
©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 1

Verification and Validation

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 2

Verification:
"Are we building the product right”.

The software should conform to its
specification.
Validation:

"Are we building the right product”.
The software should do what the user really
requires.

Verification vs validation

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 3

Is a whole life-cycle process - V & V must be
applied at each stage in the software
process.
Has two principal objectives
• The discovery of defects in a system;
• The assessment of whether or not the system is

useful and useable in an operational situation.

The V & V process

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 4

V& V goals

Verification and validation should establish
confidence that the software is fit for
purpose.
This does NOT mean completely free of
defects.
Rather, it must be good enough for its
intended use and the type of use will
determine the degree of confidence that is
needed.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 5

V & V confidence

Depends on system’s purpose, user
expectations and marketing environment
• Software function

• The level of confidence depends on how critical the
software is to an organisation.

• User expectations
• Users may have low expectations of certain kinds of

software.
• Marketing environment

• Getting a product to market early may be more
important than finding defects in the program.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 6

Software inspections. Concerned with analysis of
the static system representation to discover
problems (static verification)
• May be supplement by tool-based document and code

analysis

Software testing. Concerned with exercising and
observing product behaviour (dynamic verification)
• The system is executed with test data and its operational

behaviour is observed

Static and dynamic verification

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 7

Static and dynamic V&V

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 8

Can reveal the presence of errors NOT their
absence.
The only validation technique for non-
functional requirements as the software has
to be executed to see how it behaves.
Should be used in conjunction with static
verification to provide full V&V coverage.

Program testing

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 9

Defect testing
• Tests designed to discover system defects.
• A successful defect test is one which reveals the

presence of defects in a system.
• Covered in Chapter 23

Validation testing
• Intended to show that the software meets its

requirements.
• A successful test is one that shows that a requirements

has been properly implemented.

Types of testing

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 10

Defect testing and debugging are distinct
processes.
Verification and validation is concerned with
establishing the existence of defects in a program.
Debugging is concerned with locating and
repairing these errors.
Debugging involves formulating a hypothesis
about program behaviour then testing these
hypotheses to find the system error.

Testing and debugging

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 11

The debugging process

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 12

Careful planning is required to get the most
out of testing and inspection processes.
Planning should start early in the
development process.
The plan should identify the balance
between static verification and testing.
Test planning is about defining standards for
the testing process rather than describing
product tests.

V & V planning

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 13

The V-model of development

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 14

The structure of a software test plan

The testing process.
Requirements traceability.
Tested items.
Testing schedule.
Test recording procedures.
Hardware and software requirements.
Constraints.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 15

The software test plan

The testing process
A description of the major phases of the testing process. These might be
as described earlier in this chapter.

Requirements traceability
Users are most interested in the system meeting its requirements and
testing should be planned so that all requirements are individually tested.

Tested items
The products of the software process that are to be tested should be
specified.

Testing schedule
An overall testing schedule and resource allocation for this schedule.
This, obviously, is linked to the more general project development
schedule.

Test recording procedures
It is not enough simply to run tests. The results of the tests must be
systematically recorded. It must be possible to audit the testing process
to check that it been carried out correctly.

Hardware and software requirements
This section should set out software tools required and estimated
hardware utilisation.

Constraints
Constraints affecting the testing process such as staff shortages should
be anticipated in this section.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 16

Software inspections

These involve people examining the source
representation with the aim of discovering anomalies
and defects.
Inspections not require execution of a system so
may be used before implementation.
They may be applied to any representation of the
system (requirements, design,configuration data,
test data, etc.).
They have been shown to be an effective technique
for discovering program errors.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 17

Inspection success

Many different defects may be discovered in
a single inspection. In testing, one defect
,may mask another so several executions
are required.
The reuse domain and programming
knowledge so reviewers are likely to have
seen the types of error that commonly arise.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 18

