
©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 1

System models

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 2

System modelling

System modelling helps the analyst to understand
the functionality of the system and models are used
to communicate with customers.
Different models present the system from different
perspectives
• External perspective showing the system’s context or

environment;
• Behavioural perspective showing the behaviour of the

system;
• Structural perspective showing the system or data

architecture.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 3

Model types
Data processing model showing how the data is
processed at different stages.
Composition model showing how entities are
composed of other entities.
Architectural model showing principal sub-systems.
Classification model showing how entities have
common characteristics.
Stimulus/response model showing the system’s
reaction to events.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 4

Context models

Context models are used to illustrate the
operational context of a system - they show
what lies outside the system boundaries.
Social and organisational concerns may
affect the decision on where to position
system boundaries.
Architectural models show the system and its
relationship with other systems.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 5

The context of an ATM system

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 6

Process models

Process models show the overall process
and the processes that are supported by the
system.
Data flow models may be used to show the
processes and the flow of information from
one process to another.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 7

Equipment procurement process

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 8

Behavioural models

Behavioural models are used to describe the
overall behaviour of a system.
Two types of behavioural model are:
• Data processing models that show how data is

processed as it moves through the system;
• State machine models that show the systems

response to events.
These models show different perspectives
so both of them are required to describe the
system’s behaviour.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 9

Data-processing models

Data flow diagrams (DFDs) may be used to
model the system’s data processing.
These show the processing steps as data
flows through a system.
DFDs are an intrinsic part of many analysis
methods.
Simple and intuitive notation that customers
can understand.
Show end-to-end processing of data.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 10

Order processing DFD

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 11

State machine models

These model the behaviour of the system in
response to external and internal events.
They show the system’s responses to stimuli so are
often used for modelling real-time systems.
State machine models show system states as nodes
and events as arcs between these nodes. When an
event occurs, the system moves from one state to
another.
Statecharts are an integral part of the UML and are
used to represent state machine models.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 12

Microwave oven model

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 13

Semantic data models

Used to describe the logical structure of data
processed by the system.
An entity-relation-attribute model sets out the
entities in the system, the relationships between
these entities and the entity attributes
Widely used in database design. Can readily be
implemented using relational databases.
No specific notation provided in the UML but objects
and associations can be used.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 14

Library semantic model

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 15

Data dictionaries

Data dictionaries are lists of all of the names used in
the system models. Descriptions of the entities,
relationships and attributes are also included.
Advantages
• Support name management and avoid duplication;
• Store of organisational knowledge linking analysis, design

and implementation;

Many CASE workbenches support data dictionaries.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 16

Data dictionary entries

Name Description Type Date

Article Details of the published article that may be ordered by
people using LIBSYS. Entity 30.12.2002

authors The names of the authors of the article who may be due
a share of the fee. Attribute 30.12.2002

Buyer The person or organisation that orders a co py of the
article. Entity 30.12.2002

fee-
payable-to

A 1:1 relationship between Article and the Copyright
Agency who should be paid the copyright fee. Relation 29.12.2002

Address
(Buyer)

The address of the buyer. This is used to any paper
billing information that is required. Attribute 31.12.2002

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 17

Object models

Object models describe the system in terms of
object classes and their associations.
An object class is an abstraction over a set of
objects with common attributes and the services
(operations) provided by each object.
Various object models may be produced
• Inheritance models;
• Aggregation models;
• Interaction models.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 18

Library class hierarchy

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 19

Object aggregation

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 20

Issue of electronic items

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 21

Architectural Design

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 22

Software architecture

The design process for identifying the sub-
systems making up a system and the
framework for sub-system control and
communication is architectural design.
The output of this design process is a
description of the software architecture.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 23

Architectural design

An early stage of the system design process.
Represents the link between specification
and design processes.
Often carried out in parallel with some
specification activities.
It involves identifying major system
components and their communications.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 24

Packing robot control system

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 25

Architectural models

Used to document an architectural design.
Static structural model that shows the major system
components.
Dynamic process model that shows the process
structure of the system.
Interface model that defines sub-system interfaces.
Relationships model such as a data-flow model that
shows sub-system relationships.
Distribution model that shows how sub-systems are
distributed across computers.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 26

The repository model

Sub-systems must exchange data. This may
be done in two ways:
• Shared data is held in a central database or

repository and may be accessed by all sub-
systems;

• Each sub-system maintains its own database
and passes data explicitly to other sub-systems.

When large amounts of data are to be
shared, the repository model of sharing is
most commonly used.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 27

CASE toolset architecture

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 28

Repository model characteristics

Advantages
• Efficient way to share large amounts of data;
• Sub-systems need not be concerned with how data is

produced Centralised management e.g. backup, security,
etc.

• Sharing model is published as the repository schema.
Disadvantages
• Sub-systems must agree on a repository data model.

