Service-centric Software
Engineering

Service-oriented architectures

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 1

Service-oriented architectures

« A means of developing distributed systems
where the components are stand-alone
services

« Services may execute on different computers
from different service providers

« Standard protocols have been developed to
support service communication and
information exchange

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 2

Benefits of SOA

(UDDI)

Service
registry

Publish

Service
provider

Service
requestor

Bind (SOAP) WSDL)

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 slide 3

Web service standards

« Services can be provided locally or outsourced
to external providers

« Services are language-independent

« Investment in legacy systems can be
preserved

« Inter-organisational computing is facilitated
through simplified information exchange

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 4

XML technologies (XML, XSD, XSLT, ....)

‘ Support (WS-Security, WS-Addressing, ...) ‘

‘ Process (WS-BPEL) ‘

‘ Service definition (UDDI, WSDL) ‘

‘ Messaging (SOAP) ‘

‘ Transport (HTTP, HTTPS, SMTP, ...) ‘

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 slide 5

Key standards

« SOAP

* A message exchange standard that supports service
communication

« WSDL (Web Service Definition Language)

* This standard allows a service interface and its
bindings to be defined

« UDDI

« Defines the components of a service specification that
may be used to discover the existence of a service

« WS-BPEL

« A standard for workflow languages used to define
service composition

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 6




Service-oriented software engineering

« Existing approaches to software engineering
have to evolve to reflect the service-oriented
approach to software development

« Service engineering. The development of
dependable, reusable services
« Software development for reuse
« Software development with services. The
development of dependable software where
services are the fundamental components
« Software development with reuse

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 slide 7

Services as reusable components

Synchronous interaction

« A service can be defined as:

* Aloosely-coupled, reusable software component that
encapsulates discrete functionality which may be
distributed and programmatically accessed. A web
service is a service that is accessed using standard
Internet and XML-based protocols

« A critical distinction between a service and a
component as defined in CBSE is that services are
independent

« Services do not have a ‘requires’ interface

« Services rely on message-based communication with
messages expressed in XML

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 8

Waiter Diner

3 g

What would you like?

Tomato soup please

And to follow?

Fillet steak

How would you like it cooked?

Rare please

With salad or french fries?

Salad please

ETC.

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 slide 9

An order as an XML message

<starter>
<dish name = “soup” type = “tomato” />
<dish name = “soup” type = “fish” />

<dish name
</starter>
<main course>

<dish name = “steak” type = “sirloin”

“pigeon salad” />

cooking = “medium” />

<dish name = “steak” type = “fillet”
cooking = “rare” />

<dish name = “sea bass”>
</main>
<accompaniment >

<dish name = “french fries” portions
2 fs

<dish name = “salad” portions = “1” />
</accompaniment >

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 10

Web service description language

« The service interface is defined in a service
description expressed in WSDL. The WSDL
specification defines

* What operations the service supports and the
format of the messages that are sent and received
by the service

* How the service is accessed - that is, the binding
maps the abstract interface ontoa concrete set of
protocols

* Where the service is located. This is usually
expressed as a URI (Universal Resource
Identifier)

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 side 11

Structure of a WSDL specification

WSDL service definition

Intro —> XML namespace declarations

Type declarations
Abstract interface > Interface declarations
Message declarations

Concrete Binding declarations
implementation Endpoint declarations

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 12



A WSDL description fragment

A WSDL description fragment 2

Define some of the types used. Assume that the namespace prefixes ‘ws' refers to
the namespace URI for XML schemas and the namespace prefx associated with
this defiritionis weatms.