Inspections and testing

Inspections and testing are complementary and not
opposing verification techniques.
Both should be used during the V & V process.
Inspections can check conformance with a
specification but not conformance with the
customer’s real requirements.
Inspections cannot check non-functional
characteristics such as performance, usability, etc.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 19

Program inspections

Formalised approach to document reviews
Intended explicitly for defect detection (not
correction).
Defects may be logical errors, anomalies in
the code that might indicate an erroneous
condition (e.g. an uninitialised variable) or
non-compliance with standards.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 20

Inspection pre-conditions

A precise specification must be available.
Team members must be familiar with the
organisation standards.
Syntactically correct code or other system
representations must be available.
An error checklist should be prepared.
Management must accept that inspection will
increase costs early in the software process.
Management should not use inspections for staff
appraisal ie finding out who makes mistakes.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 21

The inspection process

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 22

Inspection procedure

System overview presented to inspection
team.
Code and associated documents are
distributed to inspection team in advance.
Inspection takes place and discovered errors
are noted.
Modifications are made to repair discovered
errors.
Re-inspection may or may not be required.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 23

Inspection roles

Author or owner The programmer or designer responsible for
producing the program or document. Responsible
for fixing defects discovered during the inspection
process.

Inspector Finds errors, omissions and inconsistencies in
programs and documents. May also identify
broader issues that are outside the scope of the
inspection team.

Reader Presents the code or document at an inspection
meeting.

Scribe Records the results of the inspection meeting.

Chairman or moderator Manages the process and facilitates the inspection.
Reports process results to the Chief moderator.

Chief moderator Responsible for inspection process improvements,
checklist updating, standards development etc.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 24

Inspection checklists

Checklist of common errors should be used to
drive the inspection.
Error checklists are programming language
dependent and reflect the characteristic errors that
are likely to arise in the language.
In general, the 'weaker' the type checking, the larger
the checklist.
Examples: Initialisation, Constant naming, loop
termination, array bounds, etc.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 25

Inspection checks 1

Data faults Are all program variables initialised before their values are
used?
Have all constants been named?
Should the upper bound of arrays be equal to the size of the
array or Size -1?
If character strings are used, is a de limiter explicitly
assigned?
Is there any possibility of buffer overflow?

Control faults For each conditional statement, is the condition correct?
Is each loop certain to terminate?
Are compound statements correctly bracketed?
In case statements, are all possible cases accounted for?
If a break is required after each case in case statements, has
it been included?

Input/output faults Are all input variables used?
Are all output variables assigned a value before they are
output?
Can unexpected inputs cause corruption?

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 26

Inspection checks 2

Interface faults Do all function and method calls have the correct number
of parameters?
Do formal and actual parameter types match?
Are the parameters in the right order?
If components access shared memory, do they have the
same model of the shared memory structure?

Storage
management faults

If a linked structure is modified, have all links been
correctly reassigned?
If dynamic storage is used, has space been allocated
correctly?
Is space explicitly de-allocated after it is no longer
required?

Exception
management faults

Have all possible error conditions been taken into account?

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 27

Inspection rate

500 statements/hour during overview.
125 source statement/hour during individual
preparation.
90-125 statements/hour can be inspected.
Inspection is therefore an expensive
process.
Inspecting 500 lines costs about 40
man/hours effort - about £2800 at UK rates.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 28

Automated static analysis

Static analysers are software tools for source
text processing.
They parse the program text and try to
discover potentially erroneous conditions and
bring these to the attention of the V & V
team.
They are very effective as an aid to
inspections - they are a supplement to but
not a replacement for inspections.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 29

Static analysis checks

Fault class Static analysis check

Data faults Variables used before initialisation
Variables declared but never used
Variables assigned twice but never used between
assignments
Possible array bound violations
Undeclared variables

Control faults Unreachable code
Unconditional branches into loops

Input/output faults Variables output twice with no intervening
assignment

Interface faults Parameter type mismatches
Parameter number mismatches
Non-usage of the results of functions
Uncalled functions and procedures

