
©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 15 Slide 1

Real-time Software Design

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 15 Slide 2

Real-time systems

Systems which monitor and control their
environment.
Inevitably associated with hardware devices
• Sensors: Collect data from the system

environment;
• Actuators: Change (in some way) the system's

environment;
Time is critical. Real- time systems MUST
respond within specified times.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 15 Slide 3

Definition

A real- time system is a software system where
the correct functioning of the system depends on
the results produced by the system and the time
at which these results are produced.
A soft real- time system is a system whose
operation is degraded if results are not produced
according to the specified timing requirements.
A hard real- time system is a system whose
operation is incorrect if results are not produced
according to the timing specification.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 15 Slide 4

Stimulus/Response Systems

Given a stimulus, the system must produce a
response within a specified time.
Periodic stimuli. Stimuli which occur at
predictable time intervals
• For example, a temperature sensor may be polled 10

times per second.

Aperiodic stimuli. Stimuli which occur at
unpredictable times
• For example, a system power failure may trigger an

interrupt which must be processed by the system.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 15 Slide 5

Architectural considerations

Because of the need to respond to timing demands
made by different stimuli/responses, the system
architecture must allow for fast switching between
stimulus handlers.
Timing demands of different stimuli are different so a
simple sequential loop is not usually adequate.
Real-time systems are therefore usually designed as
cooperating processes with a real-time executive
controlling these processes.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 15 Slide 6

A real-time system model

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 15 Slide 7

Sensor/actuator processes

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 15 Slide 8

System elements

Sensor control processes
• Collect information from sensors. May buffer

information collected in response to a sensor
stimulus.

Data processor
• Carries out processing of collected information

and computes the system response.
Actuator control processes
• Generates control signals for the actuators.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 15 Slide 9

Real-time programming

Hard- real time systems may have to
programmed in assembly language to
ensure that deadlines are met.
Languages such as C allow efficient
programs to be written but do not have
constructs to support concurrency or shared
resource management.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 15 Slide 10

Java as a real-time language

Java supports lightweight concurrency (threads and
synchronized methods) and can be used for some
soft real-time systems.
Java 2.0 is not suitable for hard RT programming but
real-time versions of Java are now available that
address problems such as
• Not possible to specify thread execution time;
• Different timing in different virtual machines;
• Uncontrollable garbage collection;
• Not possible to discover queue sizes for shared

resources;
• Not possible to access system hardware;
• Not possible to do space or timing analysis.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 15 Slide 11

System design

Design both the hardware and the software
associated with system. Partition functions to
either hardware or software.
Design decisions should be made on the
basis on non- functional system
requirements.
Hardware delivers better performance but
potentially longer development and less
scope for change.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 15 Slide 12

R-T systems design process

Identify the stimuli to be processed and the
required responses to these stimuli.
For each stimulus and response, identify the
timing constraints.
Aggregate the stimulus and response
processing into concurrent processes. A
process may be associated with each class
of stimulus and response.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 15 Slide 13

R-T systems design process

Design algorithms to process each class of
stimulus and response. These must meet the
given timing requirements.
Design a scheduling system which will
ensure that processes are started in time to
meet their deadlines.
Integrate using a real- time operating system.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 15 Slide 14

Timing constraints

May require extensive simulation and
experiment to ensure that these are met by
the system.
May mean that certain design strategies
such as object- oriented design cannot be
used because of the additional overhead
involved.
May mean that low- level programming
language features have to be used for
performance reasons.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 15 Slide 15

Real-time system modelling

The effect of a stimulus in a real-time system may
trigger a transition from one state to another.
Finite state machines can be used for modelling
real-time systems.
However, FSM models lack structure. Even simple
systems can have a complex model.
The UML includes notations for defining state
machine models
See Chapter 8 for further examples of state machine
models.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 15 Slide 16

Petrol pump state model

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 15 Slide 17

Real-time operating systems

Real-time operating systems are specialised
operating systems which manage the processes in
the RTS.
Responsible for process management and
resource (processor and memory) allocation.
May be based on a standard kernel which
is used unchanged or modified for a particular
application.
Do not normally include facilities such as file
management.

14

