
©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 1

Software testing

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 2

Object class testing

Complete test coverage of a class involves
• Testing all operations associated with an object;
• Setting and interrogating all object attributes;
• Exercising the object in all possible states.

Inheritance makes it more difficult to design
object class tests as the information to be
tested is not localised.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 3

Component testing

Component or unit testing is the process of
testing individual components in isolation.
It is a defect testing process.
Components may be:
• Individual functions or methods within an object;
• Object classes with several attributes and

methods;
• Composite components with defined interfaces

used to access their functionality.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 4

Objectives are to detect faults due to
interface errors or invalid assumptions about
interfaces.
Particularly important for object-oriented
development as objects are defined by their
interfaces.

Interface testing

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 5

Integration testing

Involves building a system from its
components and testing it for problems that
arise from component interactions.
Top-down integration
• Develop the skeleton of the system and

populate it with components.
Bottom-up integration
• Integrate infrastructure components then add

functional components.
To simplify error localisation, systems should
be incrementally integrated.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 6

System testing

Involves integrating components to create a
system or sub-system.
May involve testing an increment to be
delivered to the customer.
Two phases:
• Integration testing - the test team have access

to the system source code. The system is tested
as components are integrated.

• Release testing - the test team test the
complete system to be delivered as a black-box.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 7

Stress testing

Exercises the system beyond its maximum design
load. Stressing the system often causes defects to
come to light.
Stressing the system test failure behaviour..
Systems should not fail catastrophically. Stress
testing checks for unacceptable loss of service or
data.
Stress testing is particularly relevant to distributed
systems that can exhibit severe degradation as a
network becomes overloaded.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 8

Performance testing

Part of release testing may involve testing
the emergent properties of a system, such
as performance and reliability.
Performance tests usually involve planning a
series of tests where the load is steadily
increased until the system performance
becomes unacceptable.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 9

Release testing

The process of testing a release of a system
that will be distributed to customers.
Primary goal is to increase the supplier’s
confidence that the system meets its
requirements.
Release testing is usually black-box or
functional testing
• Based on the system specification only;
• Testers do not have knowledge of the system

implementation.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 10

Testing process goals

Validation testing
• To demonstrate to the developer and the system

customer that the software meets its requirements;
• A successful test shows that the system operates as

intended.

Defect testing
• To discover faults or defects in the software where its

behaviour is incorrect or not in conformance with its
specification;

• A successful test is a test that makes the system perform
incorrectly and so exposes a defect in the system.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 11

Defect testing

The goal of defect testing is to discover
defects in programs
A successful defect test is a test which
causes a program to behave in an
anomalous way
Tests show the presence not the absence of
defects

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 12

Testing guidelines

Testing guidelines are hints for the testing
team to help them choose tests that will
reveal defects in the system
• Choose inputs that force the system to generate

all error messages;
• Design inputs that cause buffers to overflow;
• Repeat the same input or input series several

times;
• Force invalid outputs to be generated;
• Force computation results to be too large or too

small.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 13

Only exhaustive testing can show a program is free
from defects. However, exhaustive testing is
impossible,
Testing policies define the approach to be used in
selecting system tests:
• All functions accessed through menus should be tested;
• Combinations of functions accessed through the same

menu should be tested;
• Where user input is required, all functions must be tested

with correct and incorrect input.

Testing policies

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 14

The software testing process

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 15

Black-box testing

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 16

Test case design

Involves designing the test cases (inputs and
outputs) used to test the system.
The goal of test case design is to create a
set of tests that are effective in validation and
defect testing.
Design approaches:
• Requirements-based testing;
• Partition testing;
• Structural testing.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 17

Requirements based testing

A general principle of requirements
engineering is that requirements should be
testable.
Requirements-based testing is a validation
testing technique where you consider each
requirement and derive a set of tests for that
requirement.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 18

LIBSYS requirements

The user shall be able to search either all of the initial set of databases or select a
subset from it.

The system shall provide appropriate viewers for the user to read documents in the
document store.

Every order shall be allocated a unique identifier (ORDER_ID) that the user shall
be able to copy to the accountÕs permanent storage area.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 19

LIBSYS tests

• Initiate user search for searches for items that are known to
be present and known not to be present, where the set of
databases includes 1 database.

