
©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 1

Software Processes

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 2

The software process

A structured set of activities required to develop a
software system
• Specification;
• Design;
• Validation;
• Evolution.

A software process model is an abstract representation
of a process. It presents a description of a process
from some particular perspective.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 3

Process activities

Software specification
Software design and implementation
Software validation
Software evolution

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 4

Software specification

The process of establishing what services are
required and the constraints on the system’s
operation and development.
Requirements engineering process
• Feasibility study;
• Requirements elicitation and analysis;
• Requirements specification;
• Requirements validation.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 5

Software design and implementation

The process of converting the system
specification into an executable system.
Software design
• Design a software structure that realises the

specification;
Implementation
• Translate this structure into an executable

program;
The activities of design and implementation
are closely related and may be inter-leaved.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 6

Software validation

Verification and validation (V & V) is intended
to show that a system conforms to its
specification and meets the requirements of
the system customer.
Involves checking and review processes and
system testing.
System testing involves executing the system
with test cases that are derived from the
specification of the real data to be processed
by the system.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 7

Testing stages
Component or unit testing
• Individual components are tested independently;
• Components may be functions or objects or

coherent groupings of these entities.
System testing
• Testing of the system as a whole. Testing of

emergent properties is particularly important.
Acceptance testing
• Testing with customer data to check that the

system meets the customer’s needs.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 8

Software evolution

Software is inherently flexible and can change.
As requirements change through changing
business circumstances, the software that
supports the business must also evolve and
change.
Although there has been a demarcation
between development and evolution
(maintenance) this is increasingly irrelevant as
fewer and fewer systems are completely new.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 9

Structured methods

Systematic approaches to developing a
software design.
The design is usually documented as a set of
graphical models.
Possible models
• Object model;
• Sequence model;
• State transition model;
• Structural model;
• Data-flow model.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 10

Generic software process models
The waterfall model
• Separate and distinct phases of specification and

development.
Evolutionary development
• Specification, development and validation are

interleaved.
Component-based software engineering
• The system is assembled from existing components.

There are many variants of these models e.g. formal
development where a waterfall-like process is used but
the specification is a formal specification that is refined
through several stages to an implementable design.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 11

Waterfall model

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 12

Waterfall model phases

Requirements analysis and definition
System and software design
Implementation and unit testing
Integration and system testing
Operation and maintenance
The main drawback of the waterfall model is
the difficulty of accommodating change after
the process is underway. One phase has to be
complete before moving onto the next phase.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 13

Waterfall model problems

Inflexible partitioning of the project into distinct stages
makes it difficult to respond to changing customer
requirements.
Therefore, this model is only appropriate when the
requirements are well-understood and changes will be
fairly limited during the design process.
Few business systems have stable requirements.
The waterfall model is mostly used for large systems
engineering projects where a system is developed at
several sites.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 14

Evolutionary development

Exploratory development
• Objective is to work with customers and to evolve

a final system from an initial outline specification.
Should start with well-understood requirements
and add new features as proposed by the
customer.

Throw-away prototyping
• Objective is to understand the system

requirements. Should start with poorly understood
requirements to clarify what is really needed.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 15

Evolutionary development

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 16

Evolutionary development

Problems
• Lack of process visibility;
• Systems are often poorly structured;
• Special skills (e.g. in languages for rapid

prototyping) may be required.
Applicability
• For small or medium-size interactive systems;
• For parts of large systems (e.g. the user interface);
• For short-lifetime systems.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 17

Component-based software engineering

Based on systematic reuse where systems are
integrated from existing components or COTS
(Commercial-off-the-shelf) systems.
Process stages
• Component analysis;
• Requirements modification;
• System design with reuse;
• Development and integration.

This approach is becoming increasingly used
as component standards have emerged.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 18

Process iteration

System requirements ALWAYS evolve in the
course of a project so process iteration where
earlier stages are reworked is always part of
the process for large systems.
Iteration can be applied to any of the generic
process models.
Two (related) approaches
• Incremental delivery;
• Spiral development.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 19

Incremental delivery

Rather than deliver the system as a single delivery, the
development and delivery is broken down into
increments with each increment delivering part of the
required functionality.
User requirements are prioritised and the highest
priority requirements are included in early increments.
Once the development of an increment is started, the
requirements are frozen though requirements for later
increments can continue to evolve.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 20

Incremental development

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 21

Incremental development advantages

Customer value can be delivered with each
increment so system functionality is available
earlier.
Early increments act as a prototype to help
elicit requirements for later increments.
Lower risk of overall project failure.
The highest priority system services tend to
receive the most testing.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 22

Spiral development

Process is represented as a spiral rather than
as a sequence of activities with backtracking.
Each loop in the spiral represents a phase in
the process.
No fixed phases such as specification or
design - loops in the spiral are chosen
depending on what is required.
Risks are explicitly assessed and resolved
throughout the process.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 23

Spiral model of the software process

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 24

Spiral model sectors

Objective setting
• Specific objectives for the phase are identified.

Risk assessment and reduction
• Risks are assessed and activities put in place to reduce

the key risks.
Development and validation
• A development model for the system is chosen which

can be any of the generic models.
Planning
• The project is reviewed and the next phase of the spiral

is planned.

