
©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 1

An object-oriented design process

Structured design processes involve
developing a number of different system
models.
They require a lot of effort for development
and maintenance of these models and, for
small systems, this may not be cost-
effective.
However, for large systems developed by
different groups design models are an
essential communication mechanism.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 2

Process stages

Highlights key activities without being tied to
any proprietary process such as the RUP.
• Define the context and modes of use of the

system;
• Design the system architecture;
• Identify the principal system objects;
• Develop design models;
• Specify object interfaces.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 3

Weather system description

A weather mapping system is required to generate weather maps on a
regular basis using data collected from remote, unattended weather stations
and other data sources such as weather observers, balloons and satellites.
Weather stations transmit their data to the area computer in response to a
request from that machine.

The area computer system validates the collected data and integrates it with
the data from different sources. The integrated data is archived and, using
data from this archive and a digitised map database a set of local weather
maps is created. Maps may be printed for distribution on a special-purpose
map printer or may be displayed in a number of different formats.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 4

System context and models of use

Develop an understanding of the relationships
between the software being designed and its
external environment
System context
• A static model that describes other systems in the

environment. Use a subsystem model to show other
systems. Following slide shows the systems around the
weather station system.

Model of system use
• A dynamic model that describes how the system interacts

with its environment. Use use-cases to show interactions

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 5

Layered architecture

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 6

Subsystems in the weather mapping system

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 7

Use-case models

Use-case models are used to represent each
interaction with the system.
A use-case model shows the system
features as ellipses and the interacting entity
as a stick figure.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 8

Use-cases for the weather station

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 9

Use-case description

System Weather station
Use-case Report
Actors Weather data collection system, Weather station
Data The weather station sends a summary of the weather data that has been

collected from the instruments in the collection period to the weather data
collection system. The data sent are the maximum minimum and average
ground and air temperatures, the maximum, minimum and average air
pressures, the maximum, minimum and average wind speeds, the total
rainfall and the wind direction as sampled at 5 minute intervals.

Stimulus The weather data collection system establishes a modem link with the
weather station and requests transmission of the data.

Response The summarised data is sent to the weather data collection system
Comments Weather stations are usually asked to report once per hour but this

frequency may differ from one station to the other and may be modified in
future.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 10

Architectural design

Once interactions between the system and its
environment have been understood, you use this
information for designing the system architecture.
A layered architecture as discussed in Chapter 11 is
appropriate for the weather station
• Interface layer for handling communications;
• Data collection layer for managing instruments;
• Instruments layer for collecting data.

There should normally be no more than 7 entities in
an architectural model.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 11

Weather station architecture

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 12

Object identification

Identifying objects (or object classes) is the
most difficult part of object oriented design.
There is no 'magic formula' for object
identification. It relies on the skill, experience
and domain knowledge of system designers.
Object identification is an iterative process.
You are unlikely to get it right first time.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 13

Approaches to identification

Use a grammatical approach based on a natural
language description of the system (used in Hood
OOD method).
Base the identification on tangible things in the
application domain.
Use a behavioural approach and identify objects
based on what participates in what behaviour.
Use a scenario-based analysis. The objects,
attributes and methods in each scenario are
identified.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 14

Weather station object classes

Ground thermometer, Anemometer, Barometer
• Application domain objects that are ‘hardware’ objects

related to the instruments in the system.
Weather station
• The basic interface of the weather station to its

environment. It therefore reflects the interactions
identified in the use-case model.

Weather data
• Encapsulates the summarised data from the instruments.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 15

Weather station object classes

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 16

Further objects and object refinement

Use domain knowledge to identify more objects and
operations
• Weather stations should have a unique identifier;
• Weather stations are remotely situated so instrument

failures have to be reported automatically. Therefore
attributes and operations for self-checking are required.

Active or passive objects
• In this case, objects are passive and collect data on

request rather than autonomously. This introduces
flexibility at the expense of controller processing time.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 17

Design models

Design models show the objects and object
classes and relationships between these
entities.
Static models describe the static structure of
the system in terms of object classes and
relationships.
Dynamic models describe the dynamic
interactions between objects.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 18

Examples of design models

Sub-system models that show logical groupings of
objects into coherent subsystems.
Sequence models that show the sequence of object
interactions.
State machine models that show how individual
objects change their state in response to events.
Other models include use-case models, aggregation
models, generalisation models, etc.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 19

Subsystem models

Shows how the design is organised into
logically related groups of objects.
In the UML, these are shown using
packages - an encapsulation construct. This
is a logical model. The actual organisation of
objects in the system may be different.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 20

Weather station subsystems

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 21

Sequence models

Sequence models show the sequence of
object interactions that take place
• Objects are arranged horizontally across the

top;
• Time is represented vertically so models are

read top to bottom;
• Interactions are represented by labelled arrows,

Different styles of arrow represent different
types of interaction;

• A thin rectangle in an object lifeline represents
the time when the object is the controlling object
in the system.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 22

Data collection sequence

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 23

Statecharts

Show how objects respond to different service
requests and the state transitions triggered by these
requests
• If object state is Shutdown then it responds to a Startup()

message;
• In the waiting state the object is waiting for further

messages;
• If reportWeather () then system moves to summarising

state;
• If calibrate () the system moves to a calibrating state;
• A collecting state is entered when a clock signal is

received.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 24

Weather station state diagram

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 25

Object interface specification

Object interfaces have to be specified so that the
objects and other components can be designed in
parallel.
Designers should avoid designing the interface
representation but should hide this in the object
itself.
Objects may have several interfaces which are
viewpoints on the methods provided.
The UML uses class diagrams for interface
specification but Java may also be used.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 26

Weather station interface

interface WeatherStation {

public void WeatherStation () ;

public void startup () ;
public void startup (Instrument i) ;

public void shutdown () ;
public void shutdown (Instrument i) ;

public void reportWeather () ;

public void test () ;
public void test (Instrument i) ;

public void calibrate (Instrument i) ;

public int getID () ;

} //WeatherStation

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 27

Design evolution

Hiding information inside objects means that
changes made to an object do not affect other
objects in an unpredictable way.
Assume pollution monitoring facilities are to be
added to weather stations. These sample the
air and compute the amount of different
pollutants in the atmosphere.
Pollution readings are transmitted with weather
data.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 28

Changes required

Add an object class called Air quality as part
of WeatherStation.
Add an operation reportAirQuality to
WeatherStation. Modify the control software
to collect pollution readings.
Add objects representing pollution monitoring
instruments.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 29

Pollution monitoring