• Initiate user searches for items that are known to be present
and known not to be present, where the set of databases
includes 2 databases

• Initiate user searches for items that are known to be present
and known not to be present where the set of databases
includes more than 2 databases.

• Select one database from the set of databases and initiate
user searches for items that are known to be present and
known not to be present.

• Select more than one database from the set of databases
and initiate searches for items that are known to be present
and known not to be present.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 20

Partition testing

Input data and output results often fall into
different classes where all members of a
class are related.
Each of these classes is an equivalence
partition or domain where the program
behaves in an equivalent way for each class
member.
Test cases should be chosen from each
partition.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 21

Equivalence partitioning

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 22

Equivalence partitions

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 23

Search routine specification

procedure Search (Key : ELEM ; T: SEQ of ELEM;
Found : in out BOOLEAN; L: in out ELEM_INDEX) ;

Pre-condition
-- the sequence has at least one element
T’FIRST <= T’LAST

Post-condition
-- the element is found and is referenced by L
(Found and T (L) = Key)

or
-- the element is not in the array
(not Found and
not (exists i, T’FIRST >= i <= T’LAST, T (i) = Key))

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 24

Inputs which conform to the pre-conditions.
Inputs where a pre-condition does not hold.
Inputs where the key element is a member of
the array.
Inputs where the key element is not a
member of the array.

Search routine - input partitions

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 25

Testing guidelines (sequences)

Test software with sequences which have
only a single value.
Use sequences of different sizes in different
tests.
Derive tests so that the first, middle and last
elements of the sequence are accessed.
Test with sequences of zero length.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 26

Search routine - input partitions

Sequence Element
Single value In sequence
Single value Not in sequence
More than 1 value First element in sequence
More than 1 value Last element in sequence
More than 1 value Middle element in sequence
More than 1 value Not in sequence

Input sequence (T) Key (Key) Output (Found, L)
17 17 true, 1
17 0 false, ??
17, 29, 21, 23 17 true, 1
41, 18, 9, 31, 30, 16, 45 45 true, 7
17, 18, 21, 23, 29, 41, 38 23 true, 4
21, 23, 29, 33, 38 25 false, ??

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 27

Sometime called white-box testing.
Derivation of test cases according to
program structure. Knowledge of the
program is used to identify additional test
cases.
Objective is to exercise all program
statements (not all path combinations).

Structural testing

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 28

Structural testing

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 29

Pre-conditions satisfied, key element in array.
Pre-conditions satisfied, key element not in
array.
Pre-conditions unsatisfied, key element in array.
Pre-conditions unsatisfied, key element not in array.
Input array has a single value.
Input array has an even number of values.
Input array has an odd number of values.

Binary search - equiv. partitions

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 30

Binary search equiv. partitions

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 31

Binary search - test cases

Input array (T) Key (Key) Output (Found, L)
17 17 true, 1
17 0 false, ??
17, 21, 23, 29 17 true, 1
9, 16, 18, 30, 31, 41, 45 45 true, 7
17, 18, 21, 23, 29, 38, 41 23 true, 4
17, 18, 21, 23, 29, 33, 38 21 true, 3
12, 18, 21, 23, 32 23 true, 4
21, 23, 29, 33, 38 25 false, ??

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 32

Path testing

The objective of path testing is to ensure that
the set of test cases is such that each path
through the program is executed at least
once.
The starting point for path testing is a
program flow graph that shows nodes
representing program decisions and arcs
representing the flow of control.
Statements with conditions are therefore
nodes in the flow graph.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 33

Binary search flow graph

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 34

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14
1, 2, 3, 4, 5, 14
1, 2, 3, 4, 5, 6, 7, 11, 12, 5, …
1, 2, 3, 4, 6, 7, 2, 11, 13, 5, …
Test cases should be derived so that all of
these paths are executed
A dynamic program analyser may be used to
check that paths have been executed

Independent paths

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 35

Test automation

Testing is an expensive process phase. Testing
workbenches provide a range of tools to reduce the
time required and total testing costs.
Systems such as Junit support the automatic
execution of tests.
Most testing workbenches are open systems
because testing needs are organisation-specific.
They are sometimes difficult to integrate with closed
design and analysis workbenches.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 23 Slide 36

A testing workbench

