
©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 21 Slide 1

Software re-engineering

Reorganising and modifying
existing software systems to
make them more
maintainable

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 21 Slide 2

Re-structuring or re-writing part or all of a
legacy system without changing its
functionality
Applicable where some but not all sub-
systems of a larger system require frequent
maintenance
Re-engineering involves adding effort to
make them easier to maintain. The system
may be re-structured and re-documented

System re-engineering

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 21 Slide 3

When system changes are mostly confined
to part of the system then re-engineer that
part
When hardware or software support
becomes obsolete
When tools to support re-structuring are
available

When to re-engineer

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 21 Slide 4

Re-engineering advantages

Reduced risk
• There is a high risk in new software

development. There may be development
problems, staffing problems and specification
problems

Reduced cost
• The cost of re-engineering is often significantly

less than the costs of developing new software

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 21 Slide 5

Business process re-engineering

Concerned with re-designing business
processes to make them more responsive
and more efficient
Often reliant on the introduction of new
computer systems to support the revised
processes
May force software re-engineering as the
legacy systems are designed to support
existing processes

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 21 Slide 6

Forward and re-engineering

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 21 Slide 7

The re-engineering process

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 21 Slide 8

Re-engineering cost factors

The quality of the software to be re-
engineered
The tool support available for re-engineering
The extent of the data conversion which is
required
The availability of expert staff for re-
engineering

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 21 Slide 9

Re-engineering approaches

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 21 Slide 10

System re-engineering

Re-structuring or re-writing part or all of a
legacy system without changing its
functionality.
Applicable where some but not all sub-systems
of a larger system require frequent
maintenance.
Re-engineering involves adding effort to make
them easier to maintain. The system may be re-
structured and re-documented.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 21 Slide 11

System measurement

You may collect quantitative data to make an
assessment of the quality of the application
system
• The number of system change requests;
• The number of different user interfaces used by

the system;
• The volume of data used by the system.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 21 Slide 12

Source code translation

Involves converting the code from one
language (or language version) to another
e.g. FORTRAN to C
May be necessary because of:
• Hardware platform update
• Staff skill shortages
• Organisational policy changes

Only realistic if an automatic translator is
available

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 21 Slide 13

The program translation process

Automatically
transla te code

Design translator
instructions

Identify source
code differences

Manually
transla te code

System to be
re-engineered

System to be
re-engineered

Re-engineered
system

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 21 Slide 14

Reverse engineering

Analysing software with a view to
understanding its design and specification
May be part of a re-engineering process but
may also be used to re-specify a system for
re-implementation
Builds a program data base and generates
information from this
Program understanding tools (browsers,
cross-reference generators, etc.) may be
used in this process

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 21 Slide 15

The reverse engineering process

Data stucture
diagrams

Program stucture
diagrams

Traceability
matrices

Document
generation

System
information

store

Automated
analysis

Manual
annotation

System to be
re-engineered

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 21 Slide 16

Reverse engineering

Reverse engineering often precedes re-
engineering but is sometimes worthwhile in
its own right
• The design and specification of a system may

be reverse engineered so that they can be an
input to the requirements specification process
for the system’s replacement

• The design and specification may be reverse
engineered to support program maintenance

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 21 Slide 17

Program structure improvement

Maintenance tends to corrupt the structure of
a program. It becomes harder and harder to
understand
The program may be automatically
restructured to remove unconditional
branches
Conditions may be simplified to make them
more readable

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 21 Slide 18

Spaghetti logic

Start: Get (Time-on, Time-off, Time, Setting, Temp, Switch)
if Switch = off goto off
if Switch = on goto on
goto Cntrld

off: if Heating-status = on goto Sw-off
goto loop

on: if Heating-status = off goto Sw-on
goto loop

Cntrld: if Time = Time-on goto on
if Time = Time-off goto off
if Time < Time-on goto Start
if Time > Time-off goto Start
if Temp > Setting then goto off
if Temp < Setting then goto on

Sw-off: Heating-status := off
goto Switch

Sw-on: Heating-status := on
Switch: Switch-heating
loop: goto Start

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 21 Slide 19

Structured control logic
loop

-- The Get statement finds values for the given variables from the system’s
-- environment.

Get (Time-on, Time-off, Time, Setting, Temp, Switch) ;
case Switch of

when On => if Heating-status = off then
Switch-heating ; Heating-status := on ;

end if ;
when Off => if Heating-status = on then

Switch-heating ; Heating-status := off ;
end if;

when Controlled =>
if Time >= Time-on and Time < = Time-off then

if Temp > Setting and Heating-status = on then
Switch-heating; Heating-status = off;

elsif Temp < Setting and Heating-status = off then
Switch-heating; Heating-status := on ;

end if;
end if ;

end case ;
end loop ;

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 21 Slide 20

Condition simplification

-- Complex condition
if not (A > B and (C < D or not (E > F)))...

-- Simplified condition
if (A <= B and (C>= D or E > F)...

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 21 Slide 21

Automatic program restructuring

Graph
representation

Program
generator

Restructured
program

Analyser and
graph builder

Program to be
restructured

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 21 Slide 22

Restructuring problems

Problems with re-structuring are:
• Loss of comments
• Loss of documentation
• Heavy computational demands

Restructuring doesn’t help with poor
modularisation where related components
are dispersed throughout the code
The understandability of data-driven
programs may not be improved by re-
structuring

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 21 Slide 23

Program modularisation

The process of re-organising a program so
that related program parts are collected
together in a single module
Usually a manual process that is carried out
by program inspection and re-organisation

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 21 Slide 24

Module types
Data abstractions
• Abstract data types where data structures and

associated operations are grouped
Hardware modules
• All functions required to interface with a

hardware unit
Functional modules
• Modules containing functions that carry out

closely related tasks
Process support modules
• Modules where the functions support a business

process or process fragment

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 21 Slide 25

Recovering data abstractions
Many legacy systems use shared tables and
global data to save memory space
Causes problems because changes have a
wide impact in the system
Shared global data may be converted to
objects or ADTs
• Analyse common data areas to identify logical

abstractions
• Create an ADT or object for these abstractions
• Use a browser to find all data references and

replace with reference to the data abstraction

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 21 Slide 26

Data abstraction recovery

Analyse common data areas to identify
logical abstractions
Create an abstract data type or object class
for each of these abstractions
Provide functions to access and update each
field of the data abstraction
Use a program browser to find calls to these
data abstractions and replace these with the
new defined functions

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 21 Slide 27

Data re-engineering

Involves analysing and reorganising the data
structures (and sometimes the data values)
in a program
May be part of the process of migrating from
a file-based system to a DBMS-based
system or changing from one DBMS to
another
Objective is to create a managed data
environment

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 21 Slide 28

Approaches to data re-engineering

Approach Description
Data cleanup The data records and values are analysed to improve their quality.

Duplicates are removed, redundant information is deleted and a consistent
format applied to all records. This should not normally require any
associated program changes.

Data extension In this case, the data and associated programs are re-engineered to remove
limits on the data processing. This may require changes to programs to
increase field lengths, modify upper limits on the tables, etc. The data itself
may then have to be rewritten and cleaned up to reflect the program
changes.

Data migration In this case, data is moved into the control of a modern database
management system. The data may be stored in separate files or may be
managed by an older type of DBMS.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 21 Slide 29

The data re-engineering process

Entity name
modification

Literal
replacement

Data definition
re-ordering

Data
re-formatting
Default value

conversion
Validation rule
modification

Data
analysis

Data
conversion

Data
analysis

Modified
data

Program to be re-engineered

Change summary tables

Stage 1 Stage 2 Stage 3

