
©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 1

Object-oriented Design

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 2

Object-oriented development

Object-oriented analysis, design and programming
are related but distinct.
OOA is concerned with developing an object model
of the application domain.
OOD is concerned with developing an object-
oriented system model to implement requirements.
OOP is concerned with realising an OOD using an
OO programming language such as Java or C++.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 3

Characteristics of OOD

Objects are abstractions of real-world or system
entities and manage themselves.
Objects are independent and encapsulate state and
representation information.
System functionality is expressed in terms of object
services.
Shared data areas are eliminated. Objects
communicate by message passing.
Objects may be distributed and may execute
sequentially or in parallel.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 4

Interacting objects

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 5

Advantages of OOD

Easier maintenance. Objects may be
understood as stand-alone entities.
Objects are potentially reusable components.
For some systems, there may be an obvious
mapping from real world entities to system
objects.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 6

Objects and object classes

Objects are entities in a software system
which represent instances of real-world and
system entities.
Object classes are templates for objects.
They may be used to create objects.
Object classes may inherit attributes and
services from other object classes.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 7

Objects and object classes

An object is an entity that has a state and a defined set of
operations which operate on that state. The state is represented as a
set of object attributes. The operations associated with the object
provide services to other objects (clients) which request these
services when some computation is required.

Objects are created according to some object class definition. An
object class definition serves as a template for objects. It includes
declarations of all the attributes and services which should be
associated with an object of that class.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 8

The Unified Modeling Language

Several different notations for describing object-
oriented designs were proposed in the 1980s and
1990s.
The Unified Modeling Language is an integration of
these notations.
It describes notations for a number of different
models that may be produced during OO analysis
and design.
It is now a de facto standard for OO modelling.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 9

Employee object class (UML)

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 10

Object communication

Conceptually, objects communicate by
message passing.
Messages
• The name of the service requested by the calling object;
• Copies of the information required to execute the service

and the name of a holder for the result of the service.
In practice, messages are often implemented
by procedure calls
• Name = procedure name;
• Information = parameter list.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 11

Message examples

// Call a method associated with a buffer
// object that returns the next value
// in the buffer

v = circularBuffer.Get () ;

// Call the method associated with a
// thermostat object that sets the
// temperature to be maintained

thermostat.setTemp (20) ;

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 12

Generalisation and inheritance

Objects are members of classes that define
attribute types and operations.
Classes may be arranged in a class hierarchy
where one class (a super-class) is a generalisation
of one or more other classes (sub-classes).
A sub-class inherits the attributes and
operations from its super class and may add
new methods or attributes of its own.
Generalisation in the UML is implemented as
inheritance in OO programming languages.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 13

A generalisation hierarchy

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 14

Advantages of inheritance

It is an abstraction mechanism which may be
used to classify entities.
It is a reuse mechanism at both the design
and the programming level.
The inheritance graph is a source of
organisational knowledge about domains
and systems.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 15

Problems with inheritance

Object classes are not self-contained. they
cannot be understood without reference to
their super-classes.
Designers have a tendency to reuse the
inheritance graph created during analysis.
Can lead to significant inefficiency.
The inheritance graphs of analysis, design
and implementation have different functions
and should be separately maintained.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 16

UML associations

Objects and object classes participate in
relationships with other objects and object classes.
In the UML, a generalised relationship is indicated
by an association.
Associations may be annotated with information that
describes the association.
Associations are general but may indicate that an
attribute of an object is an associated object or that
a method relies on an associated object.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 17

An association model

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 18

Concurrent objects

The nature of objects as self-contained
entities make them suitable for concurrent
implementation.
The message-passing model of object
communication can be implemented directly
if objects are running on separate processors
in a distributed system.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 19

Servers and active objects

Servers.
• The object is implemented as a parallel process (server)

with entry points corresponding to object operations. If no
calls are made to it, the object suspends itself and waits
for further requests for service.

Active objects
• Objects are implemented as parallel processes and the

internal object state may be changed by the object itself
and not simply by external calls.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 20

Active transponder object

Active objects may have their attributes
modified by operations but may also update
them autonomously using internal
operations.
A Transponder object broadcasts an
aircraft’s position. The position may be
updated using a satellite positioning system.
The object periodically update the position by
triangulation from satellites.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 21

An active transponder object

class Transponder extends Thread {

Position currentPosition ;
Coords c1, c2 ;
Satellite sat1, sat2 ;
Navigator theNavigator ;

public Position givePosition ()
{

return currentPosition ;
}

public void run ()
{

while (true)
{

c1 = sat1.position () ;
c2 = sat2.position () ;
currentPosition = theNavigator.compute (c1, c2) ;

}

}

} //Transponder

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 14 Slide 22

Java threads

Threads in Java are a simple construct for
implementing concurrent objects.
Threads must include a method called run()
and this is started up by the Java run-time
system.
Active objects typically include an infinite
loop so that they are always carrying out the
computation.