Inevitably a compromise;
• Data evolution is difficult and expensive;
• No scope for specific management policies;
• Difficult to distribute efficiently.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 29

Client-server model

Distributed system model which shows how
data and processing is distributed across a
range of components.
Set of stand-alone servers which provide
specific services such as printing, data
management, etc.
Set of clients which call on these services.
Network which allows clients to access
servers.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 30

Film and picture library

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 31

Client-server characteristics

Advantages
• Distribution of data is straightforward;
• Makes effective use of networked systems. May require

cheaper hardware;
• Easy to add new servers or upgrade existing servers.

Disadvantages
• No shared data model so sub-systems use different data

organisation. Data interchange may be inefficient;
• Redundant management in each server;
• No central register of names and services - it may be hard

to find out what servers and services are available.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 32

Abstract machine (layered) model

Used to model the interfacing of sub-systems.
Organises the system into a set of layers (or abstract
machines) each of which provide a set of services.
Supports the incremental development of sub-
systems in different layers. When a layer interface
changes, only the adjacent layer is affected.
However, often artificial to structure systems in this
way.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 33

Version management system

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 34

Modular decomposition

Another structural level where sub-systems are
decomposed into modules.
Two modular decomposition models covered
• An object model where the system is decomposed into

interacting object;
• A pipeline or data-flow model where the system is

decomposed into functional modules which transform
inputs to outputs.

If possible, decisions about concurrency should be
delayed until modules are implemented.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 35

Object models

Structure the system into a set of loosely
coupled objects with well-defined interfaces.
Object-oriented decomposition is concerned
with identifying object classes, their attributes
and operations.
When implemented, objects are created from
these classes and some control model used
to coordinate object operations.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 36

Invoice processing system

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 37

Object model advantages

Objects are loosely coupled so their
implementation can be modified without
affecting other objects.
The objects may reflect real-world entities.
OO implementation languages are widely
used.
However, object interface changes may
cause problems and complex entities may
be hard to represent as objects.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 38

Function-oriented pipelining

Functional transformations process their
inputs to produce outputs.
May be referred to as a pipe and filter model
(as in UNIX shell).
Variants of this approach are very common.
When transformations are sequential, this is
a batch sequential model which is
extensively used in data processing systems.
Not really suitable for interactive systems.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 39

Invoice processing system

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 40

Pipeline model advantages

Supports transformation reuse.
Intuitive organisation for stakeholder
communication.
Easy to add new transformations.
Relatively simple to implement as either a
concurrent or sequential system.
However, requires a common format for data
transfer along the pipeline and difficult to
support event-based interaction.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 41

Control styles

Are concerned with the control flow between
sub-systems. Distinct from the system
decomposition model.
Centralised control
• One sub-system has overall responsibility for

control and starts and stops other sub-systems.
Event-based control
• Each sub-system can respond to externally

generated events from other sub-systems or the
system’s environment.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 42

Centralised control

A control sub-system takes responsibility for
managing the execution of other sub-systems.
Call-return model
• Top-down subroutine model where control starts at the

top of a subroutine hierarchy and moves downwards.
Applicable to sequential systems.

Manager model
• Applicable to concurrent systems. One system

component controls the stopping, starting and
coordination of other system processes. Can be
implemented in sequential systems as a case statement.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 43

Call-return model

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 44

Real-time system control

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 45

Event-driven systems

Driven by externally generated events where the
timing of the event is outwith the control of the sub-
systems which process the event.
Two principal event-driven models
• Broadcast models. An event is broadcast to all sub-

systems. Any sub-system which can handle the event
may do so;

• Interrupt-driven models. Used in real-time systems where
interrupts are detected by an interrupt handler and passed
to some other component for processing.

Other event driven models include spreadsheets
and production systems.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 46

Broadcast model

Effective in integrating sub-systems on different
computers in a network.
Sub-systems register an interest in specific events.
When these occur, control is transferred to the sub-
system which can handle the event.
Control policy is not embedded in the event and
message handler. Sub-systems decide on events of
interest to them.
However, sub-systems don’t know if or when an
event will be handled.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 47

Selective broadcasting

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 48

Interrupt-driven systems

Used in real-time systems where fast
response to an event is essential.
There are known interrupt types with a
handler defined for each type.
Each type is associated with a memory
location and a hardware switch causes
transfer to its handler.
Allows fast response but complex to program
and difficult to validate.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 49

Interrupt-driven control

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 50

Architectural models

Different architectural models may be
produced during the design process
Each model presents different perspectives
on the architecture

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 8 Slide 51

Architecture attributes

Performance
• Localise operations to minimise sub-system communication

Security
• Use a layered architecture with critical assets in inner layers

Safety
• Isolate safety-critical components

Availability
• Include redundant components in the architecture

Maintainability
• Use fine-grain, self-contained components