<types>
<xs: schema targetNameSpace = “hitp. /weathns”
xmins: weathns =http7/...weathns” >
<xs:element name = “PlaceAndDate” type‘pdrec” />
<xs:element name = “MaxMinTepiitype = “mmirec’ />
<xs: element name *InDataFault type= “ermess’/>

<xs: complexType name = “pdrec”
<xs: sequere>
<xs:element nami
<xs:element nam
<xs:element nam
<Ixs:complexTyp>

Definifons of MaxMinType and InDataFaulthere
</schema>
<ltypes>

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 13

Now define the interface and its opertions. In this case, there is only a single
operation to eturn maximum and minimumtempemtures

<interface name Zweatherinfd >
<operation name = “getMaxMinTemppatten = “wsdins: irout™
<input messageLabel = “In” elemer “weathns:PlaceAndDate’’>
<output messageabel=“Out’ element= “weathns:Ma¥inTemp"/>
<outfault messagelLabel = “Outlemert = “weathns:InDat&ault” />

</operation>

<finterface>

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 14

Service engineering

The service engineering process

« The process of developing services for reuse
in service-oriented applications

« The service has to be designed as a reusable
abstraction that can be used in different
systems

« Involves
« Service candidate identification
« Service design
* Service implementation

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 15

Service Service
candidate Service design implementation
identification and deployment

Service Service interface Validated and
requirements specification deployed service
©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 slide 16

Service candidate identification

Service classification

« Three fundamental types of service

« Utility services that implement general
functionality used by different business processes

» Business services that are associated with a
specific business function e.g., in a university,
student registration

« Coordination services that support composite
processes such as ordering

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 slide 17

Utility Bushess Coordination

Task Currercy Validate clam Process expense
convertor form claim
Employeelocator | Check credit Pay external

rating supplier

Entity Document style Expenses form
checker Student
Web form to XML | application form
converter

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 slide 18




Service identification

Catalogue services

« Is the service associated with a single logical entity
used in different business processes?

« Is the task one that is carried out by different people in
the organisation?

« Is the service independent?

« Does the service have to maintain state? Is a database
required?

« Could the service be used by clients outside the
organisation?

« Are different users of the service likely to have different
non-functional requirements?

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 19

« Created by a supplier to show which good can be
ordered from them by other companies
« Service requirements

«  Specific version of catalogue should be created for
each client

« Catalogue shall be downloadable

« The specification and prices of up to 6 items may be
compared

« Browsing and searching facilities shall be provided

« A function shall be provided that allows the delivery
date for ordered items to be predicted

« Virtual orders shall be supported which reserve the
goods for 48 hours to allow a company order to be

©lan Sommerville zomplaced Software Engineering, 7th edition. Chapter 18 Slide 20

Catalogue - Non-functional
requirements

Catalogue service operations

« Access shall be restricted to employees of
accredited organisations

« Prices and configurations offered to each
organisation shall be confidential

« The catalogue shall be available from 0700 to
1100

« The catalogue shall be able to process up to
10 requests per second

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 21

Operation Description

MakeCatalogue Creates a version of the cataloguetailored for a specific customer.
Includes an o ptional parameter to create a downloadable PDF
version of the catalogue.

Compare Provides a of up to 6 (e.g. price,
dimensians, processor speed, etc.) of up to 4 catalogueitems for

Lookup Displays all of the data associated with a specified catalogue item.
Search This operation takes a logical expression and searches the
catalogueaccordingto that expression. It displays a list of allitems
that match the search expression.

CheckDeivery Returns the predicted delivery date for anitemif it is ordered today.
MakeVitualOrder Reserves the number of items to be ordered by a customer and
provides item information for the customers own procurement
system.
©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 slide 22

Service interface design

Interface design stages

« Involves thinking about the operations
associated with the service and the messages
exchanged

« The number of messages exchanged to
complete a service request should normally be
minimised.

« Service state information may have to be
included in messages

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 slide 23

o Logical interface design
« Starts with the service requirements and defines the
operation names and parameters associated with the
service. Exceptions should also be defined
« Message design
« Design the structure and organisation of the input and
output messages. Notations such as the UML are a
more abstract representation than XML
« WSDL description

« The logical specification is converted to a WSDL
description

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 24




Catalogue interface design

Input and output message structure

Operation Inputs Outputs Exceptions
MakeCatalogue | mcin ut meFault
Conpanyid URL of the catalogue for that | Invalid companyid
PDFflag compar
Cormare compin compOut compFauit
URL of page showirg | Invalid companyid
Entry attribute (pt06) | comparison table Invalid cataloguenumber
[ Wt 4) .
Lookup lockin lockOut lookFauit
Conpanyid WRL of page with the item | Invalid companyid
c information
Search searchin searchOut searchFauit
Conpanyid URL of web page with search | Invalid companyid
Search string results Bady-formed search string
CheckDelvery | gdin gdout gdFault
Conpanyid c
c: date
Nurber of itemsrequired Noavailatilty
Zeo
PlaceOrcer poin poout poFault
Conpanyid c
Nurber of Nurrber of
c: date
Unit priceestimate
Total price estimate

