
©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 1

Computer-aided software engineering

Software tool support for
software development

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 2

CASE technology

Production-process support technology
• Tools to support development activities such as

specification, design, implementation, etc.
Process management technology
• Tools to support process modeling and

management
Meta-CASE technology
• Generators used to produce CASE toolsets

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 3

Impact of CASE technology

CASE technology has resulted in significant
improvements in quality and productivity
However, the scale of these improvements is
less than was initially predicted by early
technology developers
• Many software development problems such as

management problems are not amenable to
automation

• CASE systems are not integrated
• Adopters of CASE technology underestimated the

training and process adaptation costs

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 4

CASE classification

CASE systems can be classified according to
their
• Functionality - what functions do they provide
• Process support - what software process activities

do they support
• The breadth of support which they provide

Classification allows tools to be assessed and
compared

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 5

Functional tool classification

Tool type Examples

Planning tools PERT tools, estimation tools, spreadsheets

Editing tools Text editors, diagram editors, word processors

Change management tools Requirements traceability tools, change control systems

Configuration management tools Version management systems, system building tools

Prototyping tools Very high-level languages, user interface generators

Method-support tools Design editors, data dictionaries, code generators

Language-processing tools Compilers, interpreters

Program analysis tools Cross reference generators, static analysers, dynamic analysers

Testing tools Test data generators, file comparators

Debugging tools Interactive debugging systems

Documentation tools Page layout programs, image editors

Re-engineering tools Cross-reference systems, program re-structuring systems

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 6

Activity-based tool classification

Specification Design Implementation Verification
and

V alidation

Re-engineering tools

Testing tools

Debugg ing tools

Prog ram analysis tools

Language-processing
tools

Method suppor t tools

Prototyping tools

Configuration
management tools

Change management tools

Documentation tools

Editing tools

Planning tools

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 7

Quality of CASE support

Poor

Moderate

Good

Excellent

Quality of tool support

Requirements
definition

Function-
oriented
design

Object-oriented
design

Testing
Management

Formal
Specification

Data
modeling Programming

Maintenance

Activity
©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 8

CASE integration

Tools
• Support individual process tasks such as design

consistency checking, text editing, etc.
Workbenches
• Support a process phase such as specification or

design, Normally include a number of integrated
tools.

Environments
• Support all or a substantial part of an entire

software process. Normally include several
integrated workbenches.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 9

Tools, workbenches, environments

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 10

CASE workbenches

A set of tools which supports a particular
phase in the software process
Tools work together to provide comprehensive
support
Common services are provided which are
used by all tools and some data integration is
supported

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 11

Types of workbench

Programming, design and testing
workbenches
Other types of workbench are
• Cross-development workbenches for host-target

development
• Configuration management workbenches

Documentation workbenches for producing
professional system documentation

• Project management workbenches.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 12

Programming workbenches

A set of tools to support program development
First CASE workbenches. Include compilers,
linkers, loaders, etc.
Programming workbenches are often
integrated around an abstract program
representation (the abstract syntax tree) which
allows for tight integration of tools
Integration around shared source-code files is
also possible

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 13

Design and analysis workbenches

Support the generation of system models
during design and analysis activities
Usually intended to support a specific
structured method
Provide graphical editors plus a shared
repository
May include code generators to create source
code from design information

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 14

An analysis and design workbench

Central
information
repository

Code
generator

Query
language
facilities

Structured
diagramming

tools

Data
dictionary

Report
generation
facilities

Design, analysis
and checking

tools

Forms
creation

tools

Import/export
facilities

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 15

Testing workbenches

Testing is an expensive process phase.
Testing workbenches provide a range of tools
to reduce the time required and total testing
costs
Most testing workbenches are open systems
because testing needs are organization-
specific
Difficult to integrate with closed design and
analysis workbenches

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 16

A testing workbench

Dynamic
analyser

Program
being tested

Test
results

Test
predictions

File
comparator

Execution
report Simulator

Source
code

Test
manager Test data Oracle

Test data
generator Specification

Report
generator

Test results
report

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 17

Workbench advantages

Generally available on relatively cheap
personal computers
Results in standardized documentation for
software systems
Estimated that productivity improvements of
40% are possible with fewer defects in the
completed systems

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 18

Meta-CASE

Design and analysis workbenches are
conceptually similar. Often the differences are
only in the diagram types supported and the
method rules and guidelines
Programming workbenches are integrated
around a syntax representation which may be
separately defined
Meta-CASE workbenches are tools which
assist the process of creating workbenches.
They reduce the costs of CASE workbench
creation

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 19

The CASE life cycle

Procurement
Tailoring
Introduction
Operation
Evolution
Obsolescence

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 20

A CASE life cycle model

CASE system
tailoring

CASE system
procurement

CASE system
introduction

CASE system
evolution

CASE system
operation

CASE system
obsolescence

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 21

CASE procurement
Existing company standards and methods
• The environment must support existing practice

Existing and future hardware
• The environment must be compatible with existing

hardware. It should run on industry-standard
machines

The class of application to be developed
• The environment should support the principal type

of application developed by an organization
Security
• The environment should provide appropriate

access control facilities
©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 22

CASE system tailoring
Installation
• Set system dependent hardware and software

parameters
Process model definition
• Define the activities that the environment is to

support
Tool integration
• Describe what tools are to be part of the

environment and how they are to be integrated
Documentation
• Provide appropriate, in-house documentation for

using the environment

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 23

CASE introduction and operation
May require changes to working practice
• User resistance because of conservatism or a feeling

that environments are for managers rather than
engineers

• Lack of training. Organisations often don't invest
enough in training

• Management resistance. Managers may not see how
the environment will reduce project costs

Migrate projects slowly to the CASE system
• New projects should start with the environment after

initial pilot projects have demonstrated its advantages
• It is usually impractical to convert existing projects to

the CASE system
©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 24

CASE system evolution

As the system is used, new requirements arise
• Process requirements. Changes in the process

model will be identified
• Tool requirements. New tools will become

available and will have to be incorporated
• Data requirements. The data organisation will

evolve
An evolution budget must be available or the
environment will become progressively less
useful
Forward compatibility must be maintained

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 25

CASE system obsolescence

At some stage, an environment will outlive its
usefulness and will have to be replaced
Replacing an environment must be planned
and should take place over an extended time
period
Currently supported projects must be moved to
a new environment before their supporting
environment is scrapped

