry for visualizing large

hierarchies. Proceedings of the SIGCHI human factors in

computing systems, 1995. p. 401–8.

[60] Nielsen J. 2D is better than 3D. AlertBox. http://

useit.com/alerbox/981115.html; 1998.

[61] Pirolli P, Card SK, Van Der Wege, Mija M. Visual

information foraging in a focus+context visualization. In:

Proceedings of the ACM conference on human factor in

computing systems (CHI-01), Seattle, 2001. p. 506–13.

[62] Walker RJ, Murphy GC, Freeman-Benson B, Wright D,

Swanson D, Isaak J. Visualizing dynamic software system

information through high-level models. Proceedings of the

OOPSLA’98, SIGPLAN notices 33(10), October 1998.

p. 271–83.

[63] Maletic JI, Leigh J, Marcus A, Dunlap G. Visualizing

object-oriented software in virtual reality. Proceedings of

the ninth international workshop on program comprehen-

sion (IWPC 2001), Toronto, Canada, May 12–13, 2001.

p. 26–35.

[64] Robertson GG, Mackinlay JD, Card SK. Cone trees:

animated 3D visualizations of hierarchical information.

Proceedings of the CHI’91 conference on human factors in

computing systems 1991. p. 189–94.

[65] Knight C, Munro M. Visualising the non-existing.

Proceedings of the IASTED international conference:

computer graphics and imaging, Hawaii, USA, 2001.
[66] Hopkins J, Fishwick PA. A three-dimensional human

agent metaphor for modeling and simulation. Proceedings

of the IEEE 2001;89(2):131–47.

[67] Dwyer T. Three dimensional UML using force directed

layout. Proceedings of the Australian symposium on

information visualization, 2001.

[68] Demeyer S, Ducasse S, Lanza M. A hybrid reverse

engineering platform combining metrics and program

visualization. In: Proceedings of the WCRE’99, New

York: IEEE Press; 1999. p. 175–87.

[69] Systä T, Koskimies K, Müller HA. Shimba—an environ-

ment for reverse engineering Java software systems.

Software—Practice and Experience (SPE) 2001;31:

371–94.

[70] http://www.rigi.csc.uvic.ca/.

[71] Franck G, Sardesai M, Ware C. Layout and structuring

object oriented software in three dimensions. Proceedings

of the CASCON 1995.

[72] Sugiyama K, Misue K. Visualization of structural infor-

mation: automatic drawing of compound digraphs. IEEE

Transactions on Systems, Man and Cybernetics 1991;

21(4):876–92.

[73] Van Deursen A, Kuipers T. Building documen-

tation generators. In: Proceedings of the international

conference on software maintenance (ICSM’99).

Silver Spring, MD: IEEE Computer Society Press; 1999.

p. 40–9.

http://useit.com/alerbox/981115.html
http://useit.com/alerbox/981115.html
http://www.rigi.csc.uvic.ca/

	3D visualization techniques to support slicing-based �program comprehension
	Introduction
	Software comprehension
	Software metrics and program slicing for software comprehension
	Visualization of software structure and software metrics
	Metaball metaphor
	Organization of this paper

	Software metrics and program slicingmdasha survey
	Software metrics
	Software design metrics
	Coupling measurements
	Program slicing
	Slicing-based coupling measures
	Slicing-based message passing coupling (SMPC)

	Software visualization
	Limitations of 2D graph-based visualization
	3D versus 2D visualization
	3D metaphors used in software visualization
	Related work in metrics-based software visualization

	Application of metaball metaphor to software visualization
	Content-based clustering
	Entity layout

	Metaball visualization of a Java 3D program
	Hierarchic view
	Design evaluation
	Combining program slicing with MPC

	Conclusions
	Acknowledgements
	References