Storage management
faults

Unassigned pointers
Pointer arithmetic

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 30

Stages of static analysis

Control flow analysis. Checks for loops with
multiple exit or entry points, finds unreachable
code, etc.
Data use analysis. Detects uninitialised
variables, variables written twice without an
intervening assignment, variables which are
declared but never used, etc.
Interface analysis. Checks the consistency of
routine and procedure declarations and their
use

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 31

Stages of static analysis

Information flow analysis. Identifies the
dependencies of output variables. Does not
detect anomalies itself but highlights
information for code inspection or review
Path analysis. Identifies paths through the
program and sets out the statements
executed in that path. Again, potentially
useful in the review process
Both these stages generate vast amounts of
information. They must be used with care.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 32

LINT static analysis

138% more lint_ex.c
#include <stdio.h>
printarray (Anarray)
 int Anarray;
{ printf(“%d”,Anarray); }

main ()
{
 int Anarray[5]; int i; char c;
 printarray (Anarray, i, c);
 printarray (Anarray) ;
}

139% cc lint_ex.c
140% lint lint_ex.c

lint_ex.c(10): warning: c may be used before set
lint_ex.c(10): warning: i may be used before set
printarray: variable # of args. lint_ex.c(4) :: lint_ex.c(10)
printarray, arg. 1 used inconsistently li nt_ex.c(4) :: lint_ex.c(10)
printarray, arg. 1 used inconsistently li nt_ex.c(4) :: lint_ex.c(11)
printf returns value which is always ignored

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 33

Use of static analysis

Particularly valuable when a language such
as C is used which has weak typing and
hence many errors are undetected by the
compiler,
Less cost-effective for languages like Java
that have strong type checking and can
therefore detect many errors during
compilation.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 34

Verification and formal methods

Formal methods can be used when a
mathematical specification of the system is
produced.
They are the ultimate static verification
technique.
They involve detailed mathematical analysis
of the specification and may develop formal
arguments that a program conforms to its
mathematical specification.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 35

Arguments for formal methods

Producing a mathematical specification
requires a detailed analysis of the
requirements and this is likely to uncover
errors.
They can detect implementation errors
before testing when the program is analysed
alongside the specification.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 36

Arguments against formal methods

Require specialised notations that cannot be
understood by domain experts.
Very expensive to develop a specification
and even more expensive to show that a
program meets that specification.
It may be possible to reach the same level of
confidence in a program more cheaply using
other V & V techniques.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 37

The name is derived from the 'Cleanroom'
process in semiconductor fabrication. The
philosophy is defect avoidance rather than
defect removal.
This software development process is based on:
• Incremental development;
• Formal specification;
• Static verification using correctness arguments;
• Statistical testing to determine program reliability.

Cleanroom software development

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 38

The Cleanroom process

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 39

Cleanroom process characteristics

Formal specification using a state transition
model.
Incremental development where the
customer prioritises increments.
Structured programming - limited control and
abstraction constructs are used in the
program.
Static verification using rigorous inspections.
Statistical testing of the system (covered in
Ch. 24).

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 40

Formal specification and inspections

The state based model is a system
specification and the inspection process
checks the program against this mode.l
The programming approach is defined so
that the correspondence between the model
and the system is clear.
Mathematical arguments (not proofs) are
used to increase confidence in the inspection
process.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 41

Specification team. Responsible for developing
and maintaining the system specification.
Development team. Responsible for
developing and verifying the software. The
software is NOT executed or even compiled
during this process.
Certification team. Responsible for developing
a set of statistical tests to exercise the software
after development. Reliability growth models
used to determine when reliability is acceptable.

Cleanroom process teams

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 42

The results of using the Cleanroom process have
been very impressive with few discovered faults in
delivered systems.
Independent assessment shows that the
process is no more expensive than other
approaches.
There were fewer errors than in a 'traditional'
development process.
However, the process is not widely used. It is not
clear how this approach can be transferred
to an environment with less skilled or less
motivated software engineers.

Cleanroom process evaluation