©lan Sommerville 2004

Software Engineering, 7th edition. Chapter 18

slide 25

gdin

clD: string
catNum: string
numitems: integer

gdout
: stri — — — — |size (catNum) = 10
ﬁiﬁ%’;‘é'ﬂ;‘é delivDate > Today

Invalid company id
errCode=1
. — — — —| Invalid catalogue number
errCode: integer errCode = 2
No availability
Code =3
Zero items requested
errCode =4

numitems > 0

gdFault

Service implementation and
deployment

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 26

« Programming services using a standard

programming language or a workflow
language
« Services then have to be tested by creating
input messages and checking that the output
messages produced are as expected

« Deployment involves publicising the service

A UDDI description

« Details of the business providing the service

« An informal description of the functionality
provided by the service

« Information where to find the service’s WSDL
specification

« Subscription information that allows users to
register for service updates

using UDDI and installing it on a web server.
Current servers provide support for service
installation

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 slide 27

Legacy system services

« Animportant application of services is to
provide access to functionality embedded in
legacy systems

« Legacy systems offer extensive functionality
and this can reduce the cost of service
implementation

« External applications can access this
functionality through the service interfaces

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 slide 29

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 28
«service» «service» «service»
Maintenance Facilities Logging
getlob addEquipment addRequest
suspendlob deleteEquipment deleteRequest
completeJob editEquipment queryRequests
i e support
legacy application
©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 30




Software development with
services Vacation package workflow

« Existing services are composed and
configured to create new composite services
and applications

« The basis for service composition is often a ook Book Arange r— Book
WOrkﬂOW fllghts hotel car or taxi attractions attractions
« Workflows are logical sequences of activities that, o
together, model a coherent business process A,},;alyd;p;,;u,’e R 1 'i’a‘eS/P'eferences
* For example, provide a travel reservation services dates/times Hotel location

which allows flights, car hire and hotel bookings to
be coordinated

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 31 ©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 32

Construction by composition Hotel booking workflow

Retry

J Cancel
No rooms Hotels. ) /N (™)
NoAvailability )~ ./
Hotels. Hotels. N =
GetRequirements CheckAvailability Y Hotels.
s ReserveRooms

Formulate
outline
workflow

Create
workflow
program

Discover Select Refine
services services workflow

|
‘ I
! I
[ Hotels O
Workflow i Senice Workflow Executable Deployable - c@ mRese,‘,amn
Senvice list P . i !
design specifications design workflow service [ ‘
! I
| | !
L ' }
v A4
Customer
©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 33 ©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 34

Workflow design and implementation Interacting workflows

« WS-BPEL is an XML-standard for workflow
specification. However, WS-BPEL descriptions . Noprocessr m
are long and unreadable i @ OKM @
« Graphical workflow notations, such as BPMN, g P : = ‘
are more readable and WS-BPEL can be % P :
generated from them b H ]
« Ininter-organisational systems, separate b 3 =3 1 E
. . g Check ! Allocate um ute
workflows are created for each organisation 3 O*MM
and linked through message exchange <
9 g 9 ; O

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 slide 35 ©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 36




Service testing Service testing problems

« Testing is intended to find defects and +  External services may be modified by the service
demonstrate that a system meets its functional prowdletr tgus invalidating tests which have been
. ) complete
and non-functional requirements « Dynamic binding means that the service used in an
« Service testing is difficult as (external) application may vary - the application tests are not,

therefore, reliable

« The non-functional behaviour of the service is
unpredictable because it depends on load

« If services have to be paid for as used, testing a
service may be expensive

« It may be difficult to invoke compensating actions in
external services as these may rely on the failure of
other services which cannot be simulated

services are ‘black-boxes’. Testing techniques
that rely on the program source code cannot
be used

©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 slide 37 ©lan Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 38




